JPH04126512A - System for separating and recovering gaseous mixture and its operation - Google Patents

System for separating and recovering gaseous mixture and its operation

Info

Publication number
JPH04126512A
JPH04126512A JP2246997A JP24699790A JPH04126512A JP H04126512 A JPH04126512 A JP H04126512A JP 2246997 A JP2246997 A JP 2246997A JP 24699790 A JP24699790 A JP 24699790A JP H04126512 A JPH04126512 A JP H04126512A
Authority
JP
Japan
Prior art keywords
gas
mixed gas
cooled
adsorbed
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2246997A
Other languages
Japanese (ja)
Inventor
Ryokichi Yamada
山田 良吉
Hisao Yamashita
寿生 山下
Osamu Kuroda
修 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2246997A priority Critical patent/JPH04126512A/en
Publication of JPH04126512A publication Critical patent/JPH04126512A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To efficiently separate and recover CO2 from a waste combustion gas, etc., having a low content of CO2 by removing or recovering the high- adsorbable gas in a gaseous mixture with a means for cooling or heating the low-adsorbable gas and the cooled or heated low-adsorbable refined gas. CONSTITUTION:The raw gaseous mixture 1 is cooled and condensed by a heat exchanger 2, boosted by a compressor 4 and supplied to an adsorption tower 1A in which the residual moisture is adsorbed and removed to form a refined gaseous mixture which is supplied to an adsorption tower 2A. CO2 is adsorbed and concentrated in the tower 2A, the remaining refined gaseous mixture is stored in a tank 8, and a part of the mixture is supplied to an expansion turbine 9, cooled and stored in a tank 10. Meanwhile, the adsorbed moisture is vacuum- desorbed by a vacuum pump 5 in an adsorption tower 1B under regeneration and discharged. The concd. CO2 is vacuum-desorbed by a vacuum pump 6 in an adsorption tower 2B, supplied to a heat exchanger 7 and cooled by the cooled refined gaseous mixture from the tank 10, and only CO2 is liquefied and stored through a pipeline 50.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は混合成分の分離回収システムに係り、特に、火
力発電ボイラ等からの排ガス中の炭酸ガス(CO2)分
離・回収システム及び運転方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a separation and recovery system for mixed components, and in particular to a system and operating method for separating and recovering carbon dioxide (CO2) in exhaust gas from a thermal power boiler, etc. .

〔従来の技術〕[Conventional technology]

酸性雨、オゾン層破壊、地球温暖化は人類の将来にとっ
て、極めて大きな地球的規模の環境問題であり、その対
策が必要とされている。この中で、地球温暖化はC○2
濃度の上昇が主原因の一つとされている。主に化石燃料
をボイラで燃焼させ、得られた熱エネルギを電気エネル
ギに変換する火力発電所のボイラ排ガスからのCOzの
排出量が多い。この排出COx量は数百KWの電力量を
賄う場合、−時間当り数百トンにも及び、国内の電力需
要量を考えると膨大なCOzが排出されていることにな
る。
Acid rain, ozone layer depletion, and global warming are extremely large global environmental problems for the future of humanity, and countermeasures are required. Among these, global warming is C○2
Increased concentration is said to be one of the main causes. A large amount of COz is emitted from the boiler exhaust gas of thermal power plants, which mainly burn fossil fuels in boilers and convert the resulting thermal energy into electrical energy. The amount of COx emitted reaches several hundred tons per hour when several hundred kilowatts of electricity is supplied, which means that a huge amount of COz is emitted when considering the domestic electricity demand.

この様なことから、近年、火力発電所のボイラ排ガス等
に含まれるC Oxを回収し、有効利用及び貯蔵などの
手段によってCOzの大気中への排出を抑制することが
叫ばれている。特に、CO2の排出抑制技術としてCO
2の分離回収システムが注目されている。
For this reason, in recent years, there has been a call for controlling the emission of COz into the atmosphere by recovering COx contained in boiler exhaust gas from thermal power plants, and effectively using and storing it. In particular, CO2 emissions control technology
The second separation and recovery system is attracting attention.

