JPH04126223A - Curing method for adhesive - Google Patents

Curing method for adhesive

Info

Publication number
JPH04126223A
JPH04126223A JP18662190A JP18662190A JPH04126223A JP H04126223 A JPH04126223 A JP H04126223A JP 18662190 A JP18662190 A JP 18662190A JP 18662190 A JP18662190 A JP 18662190A JP H04126223 A JPH04126223 A JP H04126223A
Authority
JP
Japan
Prior art keywords
coil
curing
adhesive
temperature
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18662190A
Other languages
Japanese (ja)
Other versions
JPH0624771B2 (en
Inventor
Hideo Kurashima
秀夫 倉島
Harumi Sato
春美 佐藤
Kazuhisa Ishibashi
石橋 一久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP18662190A priority Critical patent/JPH0624771B2/en
Priority to EP19910302237 priority patent/EP0471430A3/en
Publication of JPH04126223A publication Critical patent/JPH04126223A/en
Publication of JPH0624771B2 publication Critical patent/JPH0624771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the curing time of adhesive, improve productivity and, at the same time, eliminate or downsize a thermostatic chamber for curing by a method wherein metal foil layer is ohmic treated by energizing between the outer end and the inner end of a laminated coil until the temperature of the laminated coil reaches at least its curing temperature. CONSTITUTION:Laminate consisting of a laminated coil 1 has three-layered structure produced by respectively bonding polyethylene terephthalate film and polypropylene film through isocyanate-based adhesive to both sides of aluminum foil by dry lamination and conducting tabs 3 and 4, which are respectively pinched between layers at the outer end side and the inner end side of the coil 1. By pinching the tabs 3 and 4 with clips, a close circuit running through a DC source 16, a lead wire 18, the aluminum foilin the coil 1 and a lead wire 20 is formed. When the, aluminum foil layer is ohmic heated by flowing DC current at the predetermined voltage through the energizing tabs 3 and 4 in the aluminum foil layer in the coil 1, the temperature within the coil 1 can be raised up to nearly curing temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レトルトパウチ等の原反として用いられる、
金属箔層とプラスチックフィルム層よりなる積層体の接
着剤を、コイル状においてキュアする方法に間する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to a method for manufacturing retort pouches, etc.
The adhesive of the laminate consisting of the metal foil layer and the plastic film layer is cured in the form of a coil.

(従来の技術) レトルトパウチの原反となる積層体1例えばRP−F 
(登録商標、東洋製編■)は、飽和ポリエステル−金属
箔(通常はアルミニウム箔)−ポリオレフィンフィルム
の3層構造、もしくは飽和ポリエステル−ナイロン−金
属箔−ポリオレフィンフィルムの4層構造になっており
、各層はイソシアネート系接着剤で接着されている。
(Prior art) Laminated body 1 that becomes the original fabric of a retort pouch, for example, RP-F
(registered trademark, Toyo Seikan■) has a three-layer structure of saturated polyester, metal foil (usually aluminum foil), and polyolefin film, or a four-layer structure of saturated polyester, nylon, metal foil, and polyolefin film. Each layer is bonded with an isocyanate adhesive.

このタイプの積層体の積層は、所謂ドライラミネーショ
ン法によって行われ、約20〜30°Cでコイル状に巻
取られた積層体は、接着剤の耐熱接着性を向上させるた
め、従来的50°Cの大型の(例えば内容横約1600
m 3の)恒温室内に4〜7日間収容されていた(例え
ば特開昭52−81391号公報)、ドライラミネーシ
ョン装置の乾燥オーブン(第2図の11参照)で高温に
なった積層体を高温のまま巻取ると、コイルにしわが発
生するので3通常積層体は約25〜30°Cに冷却され
た状態でコイルに巻取られる。
This type of laminate is laminated by the so-called dry lamination method, and the laminate is wound into a coil at about 20 to 30°C to improve the heat-resistant adhesion of the adhesive. C large size (e.g. content width: approx. 1600
The laminate, which had been kept in a constant temperature room (for example, Japanese Patent Application Laid-open No. 52-81391) for 4 to 7 days, heated to a high temperature in the drying oven (see 11 in Figure 2) of a dry lamination device, is heated to a high temperature. If the coil is wound as it is, wrinkles will occur in the coil, so the three-layered product is usually cooled to about 25 to 30° C. before being wound into a coil.

恒温室内に収容された後、熱伝導によりコイル温度は上
昇するのであるが、コイルが比較的大きいく例えば外径
的60〜100Cm 、内径約20c m 。
After being housed in a thermostatic chamber, the temperature of the coil increases due to heat conduction, but the coil is relatively large, for example, with an outer diameter of 60 to 100 cm and an inner diameter of about 20 cm.

輻約100c m )場合は、最遅温度上昇部位(通常
はコイルの輻方向および厚さ方向ほぼ中央の位町がキュ
ア温度である50°Cに達するのに約2日を要する。イ
ソシアネート系接着剤の50°Cにおける最小必要中ニ
ア時間は約3日であるので、この場合恒温室内での収容
日数は5日となる。
When the radius is about 100 cm), it takes about 2 days for the area where the temperature rises the slowest (usually the center of the coil in the radius direction and thickness direction) to reach the curing temperature of 50 °C.Isocyanate-based adhesive Since the minimum required intermediate time of the agent at 50° C. is about 3 days, the number of days of storage in the constant temperature room is 5 days in this case.

このような長期間の恒温室内への収納は、生産性を低下
し、また積層体の生産量が多(、キュアされるべきコイ
ルが多数の場合は、前述のような大きな恒温室を必要と
するという問題を生ずる。
Storing in a constant temperature room for such a long period of time reduces productivity, and if the number of laminates to be produced is large (or if there are many coils to be cured, a large constant temperature room as mentioned above is required). This creates the problem of

(発明が解決しようとする課題) 本発明は、各層間がイソシアネート系接着剤のような反
応硬化タイプ接着剤により接着された。
(Problems to be Solved by the Invention) In the present invention, each layer is bonded using a reaction curing type adhesive such as an isocyanate adhesive.

金属箔層およびプラスチックフィルム層よりなる積層体
コイルの、接着剤のキュア温度に達するための時間、お
よび/またはキュア時間、および/またはキュア後の冷
却時間を短縮して、全体としてのキス、アに要する時間
を短縮し、生産性が向上し、かつキュア用の恒温室を不
必要、もしくは小型化することが可能な、積層体コイル
の接着剤のキュア方法を捷供することを目的とする。
The time required to reach the curing temperature of the adhesive, and/or the curing time, and/or the cooling time after curing of a laminate coil consisting of a metal foil layer and a plastic film layer can be shortened to improve overall kissing and assembly. The purpose of the present invention is to provide a method for curing an adhesive for a laminate coil, which shortens the time required for curing, improves productivity, and eliminates or reduces the size of a thermostatic chamber for curing.

本明細書において反応硬化タイ・プ接着剤とは。In this specification, what is meant by reaction curing type adhesive?

化学反応により硬化(すなわち牛コア)するタイプの接
着剤をいい、エボ牛シ系、イソシアネート系、ウレタン
系等の接着剤およびこれらの混合系接着剤等が例示され
る。硬化(キュア)速度は加熱により促進される。
It refers to a type of adhesive that hardens through a chemical reaction (i.e., a cow core), and examples thereof include evo-cow adhesives, isocyanate-based adhesives, urethane-based adhesives, and mixtures thereof. Cure speed is accelerated by heating.

(課題を解決するための手段) 本発明の目的は、少なくとも積層体コイルがほぼ牛コア
温度をこ達するまで、コイルの外端および内端間におい
て金属箔層に通電して、金属箔層を抵抗加熱することに
よって達せられる。
(Means for Solving the Problems) An object of the present invention is to energize the metal foil layer between the outer end and the inner end of the coil until the laminated coil reaches approximately the cow core temperature. Achieved by resistance heating.

なお本明細書において、コイルの外端とはコイルの外端
近傍部を含めて称し、コイルの内端とはコイルの内端近
傍部を含めて称する。
Note that in this specification, the term "outer end of the coil" includes a portion near the outer end of the coil, and the term "inner end of the coil" includes a portion near the inner end of the coil.