従来、比較的Coxの濃度が低い空気中のCo2分離除
去技術としては深冷分離法の前処理装置として圧力差ス
イング吸着法(特願昭46−49542号。
Conventionally, as a technology for separating and removing CO2 from air where the concentration of Cox is relatively low, the pressure difference swing adsorption method (Japanese Patent Application No. 46-49542) is used as a pre-treatment device for the cryogenic separation method.

U S −3967464号、 U S−321095
0号等)が知られている。また、混合ガスからのCOx
の分離除去に関しては圧力差スイング吸着法(特開昭6
4−27614号、特開昭52−59073号、特開平
1−155926号公報)により行うことが知られてい
る。一方、COxの分離回収技術に関しては圧力差スイ
ング吸着法により廃ガスからのCow回収法(吸着(P
 S A)による廃ガスからのCOx回収、化学装置、
8月号、p54〜59 (1989))がある。
US-3967464, US-321095
No. 0 etc.) are known. In addition, COx from mixed gas
Regarding the separation and removal of
4-27614, JP-A-52-59073, and JP-A-1-155926). On the other hand, regarding COx separation and recovery technology, Cow recovery from waste gas (adsorption (P
COx recovery from waste gas by S A), chemical equipment,
August issue, pages 54-59 (1989)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術「吸着(P S A)による廃ガスからの
COz回収」には、高炉熱風炉ガス、石油改質ガス、水
素製造ガス等の比較的COz濃度が20%前後と高い場
合と燃焼排ガス中のCO2濃度が10%前後と比較的希
薄の場合の圧力差スイング吸着(以下PSA法と略す)
によるC 02の分離回収に関して述べられている。こ
の中でも燃焼排ガス中のCO2濃度が希薄な場合には、
製造コスト及びPAS装置が大型化するなどの観点から
COx分離回収を二段方式で行うことが記載されている
。すなわち、COzの分離回収を一段目のPSA装置で
COzを粗濃縮し、二段目のPSA装置で高濃縮して分
離回収する方式である。
The above conventional technology "COz recovery from waste gas by adsorption (PSA)" is applicable to cases where the COz concentration is relatively high at around 20%, such as blast furnace hot stove gas, reformed petroleum gas, hydrogen production gas, etc., and combustion exhaust gas. Pressure difference swing adsorption (hereinafter abbreviated as PSA method) when the CO2 concentration is relatively dilute, around 10%.
The separation and recovery of C 02 is described. Among these, when the CO2 concentration in the combustion exhaust gas is low,
It is described that COx separation and recovery is performed in a two-stage method from the viewpoint of manufacturing costs and increasing the size of the PAS device. That is, this is a method in which COz is separated and recovered using a first-stage PSA device that roughly concentrates COz, and a second-stage PSA device that highly concentrates and separates and recovers COz.

また、COxの分離回収に関しては吸着工程を終了した
吸着塔に製品COzガスを供給し、すでに共吸着されN
Z 、Oxなどをパージし吸着工程終了基にCOxを充
満させたのち、吸着したC O2とパージ用COxを真
空ポンプにより回収する方法が記載されている。
Regarding the separation and recovery of COx, the product COz gas is supplied to the adsorption tower that has completed the adsorption process, and the COz gas that has already been co-adsorbed is removed.
A method is described in which, after purging Z 2 , Ox, etc. and filling the adsorption step end group with COx, the adsorbed CO 2 and purging COx are recovered using a vacuum pump.

この方法で濃度が希薄な燃焼排ガス等のCotの分離回
収では回収率の向上を図るため、PSA装置の二段にす
る必要があり′、PSA装置の大型化、所要消費動力の
増大につながる等の問題が生じる。また、製品Conを
パージし共吸着のN2 。
In order to improve the recovery rate when separating and recovering Cot such as combustion exhaust gas with a dilute concentration using this method, it is necessary to use a two-stage PSA device, which leads to an increase in the size of the PSA device and an increase in the required power consumption. The problem arises. In addition, the product Con was purged and co-adsorbed with N2.

o2を除去したのち、吸着COZとパージ用COzを真
空ポンプにより回収する際に、COzは高吸着成分であ
り、吸着剤からのConの脱離速度が遅く、かつ、脱離
量が少なくなるため、真空ポンプによる減圧を高真空度
にする必要がある。このため、真空ポンプの動力が大き
くなる問題が生じる。この問題点は、Conの分離回収
コストに大きく影響を及ぼすことになる。
After removing o2, when recovering adsorbed COZ and purge COz using a vacuum pump, COz is a highly adsorbed component, and the rate of desorption of Con from the adsorbent is slow, and the amount of desorbed is small. , it is necessary to reduce the pressure by a vacuum pump to a high degree of vacuum. Therefore, a problem arises in that the power of the vacuum pump increases. This problem greatly affects the cost of separating and recovering Con.

本発明の目的は、上記手段によらず濃度が希薄に燃焼排
ガス等からのCOzを効率よく分離・回収することにあ
る。
An object of the present invention is to efficiently separate and recover COz from combustion exhaust gas and the like in a diluted manner without using the above-mentioned means.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、圧力スイング吸着法によっ
て混合ガス中の高吸着ガスのCOzを吸着し残りの低吸
着ガスを精′製する方法において、低吸着精製ガスを冷
却あるいは加熱する手段によって冷却あるいは加熱し加
熱低吸着精製ガスにより吸着COxを吸着剤から脱離し
、この手段によって分離されたC Oxを回収する手段
は前記冷却低吸着精製ガスにより前記加熱低吸着精製ガ
スとCOxを含む混合ガスを冷却しCOzのみを液化し
て回収するようにしたものである。
In order to achieve the above objective, in a method of adsorbing COz, which is a highly adsorbed gas in a mixed gas, by pressure swing adsorption and purifying the remaining low adsorbed gas, the low adsorbed purified gas is cooled by means of cooling or heating. Alternatively, the means for desorbing the adsorbed COx from the adsorbent by heating and using the heated low-adsorption purified gas and recovering the COx separated by this means is to use the cooled low-adsorption purified gas to generate a mixed gas containing the heated low-adsorption purified gas and COx. The COz is cooled and only the COz is liquefied and recovered.

〔作用〕[Effect]

混合ガス中のCOzを濃縮する際には精製混合ガス中に
はCOxが存在しない様に吸着工程を実施する。また、
濃縮CO2を吸着剤から肌着する再生工程でCOzを含
まない精製混合ガスで濃縮COzを分離する際には、C
Ozが完全に分離(共吸着の混合ガスが一部含まれる)
するまで精製混合ガスあるいは加熱した精製混合ガスを
供給する。この操作が終了した時点で、吸着工程時の圧
力で貯留した精製混合ガスにより吸着塔を昇圧する。さ
らに、COzを精製混合ガスあるいは加熱精製混合ガス
により分離した後、回収する際には精製混合ガスを冷熱
発生手段により冷却し、冷却精製混合ガスと分離COz
との熱授受を行うことによりCOxを液化回収する。こ
の場合、精製混合ガスは分離COzのみが液化する温度
まで冷却する。
When concentrating COz in the mixed gas, an adsorption step is carried out so that COx does not exist in the purified mixed gas. Also,
C
Oz is completely separated (some co-adsorption mixed gas is included)
Supply purified mixed gas or heated purified mixed gas until At the end of this operation, the adsorption tower is pressurized with the purified mixed gas stored at the pressure during the adsorption step. Furthermore, after separating COz using purified mixed gas or heated purified mixed gas, when recovering, the purified mixed gas is cooled by a cold heat generating means, and the cooled purified mixed gas and separated COz
The COx is liquefied and recovered by exchanging heat with the COx. In this case, the purified mixed gas is cooled to a temperature at which only the separated COz liquefies.

この構成及び操作によれば、再生工程において濃縮CC
)zを真空ポンプ単独減圧手段による吸着剤からの脱離
操作に比べ、Co2を含まない精製混合ガスあるいは加
熱精製混合ガスを供給するため、吸着剤からの脱離促進
が図れ、真空ポンプの動力が低減できる。また、加熱精
製混合ガスをCOzが完全に分離するまで供給するよう
にすれば真空ポンプ減圧操作が不要とすることもできる
According to this configuration and operation, in the regeneration process, concentrated CC
) Compared to the desorption operation of z from the adsorbent using a vacuum pump alone as a depressurizing means, since a purified mixed gas that does not contain Co2 or heated purified mixed gas is supplied, desorption from the adsorbent can be promoted, and the power of the vacuum pump is reduced. can be reduced. Further, if the heated purified mixed gas is supplied until COz is completely separated, the vacuum pump depressurization operation can be made unnecessary.