少なくともキュア期間、すなわち少なくとも積層体コイ
ルをキュア温度に保つ期間、コイルの外周面近傍部、側
面近傍部および/または内周面近傍部を外部加熱するこ
とが好ましい。
At least during the curing period, that is, at least during the period in which the laminate coil is kept at the curing temperature, it is preferable to externally heat a portion near the outer circumferential surface, a portion near the side surface, and/or a portion near the inner circumferential surface of the coil.

キュア終了後は、コイルを強制冷却することが好まqい
After curing is completed, it is preferable to forcefully cool the coil.

この場合の強制冷却は、コイルを巻戻しながら0巻戻し
部分を冷却ロールに接触させて行うことが好ましい。
In this case, forced cooling is preferably performed by bringing the 0 unwinding portion into contact with a cooling roll while unwinding the coil.

通電電流が直流電流であることが好ましい0通電電流が
交流電流の場合は、コイルの厚み方向ほぼ中央部の両側
を流れる電流の位相が180度ずれるようにして通電す
ることが好ましい。
It is preferable that the current to be applied is a direct current. When the current to be applied is an alternating current, it is preferable to conduct the current so that the phases of the currents flowing on both sides of the substantially central portion in the thickness direction of the coil are shifted by 180 degrees.

抵抗加熱の制御は、コイルの外端および内端間の電気抵
抗に基づいて行うことが好ましい。
Preferably, the resistance heating is controlled based on the electrical resistance between the outer and inner ends of the coil.

内周面近傍部の外部加熱は、積層体コイルの巻き取りコ
アとして、金属パイプ、もしくは金属シートまたは金属
網で被覆されたパイプを用い、上記金属パイプ、もしく
は金属シートまたは金属網を電気誘導加熱して行うこと
が好ましい。
For external heating near the inner peripheral surface, a metal pipe, a metal sheet, or a pipe covered with a metal mesh is used as the winding core of the laminated coil, and the metal pipe, metal sheet, or metal mesh is heated by electric induction. It is preferable to do so.

(作用) 少なくともコイルがほぼキュア温度に達するまで、コイ
ルの外端および内端間において金属箔層に通電して金属
箔層を抵抗加熱する。すなわち内部加熱すると、キュア
温度1例えば50°Cに、約30〜90分で達すること
ができる。従って牛コア温度に達するまでの時間が大幅
に短縮されて、全体としてのキュアに要する時間が短縮
される。従ってキュア温度に達したコイルを恒温室に入
れてキュアする場合は、恒温室を小型化することができ
る。
(Function) Electricity is applied to the metal foil layer between the outer end and the inner end of the coil to resistance heat the metal foil layer at least until the coil reaches approximately the curing temperature. That is, by internal heating, a cure temperature of 1, for example 50° C., can be reached in about 30 to 90 minutes. Therefore, the time required to reach the beef core temperature is significantly reduced, and the overall curing time is reduced. Therefore, when the coil that has reached the curing temperature is placed in a thermostatic chamber for curing, the thermostatic chamber can be downsized.

コイルの外周面近傍部、内周面近傍部および側面近傍部
は放熱のため、抵抗加熱による昇温時に温度上昇が遅く
、またキュア期間は温度が下がって、キュア不足になり
易い、しかし少なくともキュア期間、コイルの外周面近
傍部、側面近傍部および/または内周面近傍部を外部加
熱することによって、コイル全体を実質的に均一な温度
でキュアすることが可能となる。外部加熱の手段として
、恒温室の他に、後述の可撓性面状発熱体等を用いるC
とができる。従って恒温室を用いることなくキュアを行
うことも可能である。
Because heat is dissipated near the outer peripheral surface, inner peripheral surface, and side surface of the coil, the temperature rises slowly when the temperature is raised by resistance heating, and the temperature decreases during the curing period, which tends to result in insufficient curing. By externally heating a portion near the outer circumferential surface, a portion near the side surface, and/or a portion near the inner circumferential surface of the coil for a period of time, it becomes possible to cure the entire coil at a substantially uniform temperature. As a means of external heating, in addition to a constant temperature room, a flexible planar heating element, etc., which will be described later, is used.
I can do it. Therefore, it is also possible to perform curing without using a constant temperature room.

Cのように恒温室を用いない場合は、キュア温度を例え
ば80°Cもしくは100°Cにすることも可能であり
(人が80°Cもしくは+00°Cに保持された恒温室
内に入って運搬等の作業することは事実上不可能である
)、この場合は正味のキュア温度を大幅に減少すること
ができる。すなわち50°Cの場合の最少必要キュア時
間が3日の場合、80°Cの場合はこの時間が1日でよ
い。
If a constant temperature room is not used as in case C, it is possible to set the curing temperature to 80°C or 100°C, for example. etc.), in which case the net curing temperature can be significantly reduced. That is, if the minimum required curing time is 3 days at 50°C, this time may be 1 day at 80°C.

接着剤のキュア終了後、コイルを強制冷却することによ
って、全体としてのキュア時間をさらに短縮することが
できる。この場合強制冷却を、コイルを巻戻しながら9
巻戻し部分を冷却ロールに接触させて行うと、冷却時間
は巻戻し時間と等しくなるので、冷却時間が大幅に短縮
される。
By forcibly cooling the coil after curing the adhesive, the overall curing time can be further shortened. In this case, force cooling is performed while unwinding the coil.
When the unwinding portion is brought into contact with a cooling roll, the cooling time is equal to the unwinding time, so the cooling time is significantly shortened.

直流電流を通電する場合は、無効電力の供給が必要でな
(、電力効率が改善される。
When direct current is applied, there is no need to supply reactive power (power efficiency is improved).

交流電流を、コイルの厚み方向ほぼ中央部の両側を流れ
る電流の位相が180度ずれるようにして通電すると、
中央部の外側と内側を流れる電流にもとづく磁束の方向
が互いに反対になるので、各磁束が打ち消しあって、力
率が改善され、電力効率が向上する。
When alternating current is applied so that the currents flowing on both sides of the coil in the thickness direction are 180 degrees out of phase,
Since the directions of the magnetic fluxes based on the currents flowing outside and inside the central portion are opposite to each other, the magnetic fluxes cancel each other out, improving the power factor and improving power efficiency.

コイルの外端および内端間の電気抵抗は、コイルの金属
箔層の温度の関数である。従って上記電気抵抗に基づい
て、熱センサを用いることなく抵抗加熱の制御を行うこ
とができる。
The electrical resistance between the outer and inner ends of the coil is a function of the temperature of the metal foil layer of the coil. Therefore, resistance heating can be controlled based on the electrical resistance without using a thermal sensor.

コイルの内周面近傍部を電気誘導加熱によって外部加熱
することにより、内周面近傍部を効率よく、均一にかつ
容易にキュア温度に加熱、保持することができる。
By externally heating the area near the inner peripheral surface of the coil by electric induction heating, the area near the inner peripheral surface can be efficiently, uniformly, and easily heated to and maintained at the curing temperature.

(実施例) 第1図において、1は積層体コイルであり、コイルlを
形成する積層体は、アルミニウム箔の各面にそれぞれポ
リエチレンテレフタレートフィルムおよびポリプロピレ
ンフィルムを、イソシアネト系接着剤を介してドライラ
ミネート法により接着してなる3層構造のものである。
(Example) In Fig. 1, 1 is a laminate coil, and the laminate forming the coil 1 is made by dry laminating a polyethylene terephthalate film and a polypropylene film on each side of aluminum foil using an isocyanate adhesive. It has a three-layer structure bonded together using a method.

コイル1は後述の具体例2に示すように、4層構造のも
のであってもよい0巻取り直後のコイル温度は約25〜
30°Cである。2は積層体の巻き取りコアであって1
通常は紙製、すなわち紙管(紙の厚さは約20mm)で
ある。
As shown in Example 2 below, the coil 1 may have a four-layer structure.The coil temperature immediately after winding is approximately 25~25.
It is 30°C. 2 is a winding core of the laminate, and 1
It is usually made of paper, that is, a paper tube (the thickness of the paper is about 20 mm).