さらに、吸着剤の再生度合い及びCO2回収率を向上で
きる。さらには、加圧工程時にはCO2を含まない精製
混合ガスで再生工程後の吸着塔を昇圧することにより吸
着工程時にはCOzの吸着量が増大できるため、吸着塔
のコンパクト化が図れる。また、冷却精製混合ガスによ
り濃縮CO2のみを液化するため、高純度のCOzが効
率よく回収できる。
Furthermore, the degree of regeneration of the adsorbent and the CO2 recovery rate can be improved. Furthermore, during the pressurization step, by pressurizing the adsorption tower after the regeneration step with a purified mixed gas that does not contain CO2, the amount of COz adsorbed during the adsorption step can be increased, so the adsorption tower can be made more compact. Furthermore, since only the concentrated CO2 is liquefied using the cooled purified mixed gas, highly purified COz can be efficiently recovered.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

先ず本実施例の構成を説明する。水分吸着除去用の二基
の吸着塔IA、IBをもちそれぞれ原料混合ガス供給用
切替え弁11A、IIB、再生工程時の脱着ガス切替え
弁13A、13B、精製混合ガス取り出し用切替え弁1
2A、12B、原料混合ガス圧送用の圧縮機4.吸着剤
再生用の真空ポンプ5.吸着塔IA、IBからの精製混
合ガス中のCO2濃縮用の吸着塔2A、2B、吸着塔2
A、2Bへの精製混合ガス供給用切替え弁21A。
First, the configuration of this embodiment will be explained. It has two adsorption towers IA and IB for adsorption and removal of water, respectively, switching valves 11A and IIB for supplying raw material mixed gas, switching valves 13A and 13B for desorption gas during the regeneration process, and switching valve 1 for removing purified mixed gas.
2A, 12B, Compressor for pressure-feeding raw material mixed gas4. Vacuum pump for adsorbent regeneration5. Adsorption towers 2A and 2B for concentrating CO2 in purified mixed gas from adsorption towers IA and IB, and adsorption tower 2
Switching valve 21A for supplying purified mixed gas to A and 2B.

21B、再生工程時の脱着ガス切替え弁23A。21B, desorption gas switching valve 23A during the regeneration process;

23B、吸着塔2A、2Bからの精製混合ガス取り出し
用切替え弁22A、22B、吸着剤再生用真空ポンプ6
、精製混合ガス貯留タンク8.熱交換器2及び7.冷熱
発生用膨張タービン9、混合ガスタンク10、加熱用熱
交換器50及び6oとから構成され、さらに、吸着塔I
A、IB、2A。
23B, switching valves 22A, 22B for taking out purified mixed gas from adsorption towers 2A, 2B, vacuum pump 6 for regenerating adsorbent
, purified mixed gas storage tank8. Heat exchangers 2 and 7. It is composed of an expansion turbine 9 for generating cold heat, a mixed gas tank 10, and heat exchangers 50 and 6o for heating, and further includes an adsorption tower I.
A, IB, 2A.

2Bとには精製混合ガス供給用切替え弁15A。2B is a purified mixed gas supply switching valve 15A.

15B、25A、2513がそれぞれ設置されている。15B, 25A, and 2513 are installed, respectively.

次に、動作を説明する。ここでは、吸着塔IA及び2A
が吸着工程を実施し吸着塔IB、2Bが再生及び加圧工
程を実施している動作状態で、以下を説明する。
Next, the operation will be explained. Here, adsorption towers IA and 2A
The following will be explained under the operating condition in which the adsorption towers IB and 2B are performing the adsorption process and the regeneration and pressurization processes are being performed.