3および4はそれぞれコイル1の外端側および内端側に
挟み込まれた通電用タブであって、好ましくは片面に感
圧接着剤層を有する良導電製金属箔1例えば厚さ約10
〜200νmのアルミニウム箔よりなっている。
Reference numerals 3 and 4 denote current-carrying tabs sandwiched between the outer and inner ends of the coil 1, respectively, and preferably include a highly conductive metal foil 1 having a pressure-sensitive adhesive layer on one side, for example, a thickness of about 10 mm.
It is made of aluminum foil with a thickness of ~200 νm.

このタブ3.4の挟み込みは、好ましくは第2図に示す
ようにして行われる。第2図はドライラミネーション装
置の要部を示したものであって。
This clamping of the tabs 3.4 is preferably carried out as shown in FIG. FIG. 2 shows the main parts of the dry lamination device.

5はポリエチレンテレフタレートのウェブ、6は第1の
乾燥オーブン、7はアルミニウム箔のウェブ、8は第1
のラミネートロール、9は第1の冷却ロール、10は接
着剤塗布装置、11は第2の乾燥オーブン、12はポリ
プロピレンのウェブ。
5 is a web of polyethylene terephthalate, 6 is a first drying oven, 7 is a web of aluminum foil, 8 is a first drying oven.
9 is a first cooling roll, 10 is an adhesive applicator, 11 is a second drying oven, and 12 is a polypropylene web.

13は第2のラミネートロール、14は第2の冷却ロー
ルである。
13 is a second laminating roll, and 14 is a second cooling roll.

第1の乾燥オーブン6を出たポリエチレンテレフタレー
トウェブ5の上面には、端縁部の輻約10mmを残して
、塗布乾燥されたインシアネート系接着剤の膜が形成さ
れている。ウェブ5とアルミニウム箔ウェブ7はラミネ
ートロール8によってラミネートされた後、接着剤塗布
装置10によってアルミニウム箔ウェブ7例の面に、端
縁部の輻約5mmを残して、接着剤を塗布され、接着剤
は第2の乾燥オーブン11によって乾燥される。
On the upper surface of the polyethylene terephthalate web 5 that has left the first drying oven 6, a film of incyanate adhesive that has been applied and dried is formed, leaving a width of about 10 mm at the edge. After the web 5 and the aluminum foil web 7 are laminated by a laminating roll 8, an adhesive is applied to the surface of the aluminum foil web 7 by an adhesive coating device 10, leaving a width of about 5 mm at the edge, and the adhesive is applied. The agent is dried by a second drying oven 11.

次にアルミニウム箔ウェブ7の面に、第2のラミネート
ロールによってポリプロピレンウェブ12がラミネート
されて積層体ウェブ15が形成され、積層体ウェブ15
は巻き取りコア2に巻き取られてコイル1となる。
Next, the polypropylene web 12 is laminated on the surface of the aluminum foil web 7 by a second laminating roll to form a laminate web 15.
is wound around a winding core 2 to form a coil 1.

巻き取り始めと1巻き終りに(図では途中になっている
が)、第1のラミネートロール8の上流側において、そ
れぞれタブ3および4の感圧性接着剤層側の面をウェブ
5の端縁部に押しつけてタブ3.4をウェブ5に、ウェ
ブ5の側縁から約10〜50m mはど出っ張るように
して接着させることにより、タブ3.4をコイル】に挟
み込むことができる。第2図にさらに示すように、ウェ
ブ5の代わりに、ポリプロピレンウェブ12に上記と同
様にして、タブ3および4を接着さてもよい。
At the beginning of winding and at the end of one winding (although it is shown midway in the figure), on the upstream side of the first laminating roll 8, the pressure-sensitive adhesive layer side surfaces of the tabs 3 and 4 are connected to the edges of the web 5. The tab 3.4 can be sandwiched between the coils by adhering the tab 3.4 to the web 5 so as to protrude approximately 10 to 50 mm from the side edge of the web 5. As further shown in FIG. 2, instead of web 5, tabs 3 and 4 may be adhered to polypropylene web 12 in a manner similar to that described above.

この場合、タブ3.4はアルミニウム箔ウェブ7の端縁
部約5mm幅に導電可能に接触することになるが、電流
供給には問題ない。
In this case, the tab 3.4 comes into conductive contact with the edge portion of the aluminum foil web 7 having a width of about 5 mm, but this does not cause any problem in current supply.

第1図に戻って、16は制御装置付直流電源。Returning to FIG. 1, 16 is a DC power supply with a control device.

17は整流器9例えばサイリスタ、18は交流電源であ
る。直流電源16に接続する導電線19および20の両
先端にはそれぞれクリップ(図示されない)が着設され
ており、このクリップでタブ3および4を挟むことによ
り、直流電源16.導線】9.コイル1内のアルミニウ
ム箔7および導線20を通る閉回路が形成される。
17 is a rectifier 9 such as a thyristor, and 18 is an AC power supply. Clips (not shown) are attached to both ends of the conductive wires 19 and 20 connected to the DC power source 16, respectively, and by sandwiching the tabs 3 and 4 with the clips, the DC power source 16. Conductor】9. A closed circuit is formed through the aluminum foil 7 in the coil 1 and the conductor 20.

コイルlの寸法、積層体の各層の厚さ等の諸因子の変化
に応じて、予め実験によって定められた電圧で直流電流
を通電用タブ3.4を介して、コイル1内のアルミニウ
ム箔層に通電してアルミニウム箔層を抵抗加熱すること
により、コイルl内部の温度を約30〜90分でほぼ牛
コア温度9例えば約50°Cまで昇温することができる
Depending on changes in various factors such as the dimensions of the coil 1 and the thickness of each layer of the laminate, a DC current is applied to the aluminum foil layer in the coil 1 via the current tab 3.4 at a voltage determined by experiments in advance. By applying current to resistance heating the aluminum foil layer, the temperature inside the coil I can be raised to about the cow core temperature 9, for example, about 50° C., in about 30 to 90 minutes.

この場合、コイル1の外周面近傍部および内周面近傍部
、ならびに側面近傍部の昇温は放熱のため遅れる。しか
し上記のようにして、はばキュア温度に達するまで抵抗
加熱した後、コイル1を恒温室(例えば50°Cに保温
された)に入れる場合は、前記昇温の遅れた部分は、恒
温室内の空気による熱伝達を受は易い部分であり、しか
もコイル内部からの熱伝導により比較的に急速にキュア
温度に達する。従って全体としてのキュアに要する時間
は大幅に(ほぼ2日はど)短縮される。
In this case, the temperature rise in the vicinity of the outer peripheral surface, the inner peripheral surface, and the side surface of the coil 1 is delayed due to heat radiation. However, if the coil 1 is placed in a constant temperature room (for example, kept at 50°C) after being resistance heated until it reaches the curing temperature as described above, the portion where the temperature rise is delayed is It is a part that easily receives heat transfer by air, and moreover, it reaches the curing temperature relatively quickly due to heat conduction from inside the coil. Therefore, the overall curing time is significantly shortened (by approximately 2 days).

なお昇温期間、恒温室内で抵抗加熱を行ってもよく、ま
たキュア期間、恒温室内で抵抗加熱の併用を行ってもよ
い。
Note that resistance heating may be performed in a constant temperature room during the temperature raising period, and resistance heating may be performed in combination in the constant temperature room during the curing period.

抵抗加熱により内部温度がキュア温度に達したコイル1
を、恒温室に収容することなく、電源16の電圧を下げ
て保温用の比較的小さな電力で抵抗加熱を続けて接着剤
のキュアを行なってもよい、この場合は、コイル外周面
近傍部および内周面近傍部ならびに側面近傍部の昇温の
遅れを防ぐため、またキュア期間中放熱によるこれら部
分の冷却を防ぐため、恒温室を用いない外部加熱(以下
直接外部加熱とよぶ)を行なって、昇熱期間および/ま
たはキュア期間中、コイル1の外周面近傍部および内周
面近傍部ならびに側面近傍部をほばキュア温度に保持す
ることが好ましい。
Coil 1 whose internal temperature has reached the cure temperature due to resistance heating
The adhesive may be cured by lowering the voltage of the power supply 16 and continuing resistance heating with a relatively small electric power for heat retention, without placing the coil in a constant temperature room. In order to prevent a delay in the temperature increase near the inner peripheral surface and the side surfaces, and to prevent cooling of these parts due to heat radiation during the curing period, external heating without using a thermostatic chamber (hereinafter referred to as direct external heating) is performed. During the heating period and/or the curing period, it is preferable to maintain a portion near the outer peripheral surface, a portion near the inner peripheral surface, and a portion near the side surface of the coil 1 almost at the curing temperature.

キュア期間中、直接外部加熱のみを行なって。During the curing period, only direct external heating is applied.

抵抗加熱を行わなくてもよい、この場合も昇熱期間に直
接外部加熱を併用することが好ましい。
Resistance heating may not be required; in this case, it is also preferable to use direct external heating during the heating period.

外周面近傍部および側面近傍部の直接外部加熱法として
は3例えば抵抗発熱体が埋め込まれて内面温度がほぼキ
ュア温度、もしくはそれより若干高い温度(例えば約2
0°C高い)に保持された可撓性面状発熱体(図示され
ない)でコイル1全体を蔽う手段が好ましく用いられる
。あるいはコイル1をボックス(第3図の30参照)に
入れ、ボックス内に温風を送るか、またはボックスに発
熱体を埋め込む等して、ボックス内の空間温度を上記温
度に保つ方法等が採用される。
Direct external heating of the area near the outer circumferential surface and the area near the side surface 3. For example, a resistance heating element is embedded and the inner surface temperature is approximately the curing temperature or a temperature slightly higher than that (for example, about 2
Preferably, a means is used in which the entire coil 1 is covered with a flexible planar heating element (not shown) maintained at a temperature of 0.degree. Alternatively, a method is adopted in which the coil 1 is placed in a box (see 30 in Figure 3) and the space temperature inside the box is maintained at the above temperature by blowing hot air into the box or by embedding a heating element in the box. be done.

内周面近傍部の直接外部加熱法としては1紙管製巻き取
りコア2に抵抗発熱体を埋め込んで、その外周面温度を
ほばキュア温度に保持する方法。
A direct external heating method for the vicinity of the inner circumferential surface is a method in which a resistance heating element is embedded in the winding core 2 made of a paper tube and the temperature of the outer circumferential surface is maintained at approximately the curing temperature.

あるいは紙管製コア2の外周面を金属シートまたは金属
網(好ましくは0.1〜0.2m m eの不銹鋼ワイ
ヤよりなる約#100メツシュの網)で被覆するか、あ
るいは金属パイプ製のコア2を用い、コア2内に設けら
れた高周波誘導加熱コイルにより。
Alternatively, the outer peripheral surface of the paper tube core 2 may be covered with a metal sheet or metal mesh (preferably a mesh of about #100 made of stainless steel wire of 0.1 to 0.2 mm), or the core 2 may be covered with a metal pipe core. 2 using a high frequency induction heating coil provided within the core 2.

あるいはコイル1に交流電流を流して、上記金属シート
、または網もしくは金属パイプ誘導加熱して、これら金
属シートなどをほぼキュア温度に加熱、保持する手段等
が好ましく用いられる。
Alternatively, it is preferable to use a means of heating and holding the metal sheet, etc. to approximately the curing temperature by passing an alternating current through the coil 1 and inductively heating the metal sheet, mesh, or metal pipe.

これらの場合、コイル1の外周面近傍部、内部および内
周面近傍部、ならびに側面近傍部に熱センサを挿入して
、各部の温度がキュア温度に保持されるように、可撓性
面状発熱体の電流、電源16からの通電電流および巻き
取りコア2の抵抗発熱体または高周波誘導加熱コイルの
電流等を制御することが望ましい、外周面近傍部および
側面近傍部の温度は設定キュア温度より若干高くてもよ
いし、低くてもよい。
In these cases, heat sensors are inserted into the vicinity of the outer circumferential surface of the coil 1, the interior and the vicinity of the inner circumferential surface, and the vicinity of the side surfaces of the coil 1 to maintain the temperature of each part at the curing temperature. It is desirable to control the current of the heating element, the current supplied from the power source 16, the current of the resistance heating element of the winding core 2 or the high frequency induction heating coil, etc. The temperature near the outer peripheral surface and near the side surface is lower than the set curing temperature. It may be slightly higher or lower.

直接外部加熱を行う場合、コイル1の外周面近傍部のみ
に熱センサを設け1以上のような電流制御を実験的に行
って得られたデータに基づいてコイル全体の温度が設定
キュア温度に保持されるように、コイル1の外周面、側
面および内周面の加熱条件、さらに抵抗加熱条件を制御
するCとが実用上好ましい。
When performing direct external heating, a heat sensor is installed only near the outer peripheral surface of coil 1, and the temperature of the entire coil is maintained at the set cure temperature based on data obtained by experimentally controlling the current as described above. It is practically preferable to control the heating conditions of the outer circumferential surface, side surface, and inner circumferential surface of the coil 1, as well as the resistance heating conditions, so that the heating conditions are controlled as follows.

次に直接外部加熱を行う場合の、より好ましい抵抗加熱
の制御方法の例について述べる。
Next, an example of a more preferable resistance heating control method when direct external heating is performed will be described.

第3図において、30は発熱体(図示さねない)が内蔵
された保温ボックスであって、電源31(例えば商用周
波数交流電源〉によって加熱される。33は比較器であ
って、コイル1の外周面温度T、を測定する温度センサ
32の出力信号43および後記の金属箔層の平均温度T
に基づく信号37が人力する。比較器33はT 、< 
Tの開信号44を電源31に内蔵されたPID式制御装
置(図示されない)に出力して、電源31をONにする
。上記制御装置は、コイル1の外周面近傍部および側面
近傍部の温度が実質的に温度Tに等しくなるように電源
31の出力電流を制御するように争湾成されている。
In FIG. 3, 30 is a heat insulating box with a built-in heating element (not shown), which is heated by a power source 31 (for example, a commercial frequency AC power source). The output signal 43 of the temperature sensor 32 that measures the outer peripheral surface temperature T, and the average temperature T of the metal foil layer described below.
The signal 37 based on . The comparator 33 has T, <
The T open signal 44 is output to a PID type control device (not shown) built in the power supply 31, and the power supply 31 is turned on. The control device is configured to control the output current of the power source 31 so that the temperature near the outer peripheral surface and the side surface of the coil 1 becomes substantially equal to the temperature T.

34は演算器であって、電源16より通電用タブ3.4
を通ってコイル1の金属箔層を流れる電流の、電流値信
号35および電圧値信号36が入力する。演算器34は
次の演算を行い、金属の比抵抗は温度の関数であるとい
う原理に基づいて。
34 is a computing unit, and a tab 3.4 for energizing is connected to the power supply 16.
A current value signal 35 and a voltage value signal 36 of the current flowing through the metal foil layer of the coil 1 are input. The calculator 34 performs the following calculation based on the principle that the resistivity of metal is a function of temperature.

抵抗加熱による金属箔層の平均温度(T;’C)を算出
する。
The average temperature (T;'C) of the metal foil layer due to resistance heating is calculated.

R=V/I   ・・(1) ここにRはタブ3と4間の金属箔層の電気抵抗■はタブ
3と4間の電圧(ボルト) ■は金属箔層を流れる電流(アンペア)p = Rx 
t x w / Q  −(2)ににρは金属箔の比抵
抗(Ω m) tは金属箔層の厚さ(m) Wは金属箔層の幅(m) 9は金属箔層のタブ3,4間の長さ(m)T=f(ρ)
 −・(3) ここにfはρとTの関係を示す関数である。
R=V/I...(1) where R is the electrical resistance of the metal foil layer between tabs 3 and 4 ■ is the voltage (volts) between tabs 3 and 4 ■ is the current flowing through the metal foil layer (ampere) p = Rx
t x w / Q - (2) where ρ is the specific resistance of the metal foil (Ω m) t is the thickness of the metal foil layer (m) W is the width of the metal foil layer (m) 9 is the tab of the metal foil layer Length between 3 and 4 (m) T = f (ρ)
-.(3) Here, f is a function indicating the relationship between ρ and T.

演算器34より、電圧値に換算された温度Tの信号37
が比較器38の第1の端子に入力する。
A signal 37 of the temperature T converted into a voltage value from the calculator 34
is input to the first terminal of comparator 38.