原料混合ガス1中の水分は予め、熱交換器2において冷
却・凝縮され、凝縮水3は系外に排出される。この後、
混合ガスは圧縮機4によって圧力Pa=1.6ataま
で昇圧され、切替え弁11Aを介して吸着塔IAに供給
される。ここで、熱交換器2の操作温度における蒸気正
分相当の原料混合ガス1中の残りの水分が吸着除去され
、精製混合ガスは吐出端100Aから切替え弁12Aを
介して吸着塔2Aに供給される。吸着塔2AではC02
が吸着濃縮され、残りの精製混合ガスは吐出端200A
から切替え弁22A及び30aを介してタンク8に貯蔵
される。タンク8に貯留された精製混合ガスの一部は切
替え弁30dを介して膨張タービン9に供給され冷却さ
れる。冷却された精製混合ガスはタンク1oに貯留され
る。
Moisture in the raw material mixed gas 1 is previously cooled and condensed in a heat exchanger 2, and condensed water 3 is discharged outside the system. After this,
The mixed gas is pressurized to a pressure Pa=1.6ata by the compressor 4, and is supplied to the adsorption tower IA via the switching valve 11A. Here, the remaining moisture in the raw material mixed gas 1 equivalent to the steam fraction at the operating temperature of the heat exchanger 2 is adsorbed and removed, and the purified mixed gas is supplied from the discharge end 100A to the adsorption tower 2A via the switching valve 12A. Ru. In adsorption tower 2A, C02
is adsorbed and concentrated, and the remaining purified mixed gas is discharged from the discharge end 200A.
The fuel is stored in the tank 8 via the switching valves 22A and 30a. A part of the purified mixed gas stored in the tank 8 is supplied to the expansion turbine 9 via the switching valve 30d and is cooled. The cooled purified mixed gas is stored in tank 1o.

一方、再生工程にある吸着塔IBでは切替え弁12B、
15B、IIB閉、13B開の状態で真空ポンプ5によ
り吸着された水分は減圧・脱着され、吐出端40から系
外に排出される。また、吸着塔2Bでは切替え弁22B
、25B、21B閉。
On the other hand, in the adsorption tower IB in the regeneration process, the switching valve 12B,
Moisture adsorbed by the vacuum pump 5 when 15B and IIB are closed and 13B is open is depressurized and desorbed, and is discharged from the discharge end 40 to the outside of the system. In addition, in the adsorption tower 2B, the switching valve 22B
, 25B, 21B closed.

23B開の状態で吸着された他の混合成分を一部含む濃
縮C○2は真空ポンプ6により減圧・脱着され配管50
を経て熱交換器7に供給される。熱交換器7では、混合
成分を一部含む濃縮CO2は貯留タンク10からの冷却
された精製混合ガスによって冷却され、COzのみが液
化される。液化C○2は弁90を介して配管50を経て
貯蔵される。熱交換器7で液化されたC○2以外の混合
ガス成分は、切替え弁30fを介して膨張タービン9に
より冷却され、タンク9に貯留される。冷却された精製
混合ガスは熱交換器2において、原料混合ガス中の水分
を冷却・凝縮する冷熱源としても使用される。さらに、
再生工程にある吸着塔IB、2Bでは真空ポンプ5及び
6による減圧・脱着操作に加え、次の操作が行われる。
Concentrated C○2 containing some of the other mixed components adsorbed when 23B is open is depressurized and desorbed by the vacuum pump 6 and transferred to the pipe 50.
It is supplied to the heat exchanger 7 through the. In the heat exchanger 7, the concentrated CO2 partially containing the mixed components is cooled by the cooled purified mixed gas from the storage tank 10, and only COz is liquefied. The liquefied C○2 is stored via the pipe 50 via the valve 90. The mixed gas components other than C○2 liquefied in the heat exchanger 7 are cooled by the expansion turbine 9 via the switching valve 30f, and stored in the tank 9. The cooled purified mixed gas is also used as a cold heat source in the heat exchanger 2 to cool and condense moisture in the raw mixed gas. moreover,
In the adsorption towers IB and 2B in the regeneration process, in addition to the depressurization and desorption operations by the vacuum pumps 5 and 6, the following operations are performed.

先ず、吸着塔IBでは切換弁12B、11が閉、弁15
B。
First, in adsorption tower IB, switching valves 12B and 11 are closed, and valve 15 is closed.
B.

13B開の状態でタンク8からのCOzを含まない精製
混合ガスの一部が切替え弁30bを介し配管51を経て
吐出端100Bから供給される。この場合、熱交換器6
0において加熱した精製混合ガスを供給してもよい。供
給された精製混合ガスあるいは加熱精製混合ガスにより
吸着された水分が吸着剤から脱離され、真空ポンプ6に
より系・外に排出される。この操作は排出混合ガス中の
水分露点が一40℃以下になる様に精製混合ガスが順次
供給される。この場合、熱交換器2及び7で水分、CO
xを冷却した後の精製混合ガスを切替え弁30h、30
eを介して吸着塔IBに供給してもよい、吸着塔2Bで
は切替え弁22B、21B閉、25B、23B開の状態
でタンク8からの精製混合ガスが切替え弁30cを介し
て配管52を経て吐出端200Bから供給される。この
場合、熱交換器50で加熱した精製混合ガスを供給する
ことにより吸着剤からのCOzの脱離を速めてもよい。
With 13B open, a portion of the purified mixed gas not containing COz from the tank 8 is supplied from the discharge end 100B via the switching valve 30b and the pipe 51. In this case, the heat exchanger 6
A purified mixed gas heated at 0 may be supplied. Moisture adsorbed by the supplied purified mixed gas or heated purified mixed gas is desorbed from the adsorbent and discharged to the outside of the system by the vacuum pump 6. In this operation, purified mixed gas is sequentially supplied so that the water dew point in the discharged mixed gas becomes 140° C. or less. In this case, heat exchangers 2 and 7 contain water and CO2.
After cooling the purified mixed gas, the switching valves 30h and 30
In the adsorption tower 2B, the purified mixed gas from the tank 8 is passed through the pipe 52 via the switching valve 30c with the switching valves 22B and 21B closed and 25B and 23B open. It is supplied from the discharge end 200B. In this case, the desorption of COz from the adsorbent may be accelerated by supplying purified mixed gas heated by the heat exchanger 50.

供給された精製混合ガスあるいは加熱精製混合ガスによ
り吸着された混合ガス成分が一部含む濃縮Coxが吸着
剤から脱離され、真空ポンプ6により熱交換器7に供給
される。吸着塔2Bへの精製混合ガスは真空ポンプ6の
吸引側でCO2濃度が1%以下になる様に、順次、供給
される。
Concentrated Cox partially containing mixed gas components adsorbed by the supplied purified mixed gas or heated purified mixed gas is desorbed from the adsorbent and supplied to the heat exchanger 7 by the vacuum pump 6 . The purified mixed gas is sequentially supplied to the adsorption tower 2B so that the CO2 concentration becomes 1% or less on the suction side of the vacuum pump 6.

この場合、熱交換器2及び7において水分、CO2を冷
却した後の精製混合ガスを切替え弁30e。
In this case, the purified mixed gas after cooling moisture and CO2 in the heat exchangers 2 and 7 is transferred to the switching valve 30e.

30gを介して配管52を経て吐出端200Bから吸着
塔2Bに供給してもよい。
It may also be supplied to the adsorption tower 2B from the discharge end 200B via the pipe 52 via 30g.

さらに、吸着塔IB及び2Bが真空ポンプ5及び6、あ
るいは精製混合ガスによって水分、 CO2が吸着剤か
ら前述の条件に脱離れた時点で吸着塔IB及び2Bがタ
ンク8からの精製混合ガスにより昇圧される。この後、
吸着塔IAとIB、2Aと2Bが切替り、吸着塔IA及
び2Aが再生工程を、吸着塔IB及び2Bが吸着工程を
実施し、順次、この操作を繰り返犬す。
Furthermore, when the adsorption towers IB and 2B are depressurized by the vacuum pumps 5 and 6 or the purified mixed gas or the purified mixed gas from the adsorbent under the above-mentioned conditions, the adsorption towers IB and 2B are pressurized by the purified mixed gas from the tank 8. be done. After this,
The adsorption towers IA and IB, 2A and 2B are switched, the adsorption towers IA and 2A perform the regeneration process, the adsorption towers IB and 2B perform the adsorption process, and this operation is repeated in sequence.