一方電圧値に換算された設定キュア温度T。の信号39
が比較器38の第2の端子に入力する。比較器38は温
度TとTeを比較し、TNT、の間。
On the other hand, the set cure temperature T is converted into a voltage value. signal 39
is input to the second terminal of comparator 38. Comparator 38 compares temperatures T and Te, between TNT.

信号39を電源16に内蔵されたPID式制御装置に出
力する。このようにしてコイル1の内部(例えば第1図
のb点、C点に対応する位置、具体例1参照)に熱電対
を挿入(挿入することは実際的でない)しな(ても、コ
イル内部の温度を設定キュア温度に制御することができ
る。
A signal 39 is output to a PID type control device built into the power supply 16. In this way, it is possible to insert (it is impractical to insert) a thermocouple into the inside of the coil 1 (for example, the positions corresponding to points b and C in FIG. 1, see Example 1). The internal temperature can be controlled to a set curing temperature.

なおコイル1の熱容量および設定昇温時間ならびにキュ
ア温度T。から必要電力(kw)を計暮し、この電力に
基づいて、アルミニウム箔層の全長および幅、厚さから
それぞれ、供給する電圧および電流を決定し、T=Tc
になったら電源16を切ってもよい、この場合はPID
制御を必要としない。
In addition, the heat capacity of the coil 1, the set heating time, and the curing temperature T. Calculate the required power (kw) from , and based on this power, determine the voltage and current to be supplied from the total length, width, and thickness of the aluminum foil layer, respectively, and calculate T = Tc
You can turn off the power supply 16 when the
Does not require control.

40は1巻き取りコア2に設けられた金属網などの発熱
体(図示されない)を加熱するための電源(高周波発振
器等の)である、42は比較器であって、コイルlの内
周面温度T1を測定する温度センサ41の出力信号45
.および前記の金属箔層の平均温度Tに基づく信号37
が入力する。
40 is a power source (such as a high frequency oscillator) for heating a heating element (not shown) such as a metal mesh provided in the 1-winding core 2; 42 is a comparator; Output signal 45 of temperature sensor 41 that measures temperature T1
.. and a signal 37 based on the average temperature T of said metal foil layer.
enters.

比較器42は、■、がTより小さい(T、<T)間、信
号46を電源40に内蔵されたPID式制御装置(図示
されない)に出力して、電源40をONにする。上記制
御装置は、コイル1の内周面近傍部の温度が実質的に温
度Tに等しくなるように、電源40の出力電流を制御す
るように構成されている。
The comparator 42 outputs a signal 46 to a PID type control device (not shown) built in the power supply 40, and turns on the power supply 40 while ① is smaller than T (T,<T). The control device is configured to control the output current of the power source 40 so that the temperature near the inner peripheral surface of the coil 1 becomes substantially equal to the temperature T.

このようにコイルlの外周面近傍部、側面近傍部、内周
面近傍部および内部を制御しながら、加熱および保温を
行うことによって、後記の具体例2に記載されるように
、コイル1全体を実質的に均一にキュア温度まで昇温さ
せ、かつキュア温度に保持することができる。
By heating and keeping warm while controlling the parts near the outer peripheral surface, the parts near the side surfaces, the parts near the inner peripheral surface, and the inside of the coil 1 in this way, the entire coil 1 can be heated as described in Specific Example 2 below. can be substantially uniformly heated to the curing temperature and maintained at the curing temperature.

温度上昇により長さが延びるタイプの積層体(例えば後
記の具体例1に示す3層構造積層体)の場合、キュア終
了後、これらの電流を一斉に切つて1面状発熱体または
保温ボックスを外すと、コイルlの外周面から冷却が始
まり、そのため全体が室温に冷却した後には、コイJし
lが強(巻き締まって軸方向のしわが発生しやすい。
In the case of a type of laminate whose length increases as the temperature rises (for example, the three-layer structure laminate shown in Example 1 below), after curing, these currents are cut off all at once and the one-sided heating element or heat insulation box is When removed, cooling begins from the outer circumferential surface of the coil 1, so that after the entire coil has cooled to room temperature, the coil 1 is tightly wound (tightly wound and wrinkles in the axial direction are likely to occur).

これを防止するためには、キュア期間中コイJしの内周
面近傍部の温度を設定キュア温度より僅かに低く保ち、
かつコイル1の内周面側から外周面側に向かって徐々に
冷却させることが好ましい。
In order to prevent this, the temperature near the inner peripheral surface of the carp J is kept slightly lower than the set curing temperature during the curing period.
Moreover, it is preferable to gradually cool the coil 1 from the inner circumferential surface side toward the outer circumferential surface side.

そのためには先ず巻き取りコア2の抵抗発熱体または高
周波誘導加熱コイル等の電流を切り、暫(して後電源1
6を切り、最後に保温ボックスの発熱体の電流を切るか
、保温ボックスを外すことが望ましい。
To do this, first turn off the current to the resistance heating element or high-frequency induction heating coil of the winding core 2, and then turn off the current to the power supply.
6, and finally, it is desirable to turn off the current to the heating element in the heat insulating box or remove the heat insulating box.

温度上昇により長さが縮むタイプの積層体(例えば後記
の具体例2に示す4層構造積層体)の場合には、上記の
しわの問題は起こり難いので、上記のような作業上の配
慮は必要としない、なお上記1.4層構造積層体の場合
、温度上昇により長さが縮むのは、積層体形成のさい延
伸されたナイロンの加熱収縮が大きいためである。
In the case of a type of laminate that shrinks in length due to temperature rise (for example, a 4-layer laminate shown in Example 2 below), the above-mentioned wrinkle problem is unlikely to occur, so the above-mentioned work considerations should be taken. However, in the case of the 1.4-layer laminate described above, the reason why the length shrinks due to temperature rise is that the stretched nylon undergoes a large heat shrinkage during the laminate formation.

コイルlをコイル状のまま自然冷却することは長時間を
要するため、コイルの外周面、側面に冷風を吹き付け、
またコア2内を通って冷風を通過させるか、あるいは第
4図に示すように、コイルを巻き戻しながら冷却ロール
に接触させるなどして、コイルを強制冷却することが望
ましい。
Since it takes a long time to naturally cool the coil l while it is coiled, cool air is blown onto the outer circumference and sides of the coil.
Further, it is desirable to forcibly cool the coil by passing cold air through the core 2 or by bringing the coil into contact with a cooling roll while unwinding it as shown in FIG. 4.

第4図において、51.52は冷却ロールであって、い
づれも外筒51a、52a(例えば表面クロムメツキさ
れた銅パイプよりなる)、および冷却水53(例えば1
0°Cの)が貫流する内孔51b、52bを備えている
。積層体ウェブ15は、冷却ロール51.52にS字状
に巻き付けられて、冷却ロール51.52との接触面積
をできるたけ太き(するようにして巻き戻される。
In FIG. 4, reference numerals 51 and 52 are cooling rolls, each of which includes outer cylinders 51a and 52a (for example, made of a copper pipe with a chromium-plated surface) and a cooling water 53 (for example, 1
It has inner holes 51b, 52b through which air (at 0°C) flows. The laminate web 15 is wound around the cooling roll 51.52 in an S-shape and is unwound in such a way that the contact area with the cooling roll 51.52 is made as thick as possible.

このようにして例えば100°Cでキュアされたコイル
1(第4図では図示されない)から、積層体ウェブ15
は矢印方向に高速で巻き戻される間に、冷却ロール51
.52によって急速に例えば30°Cに冷却された後、
再び巻き取り装置(図示されない)によってコイルに巻
き取られる。なお冷却ロールの数は1個または3個以上
であってもよい。
From the coil 1 (not shown in FIG. 4) cured in this way, for example at 100°C, the laminate web 15
While being rewound at high speed in the direction of the arrow, the cooling roll 51
.. After being rapidly cooled to e.g. 30°C by 52,
It is again wound into a coil by a winding device (not shown). Note that the number of cooling rolls may be one or three or more.