COxの回収システム及び運転方法は第2図に示した様
なガスタービン500.燃焼器501゜発電機502.
排熱回収熱交換器503.蒸気タービン5049発電機
506及び熱交換器505等から構成される複合発電プ
ラントからの排ガス1中のCOzの回収に適しているが
、これに限定゛されるものではない。
The COx recovery system and operating method is a gas turbine 500 as shown in FIG. Combustor 501° Generator 502.
Exhaust heat recovery heat exchanger 503. The present invention is suitable for recovering COz in the exhaust gas 1 from a combined power generation plant composed of a steam turbine 5049, a generator 506, a heat exchanger 505, etc., but is not limited thereto.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、濃縮COzを真空ポンプ単独減圧手段
により吸着剤から脱離する操作に比べ、COzを含まな
い精製混合ガスにより濃縮COzを脱離するため、吸着
剤からのCOzの脱離促進を速める効果がある。この操
作で、濃縮COz脱離後の精製混合ガス中のCOz濃度
が1%以下になるまで精製混合ガスあるいは加熱精製混
合ガスを供給するため、吸着剤の再生促進が図れ、かつ
、COzの回収率を向上できる効果がある。この操作で
は、真空ポンプを用いずに、精製混合ガスのみで濃縮C
Ozを脱離できるため、所要動力の低減を図れる。また
、精製混合ガスを供給する操作により吸着塔を昇圧する
ため、吸着工程時にはCOxの吸着量を増大することが
でき、装置のコンパクト化が図れる効果がある。さらに
、精製混合ガスをCOzのみが液化する温度まで冷却し
、冷却精製混合ガスにより、一部共吸着している他の混
合ガスを含む脱離ガスからCOxのみを液化回収するた
め、高純度のCOzが効率よく回収できる効果がある。
According to the present invention, compared to an operation in which concentrated COz is desorbed from an adsorbent using a vacuum pump alone for decompression, since concentrated COz is desorbed using a purified mixed gas that does not contain COz, the desorption of COz from the adsorbent is promoted. It has the effect of accelerating. With this operation, purified mixed gas or heated purified mixed gas is supplied until the COz concentration in the purified mixed gas after desorption of concentrated COz becomes 1% or less, so it is possible to promote the regeneration of the adsorbent and to recover COz. This has the effect of improving the rate. In this operation, concentrated C is used only with purified mixed gas without using a vacuum pump.
Since Oz can be desorbed, the required power can be reduced. Furthermore, since the pressure of the adsorption tower is increased by the operation of supplying the purified mixed gas, the amount of COx adsorbed can be increased during the adsorption step, which has the effect of making the apparatus more compact. Furthermore, the purified mixed gas is cooled to a temperature at which only COz liquefies, and the cooled purified mixed gas is used to liquefy and recover only COx from the desorbed gas containing other mixed gases that are partially co-adsorbed. This has the effect of efficiently recovering COz.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統図、第2図は複合発電
プラントの系統図である。 2.7,50,60・・・熱交換器、4・・・圧縮機、
5゜6・・・真空ポンプ、LA、B、2A、B・・・吸
着塔、第1図 第2図 8F−
FIG. 1 is a system diagram of an embodiment of the present invention, and FIG. 2 is a system diagram of a combined power generation plant. 2.7,50,60...heat exchanger, 4...compressor,
5゜6...Vacuum pump, LA, B, 2A, B...Adsorption tower, Figure 1, Figure 2, 8F-

Claims (1)

【特許請求の範囲】 1、圧力スイング吸着法によつて混合ガス中の高吸着ガ
スを吸着・分離し低吸着ガスを精製する方法において、 前記低吸着精製ガスを冷却あるいは加熱する手段と冷却
あるいは加熱低吸着精製ガスにより前記高吸着ガスを除
去あるいは回収することを特徴とする混合ガスの分離回
収システム。 2、請求項1において、ガスタービン、蒸気タービン、
排熱回収熱交換器等からなる複合発電プラントからの排
ガス中の炭酸ガスの回収を行う排ガス中からの炭酸ガス
の回収法。3、請求項1において、加熱低吸着精製ガス
により高吸着ガスを脱着した後、冷却低吸着精製ガスに
より脱着高吸着ガスを冷却・液化して回収する混合ガス
の分離回収システム。
[Claims] 1. A method for adsorbing and separating a highly adsorbed gas in a mixed gas to purify a low adsorbed gas by pressure swing adsorption method, comprising: a means for cooling or heating the purified gas with low adsorption; A mixed gas separation and recovery system, characterized in that the high adsorption gas is removed or recovered using a heated low adsorption purified gas. 2. In claim 1, a gas turbine, a steam turbine,
A method for recovering carbon dioxide from exhaust gas, which recovers carbon dioxide from exhaust gas from a combined power generation plant that consists of an exhaust heat recovery heat exchanger, etc. 3. A mixed gas separation and recovery system according to claim 1, in which the highly adsorbed gas is desorbed by the heated, low-adsorbent purified gas, and then the desorbed, highly adsorbed gas is cooled and liquefied by the cooled, low-adsorbed purified gas, and then recovered.
JP2246997A 1990-09-19 1990-09-19 System for separating and recovering gaseous mixture and its operation Pending JPH04126512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246997A JPH04126512A (en) 1990-09-19 1990-09-19 System for separating and recovering gaseous mixture and its operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246997A JPH04126512A (en) 1990-09-19 1990-09-19 System for separating and recovering gaseous mixture and its operation