コイルの内周面加熱を高周波誘導加熱によって行なう場
合、コイルに高周波電圧が誘導されて危険なので、抵抗
加熱されている時のみ高周波誘導加熱をおこなうことが
好ましい、このようにするとコイルの内端と外端が高周
波的に短絡されて誘導電圧が小さくなるからである。
When heating the inner peripheral surface of the coil by high-frequency induction heating, it is dangerous because high-frequency voltage is induced in the coil, so it is preferable to perform high-frequency induction heating only when resistance heating is being performed. This is because the outer ends are short-circuited at high frequency and the induced voltage is reduced.

コイル1に交流電流を通電する場合、コイルの外端から
内端まで直接通電する(すなわち第1図の態様で)と、
インダクタンスに基づく無効電力の供給に伴い電力損失
が増加し、電源電圧の上昇に伴う危険が生ずる。従って
交流を通電する場合は、第5図に示すように9通電用タ
ブ3.4の他に、コイルの厚み方向の中央位置に通電用
タブ21を挿入し、交流電源22(制御装置付きの)と
各タブ3,4および21を接続することが好ましい。
When applying an alternating current to the coil 1, if the current is applied directly from the outer end to the inner end of the coil (i.e. in the manner shown in Fig. 1),
Supplying reactive power based on inductance increases power losses and poses risks associated with increases in power supply voltage. Therefore, when applying AC current, in addition to the 9 current-carrying tabs 3.4, insert the current-carrying tab 21 at the center position in the thickness direction of the coil, as shown in Fig. ) and each tab 3, 4 and 21 is preferably connected.

このようにすることにより、タブ3と21間のアルミニ
ウム箔の部分を流れる電流と、タブ4と21間のアルミ
ニウム箔の部分を流れる電流の位相が180度ずれるた
め、各部の部分を流れる電流に基づく磁束が互いに打ち
消し合うので、無効電力が減少する。
By doing this, the phase of the current flowing through the aluminum foil part between tabs 3 and 21 and the current flowing through the aluminum foil part between tabs 4 and 21 is shifted by 180 degrees, so that the current flowing through each part is Since the resulting magnetic fluxes cancel each other out, reactive power is reduced.

次に具体例について述べる。Next, a specific example will be described.

具体例1 厚さ7μmのアルミニウム箔の片面に厚さ12μmのポ
リエチレンテレフタレートフィルム、他面に厚さ70μ
mのポリプロピレンフィルムを、イソシアネート系接着
剤によって接着した積層体よりなるコイル1をドライラ
ミネート法によって作製した。コイル1の幅は64cm
、外径は60c m 、内径は20c m 、積層体の
全長は3000mであった。
Specific example 1 A 12 μm thick polyethylene terephthalate film is placed on one side of a 7 μm thick aluminum foil, and a 70 μm thick polyethylene terephthalate film is placed on the other side.
A coil 1 consisting of a laminate made of polypropylene films of 100 to 100 mm was bonded together using an isocyanate adhesive was produced by a dry lamination method. The width of coil 1 is 64cm
The outer diameter was 60 cm, the inner diameter was 20 cm, and the total length of the laminate was 3000 m.

コイルに巻き取るさい第1図に示すように、コイルの最
外端および最内端の各々から長さ約40mの位置に、そ
れぞれ通電用タブ3および4を挿入し、またいづれも先
端がコイル幅方向中央に位置するように9巻き取りコア
2の表面(第1図のa゛点に対応するaの位置)、コイ
ルの積層体内端から1000mの位置(第1図のb°点
に対応するbの位置、a°点とb°点点間半径方向距離
は9゜5c m )および上記内端から2500mの位
置(第1図のC°点に対応するCの位置、a°点とC゛
点間半径方向距離は19cm)に熱電対を挿入した。
When winding into a coil, as shown in Fig. 1, energizing tabs 3 and 4 are inserted at a length of about 40 m from the outermost and innermost ends of the coil, respectively, and the tips of both are connected to the coil. The surface of the 9-wound core 2 is located at the center in the width direction (position a corresponding to point a in Figure 1), and the position 1000 m from the end of the coil stack (corresponding to point b in Figure 1). position b, the radial distance between points a° and b° is 9°5cm) and a position 2500 m from the above inner end (position C corresponding to point C° in Figure 1, point a° and C A thermocouple was inserted between the points (radial distance between points was 19 cm).

巻き取りコア2の両端を支持具(図示されない)で支持
してコイルlを懸下した状態で、第1図の電源16の制
御装置のスイッチをONして、200■でIIAの直流
電流をタブ3と4の間に通電して、コイル1の抵抗加熱
を行い、90分間通電後電流を切った。その間の各部の
、すなわち位置a。
With both ends of the winding core 2 supported by supports (not shown) and the coil l suspended, the switch of the control device of the power supply 16 shown in FIG. Electricity was applied between tabs 3 and 4 to perform resistance heating of coil 1, and after 90 minutes of electricity, the current was turned off. of each part in between, that is, position a.

b、cおよびdの温度変化を、それぞれ第6図のa、b
、cおよび6曲線に示す、なおコイル幅方向中央の表面
部(第1図のd点)の温度は輻射温度計によって測定し
た。第6図に示すように、コイルlの厚さ方向および幅
方向のほぼ中央の、最遅温度上昇部が約70分で50°
Cに達することが分かる。
The temperature changes in b, c and d are shown in a and b in Fig. 6, respectively.
, c and 6 curves, the temperature at the center surface of the coil in the width direction (point d in FIG. 1) was measured using a radiation thermometer. As shown in Fig. 6, the slowest temperature rise at approximately the center in the thickness direction and width direction of the coil l reaches 50° in about 70 minutes.
It can be seen that C is reached.

そこで同様のコイル1(熱電対の挿入を行わない)を前
記と同一条件で70分間抵抗加熱した後。
Then, a similar coil 1 (without the thermocouple inserted) was resistance heated for 70 minutes under the same conditions as above.

直ちに50°Cの恒温室に3日間収容して接着剤の牛コ
アを行った。キュア終了後コイル1を恒温室より取出し
自然放冷した。冷却後のコイルの外端、中央部および内
端に当る積層体部分よりサンプルを切り出して、剥離接
着強度(剥離速度300mm/分)を試験したが、いづ
れも正常値であった。
The cows were immediately placed in a constant temperature room at 50° C. for 3 days and glued to the cow core. After curing, coil 1 was taken out of the constant temperature room and allowed to cool naturally. Samples were cut out from the laminate portions corresponding to the outer end, center, and inner end of the cooled coil and tested for peel adhesion strength (peel speed: 300 mm/min), and all values were normal.

具体例2 厚さ7μmのアルミニウム箔の片面に、外側より厚さ1
2μmのポリエチレンテレフタレートフィルムおよび厚
さ15μmのナイロンフィルム、他面に厚さ50μmの
ポリプロピレンフィルムを、イソシアネート系接着剤に
よって接着した4層構造の積層体よりなるコイル1をド
ライラミネート法によって作製した。コイルlの幅は]
04cm、外径は60cm、内径は20c m 、積層
体の全長は3500mであった。
Specific example 2 On one side of aluminum foil with a thickness of 7 μm, a thickness of 1 μm is applied from the outside.
A coil 1 consisting of a four-layer laminate consisting of a 2 μm polyethylene terephthalate film, a 15 μm thick nylon film, and a 50 μm thick polypropylene film on the other side bonded together using an isocyanate adhesive was produced by a dry lamination method. The width of coil l]
The outer diameter was 60 cm, the inner diameter was 20 cm, and the total length of the laminate was 3500 m.

コイルに巻き取るさい第1図に示す方法に準じて、コイ
ルの最外端および最内端の各々から長さ約10mの位置
に、それぞれ通電用タブ3および4を挿入した。第3図
に示すように、先端がコイル幅方向中央に位置するよう
に2巻き取りコア2の外面上に磁気シールドされた熱電
対41を挿入し、またコイル外周面上に熱電対32を固
定した。
When winding the coil into a coil, the energizing tabs 3 and 4 were inserted at positions approximately 10 m in length from the outermost and innermost ends of the coil, respectively, according to the method shown in FIG. As shown in Fig. 3, a magnetically shielded thermocouple 41 is inserted onto the outer surface of the two-winding core 2 so that its tip is located at the center in the width direction of the coil, and a thermocouple 32 is fixed on the outer circumferential surface of the coil. did.

紙管製コア2の内部に誘導加熱コイルを挿入し、コア外
面を0.1mmΦの不銹鋼線よりなる#100メツシュ
の金属網で巻いた。保温ボックス30として抵抗発熱体
が内蔵され、エア撹拌機付きで、後記の支持具が内設さ
れ、かつ上蓋が蝶着されたものを用いた。電源】6とし
て直流電源、電源31として50Hz 、 200 V
の交流電源を用いた。
An induction heating coil was inserted into the core 2 made of paper tube, and the outer surface of the core was wrapped with a #100 mesh metal net made of stainless steel wire with a diameter of 0.1 mm. The heat insulating box 30 used had a built-in resistance heating element, an air agitator, a supporting device described below, and a hinged top lid. Power supply] DC power supply as 6, 50Hz, 200V as power supply 31
AC power source was used.

電源40として30K)Iz、2kwの高周波発振器を
用い上記加熱コイルに接続した。
A high frequency oscillator of 30 K) Iz and 2 kW was used as the power source 40 and connected to the heating coil.

巻き取りコア2の両端を支持具(図示されない)で支持
して、コイルlを懸下した状態で、第3図に示すように
保温ボックス30に装入した。
Both ends of the wound core 2 were supported by supports (not shown), and the coil 1 was placed in a suspended state in a heat insulation box 30 as shown in FIG. 3.

なおコイル内の温度分布を測定するため1巻き取りのき
い、先端がコイル幅方向中央に位置するように、かつそ
れぞれコイル最内端からl000m 。
In addition, in order to measure the temperature distribution inside the coil, the tip of each coil was positioned at the center in the width direction of the coil, and at a distance of 1000 m from the innermost end of the coil.

2000m 、および3000mの長さの所に位置する
ように熱電対を挿入した。
Thermocouples were inserted at lengths of 2000 m and 3000 m.

牛コア温度T、を100°C9キュア時間を15h r
に設定して、第3図に示す制御方式でコイルlの牛コア
を行った。第7図に示すように、コイル全体にわたって
実質的に均一に昇温、キュアされることが判明した。第
7図において、線1.2.3および4はそれぞれ、コア
表面、コイル最内端から1000m 、 2000m 
、および3000mの位置における温度を示す。
Cow core temperature T: 100°C9 Cure time: 15 hours
The cow core of coil I was conducted using the control method shown in FIG. As shown in FIG. 7, it was found that the entire coil was heated and cured substantially uniformly. In Figure 7, lines 1.2.3 and 4 are 1000 m and 2000 m from the core surface and the innermost end of the coil, respectively.
, and the temperature at a position of 3000 m.

なお昇温時に電源16.31および40から供給された
電力はそれぞれ、 10.2kw (一定) 、 2.
Okw(初期値;徐々に低下する)、および1.6kw
 (初期値、徐々に低下する)であった、キュア期間中
の電源16の供給電力は0であり、電源31および40
よりの供給電力は300〜500wであった。
Note that the power supplied from the power supplies 16.31 and 40 during temperature rise is 10.2 kw (constant), respectively.
Okw (initial value; gradually decreases), and 1.6kw
(initial value, gradually decreases), the power supplied by the power supply 16 during the curing period is 0, and the power supplied by the power supplies 31 and 40 is 0.
The supplied power was 300-500w.

キュア終了後ボックス30の上蓋を開け、コイルlを取
り出して、第4図に示すように、 100m/分の速度
でコイル1を巻戻しながら、冷却ロール51.52(直
径100c m 、冷却水温度lO°C)でコイル1を
強制冷却した。ロール52を出た直後のウェブ温度は3
0°Cであった。
After curing, open the top lid of the box 30, take out the coil 1, and as shown in Fig. 4, while unwinding the coil 1 at a speed of 100 m/min, cool the cooling rolls 51 and 52 (diameter 100 cm, cooling water temperature Coil 1 was forcedly cooled at 10°C. The web temperature immediately after leaving the roll 52 is 3
It was 0°C.

冷却後のコイルの外端、中央部および内端に当るウェブ
部分の1幅方向両端および中央よりサンプルを切り出し
て、剥離接着強度(剥離速度300mm/分)を試験し
たが、いづれも正常値であった。冷却後のコイルにしわ
は認められなかった。
Samples were cut out from both ends and the center in the width direction of the web portion corresponding to the outer end, center, and inner end of the coil after cooling, and peel adhesive strength (peel speed 300 mm/min) was tested, but all values were normal. there were. No wrinkles were observed in the coil after cooling.

本廃明は以上の実施例によって制約されるものでなく1
例えばプラスチックフィルムおよび金属箔層は適宜のも
のであってよい、すなわち金属箔層は電解鉄箔なたは鋼
箔であってもよい、またコイルの積層体を構成するプラ
スチックフィルムおよび金属箔は何層でもよい。
The present invention is not limited by the above embodiments, but 1
For example, the plastic film and metal foil layer may be of any suitable type, i.e. the metal foil layer may be an electrolytic iron foil or steel foil, and the plastic film and metal foil that make up the coil laminate may be of any suitable type. It can also be a layer.

さらにコイル内面近傍部の直接外部加熱法として、コア
2の内部に熱風または温風を流通させて、コアの温度を
ほぼキュア温度に保持してもよい。
Furthermore, as a direct external heating method for the vicinity of the inner surface of the coil, hot air or hot air may be circulated inside the core 2 to maintain the temperature of the core at approximately the curing temperature.

(発明の効果) 請求項1記載の発明は、積層体コイルの反応硬化タイプ
接着剤の全体として牛コアに要する時間が大幅に減少す
るので、生産性が向上し、またキュア用の恒温室を、不
必要もしくは小型化するヒとができるという効果を奏す
る。
(Effects of the Invention) The invention as claimed in claim 1 significantly reduces the time required for curing the reaction curing type adhesive for the laminate coil as a whole, thereby improving productivity and reducing the need for a constant temperature room for curing. This has the effect of eliminating unnecessary or downsized humans.

請求項2記載の発明は、請求項1記載の発明の効果に加
えて、積層体コイル全体を実質的に均一にキュアできる
という効果を奏する。
In addition to the effect of the invention as set forth in claim 1, the invention set forth in claim 2 has the effect that the entire laminate coil can be cured substantially uniformly.

請求項3記載の発′明は、キュア後の冷却時間を短縮で
き、従って全体としてのキュアに要する時間を短縮で□
きるという効果を奏する。
The invention according to claim 3 can shorten the cooling time after curing, and therefore can shorten the time required for curing as a whole.
It has the effect of being able to move.

請求項4記載の発明は、キュア後の冷却時間を大幅に短
縮でき、従って全体としてのキュアに要する時間を大幅
に短縮できるという効果を奏する。
The invention according to claim 4 has the effect that the cooling time after curing can be significantly shortened, and therefore the time required for curing as a whole can be significantly shortened.

請求項5記載の発明は、交流電流を通電する場合に比べ
て電力効率が高いという効果を奏する。
The invention according to claim 5 has an effect that the power efficiency is higher than that when alternating current is applied.

請求項6記載の発明は、力率および電力効率が改善され
るという効果を奏する。
The invention according to claim 6 has the effect that the power factor and power efficiency are improved.

請求項7記載の発明は、コイル内部に熱電対を挿入しな
(ても、コイル内部の温度に基づいて抵抗加熱の制御を
行うことができるという効果を奏する。
The invention as set forth in claim 7 has the effect that resistance heating can be controlled based on the temperature inside the coil without inserting a thermocouple inside the coil.