Publications (1)

Publication Number Publication Date
JPH04126512A true JPH04126512A (en) 1992-04-27

Family

ID=17156841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246997A Pending JPH04126512A (en) 1990-09-19 1990-09-19 System for separating and recovering gaseous mixture and its operation

Country Status (1)

Country Link
JP (1) JPH04126512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474090B2 (en) * 2004-10-22 2009-01-06 Delphi Technologies, Inc. Position sensor and assembly
JP2019141759A (en) * 2018-02-16 2019-08-29 大陽日酸株式会社 Gas refining apparatus, gas refining method, propene producing apparatus and propane producing apparatus
JP2019177315A (en) * 2018-03-30 2019-10-17 大陽日酸株式会社 Gas refining apparatus and gas refining method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474090B2 (en) * 2004-10-22 2009-01-06 Delphi Technologies, Inc. Position sensor and assembly
JP2019141759A (en) * 2018-02-16 2019-08-29 大陽日酸株式会社 Gas refining apparatus, gas refining method, propene producing apparatus and propane producing apparatus
US11471819B2 (en) 2018-02-16 2022-10-18 Taiyo Nippon Sanso Corporation Gas refining apparatus, gas refining method, propene manufacturing apparatus, and propane manufacturing apparatus
JP2019177315A (en) * 2018-03-30 2019-10-17 大陽日酸株式会社 Gas refining apparatus and gas refining method

Similar Documents

Publication Publication Date Title
JP7083783B2 (en) Integrated adsorption gas separation system for separating at least a part of the combustion gas flow
AU2016203120B2 (en) Integration of pressure swing adsorption with a power plant for CO2 capture/utilization and N2 production
JP5812694B2 (en) Carbon dioxide recovery method and apparatus
JP6217934B2 (en) System and method for integrated gas adsorption separation of combustion gases
US10439242B2 (en) Hybrid high-temperature swing adsorption and fuel cell
JP2012062897A (en) Method for capturing co2 from exhaust gas
US20110061529A1 (en) Process and device for the separation of foreign gases from a reducing useful gas by steam-driven pressure swing adsorption
JP2010112377A (en) System and method for reducing corrosion in gas turbine system
JP6957497B2 (en) Adsorption gas separation using steam for regeneration
US20120240619A1 (en) Method and device for treating a carbon-dioxide-containing gas flow, wherein the energy of the vent gas (work and cold due to expansion) is used
US10071337B2 (en) Integration of staged complementary PSA system with a power plant for CO2 capture/utilization and N2 production
JPH04126512A (en) System for separating and recovering gaseous mixture and its operation
US10071338B2 (en) Staged pressure swing adsorption for simultaneous power plant emission control and enhanced hydrocarbon recovery
JPH01201017A (en) Recovery of byproduct gas generated in ironworks
JP7025310B2 (en) Gas turbine combined cycle power generation system, gas turbine combined cycle power generation method
US20180133640A1 (en) System and method for integrated adsorptive gas separation of combustion gases
JP3742304B2 (en) Rare gas recovery method and apparatus
JPH05113105A (en) Power generation while producing carbon dioxide and inert gas
JP2011251864A (en) Apparatus and method for separating carbon dioxide under high pressure
JPH09145003A (en) Lng fire power installation
KR20150101901A (en) Working gas circulation type engine system and its operating method