請求項8記載の発明は、コイル内周面近傍部を効率よく
、均一にかつ容易にキュア温度に加熱保持できるという
効果を奏する。
The invention as set forth in claim 8 has the effect that the vicinity of the inner circumferential surface of the coil can be efficiently, uniformly, and easily heated and maintained at the curing temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において積層体コイルに直流電流を通電
する場合の配線の例を示す説明用斜視図、第2図は積層
体コイルに通電用タブを挿入する方法の例を示すための
、ドライラミネーシ厘ン装置の例の要部正面図、第3図
は積層体コイルのキュアを行うための加熱制御装置の例
の説明用回路図、第4図は牛コア後の積層体コイルを強
制冷却するための装置の例の要部縦断面図、第5図は積
層体フィルに交流電流を通電する場合の配線の例を示す
正面図、第6図は積層体コイルに通電したさいの時間−
温度関係の第1の例を示す線図。 第7図は積層体コイルに通電したさいの時間−温度関係
の第2の例を示す線図である。 1・・・積層体コイル、3,4.21・・・通電用タブ
、16・・・直流電源、22・・交流電源、51.52
・・・冷却ロール。 第 図 +5 第 図 時 間 (分)
FIG. 1 is an explanatory perspective view showing an example of wiring when direct current is applied to the laminated coil in the present invention, and FIG. 2 is an explanatory perspective view showing an example of a method for inserting a current-carrying tab into the laminated coil. A front view of the main parts of an example of a dry lamination machine, Fig. 3 is an explanatory circuit diagram of an example of a heating control device for curing a laminate coil, and Fig. 4 shows a laminate coil after a cow core. Fig. 5 is a front view showing an example of the wiring when applying alternating current to the laminate fill, and Fig. 6 is a longitudinal sectional view of the main part of an example of a device for forced cooling. Time-
A diagram showing a first example of temperature relationship. FIG. 7 is a diagram showing a second example of the time-temperature relationship when the laminated coil is energized. DESCRIPTION OF SYMBOLS 1... Laminated body coil, 3, 4. 21... Current-carrying tab, 16... DC power supply, 22... AC power supply, 51.52
...Cooling roll. Figure +5 Figure time (minutes)

Claims (8)

【特許請求の範囲】[Claims] (1)各層間が反応硬化タイプ接着剤により接着された
、金属箔層およびプラスチックフィルム層よりなる積層
体コイルの、該接着剤をキュアする方法において、少な
くとも該コイルがほぼキュア温度に達するまで、該コイ
ルの外端および内端間において該金属箔層に通電して、
該金属箔層を抵抗加熱することを特徴とする積層体コイ
ルの接着剤のキュア方法。
(1) A method for curing the adhesive of a laminate coil consisting of a metal foil layer and a plastic film layer in which each layer is bonded by a reaction-curing adhesive, at least until the coil reaches approximately the curing temperature. energizing the metal foil layer between the outer and inner ends of the coil;
A method for curing an adhesive for a laminated coil, the method comprising resistively heating the metal foil layer.
(2)少なくともキュア期間、積層体コイルの外周面近
傍部、側面近傍部および/または内周面近傍部を外部加
熱する、請求項1記載の積層体コイルの接着剤のキュア
方法。
(2) The method for curing an adhesive for a laminate coil according to claim 1, wherein a portion near the outer peripheral surface, a portion near the side surface, and/or a portion near the inner peripheral surface of the laminate coil is externally heated at least during the curing period.
(3)キュア終了後、積層体コイルを強制冷却する請求
項1または2記載の積層体コイルの接着剤のキュア方法
(3) The method for curing an adhesive for a laminate coil according to claim 1 or 2, wherein the laminate coil is forcibly cooled after curing.
(4)強制冷却を、積層体コイルを巻戻しながら、巻戻
し部分を冷却ロールに接触させて行う請求項3記載の積
層体コイルの接着剤のキュア方法。
(4) The method for curing adhesive for a laminate coil according to claim 3, wherein the forced cooling is carried out by bringing the unwound portion into contact with a cooling roll while unwinding the laminate coil.
(5)通電電流が直流電流である請求項1または2記載
の積層体コイルの接着剤のキュア方法。
(5) The method for curing an adhesive for a laminated coil according to claim 1 or 2, wherein the applied current is a direct current.
(6)通電電流が交流電流であり、積層体コイルの厚み
方向ほぼ中央部の両側を流れる電流の位相が180度ず
れている請求項1または2記載の積層体コイルの接着剤
のキュア方法。
(6) The method for curing an adhesive for a laminated coil according to claim 1 or 2, wherein the applied current is an alternating current, and the phases of the currents flowing on both sides of the laminated coil approximately at the center in the thickness direction are shifted by 180 degrees.
(7)積層体コイルの外端および内端間の電気抵抗に基
いて、上記抵抗加熱の制御を行う請求項1または2記載
の積層体コイルの接着剤のキュア方法。
(7) The method for curing adhesive for a laminate coil according to claim 1 or 2, wherein the resistance heating is controlled based on the electrical resistance between the outer end and the inner end of the laminate coil.
(8)積層体コイルの巻き取りコアとして、金属パイプ
、もしくは金属シートまたは金属網で被覆されたパイプ
を用い、該金属パイプ、もしくは金属シートまたは金属
網を電気誘導加熱して内周面近傍部を外部加熱する請求
項1または2記載の積層体コイルの接着剤のキュア方法
(8) A metal pipe, a metal sheet, or a pipe covered with a metal mesh is used as the winding core of the laminate coil, and the metal pipe, metal sheet, or metal mesh is heated by electric induction to form a portion near the inner peripheral surface. 3. A method for curing an adhesive for a laminate coil according to claim 1 or 2, wherein the adhesive is externally heated.
JP18662190A 1989-12-22 1990-07-13 How to cure adhesive Expired - Lifetime JPH0624771B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18662190A JPH0624771B2 (en) 1989-12-22 1990-07-13 How to cure adhesive
EP19910302237 EP0471430A3 (en) 1990-07-13 1991-03-15 Method of curing an adhesive in a laminate coil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33322389 1989-12-22
JP1-333223 1989-12-22
JP18662190A JPH0624771B2 (en) 1989-12-22 1990-07-13 How to cure adhesive

Publications (2)

Publication Number Publication Date
JPH04126223A true JPH04126223A (en) 1992-04-27
JPH0624771B2 JPH0624771B2 (en) 1994-04-06

Family

ID=26503880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18662190A Expired - Lifetime JPH0624771B2 (en) 1989-12-22 1990-07-13 How to cure adhesive

Country Status (1)

Country Link
JP (1) JPH0624771B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868486A (en) * 1995-03-31 1999-02-09 Enplas Corporation Surface light source device
JP2011201316A (en) * 2011-06-16 2011-10-13 Dainippon Printing Co Ltd Laminating apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791755B2 (en) * 2005-05-02 2011-10-12 昭和電工パッケージング株式会社 Method and apparatus for manufacturing packaging material for electronic component case

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868486A (en) * 1995-03-31 1999-02-09 Enplas Corporation Surface light source device
JP2011201316A (en) * 2011-06-16 2011-10-13 Dainippon Printing Co Ltd Laminating apparatus

Also Published As

Publication number Publication date
JPH0624771B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
US9174398B2 (en) Smart heating blanket
ES2644775T3 (en) Induction heating using induction coils in series-parallel circuits
JP3900692B2 (en) Heat roller device
US11452178B2 (en) Highly formable smart susceptor blankets
EP1224841B1 (en) Conformable loop induction heating apparatus and method for accelerated curing of bonded members
KR101123229B1 (en) Method for manufacturing a transformer winding and method for curing adhesive on an insulating material in a transformer winding
JP3762836B2 (en) Fixing device
JPH04126223A (en) Curing method for adhesive
JP2001043964A (en) Heating device, image formation device and power control method
US20220117306A1 (en) Dual-heating tobacco heater and heating method, and heated tobacco product
EP0471430A2 (en) Method of curing an adhesive in a laminate coil
EP1272136B1 (en) A heating device for heating a patient&#39;s body
CA2091416A1 (en) Method to straighten cross linked polyethylene high voltage power cable
CA2096725C (en) Dual surface heaters
JP3750717B2 (en) Fixing device
US20020033235A1 (en) Metal plate
JP3799165B2 (en) Heating apparatus and image forming apparatus
US3294947A (en) Apparatus for thermal development of photographic materials
JP2000023880A (en) Heated toilet seat
JPH01182044A (en) Manufacture of vibration proof steel plate
JPH0416674A (en) Heat insulating sheet for curing concrete and insulating method
JP3291245B2 (en) Film laminating equipment
JP3888977B2 (en) Fixing device
JP2004311238A (en) Heater wire
JPH03177696A (en) Heated transfer pipe unit