JPH04126144A - Intraocular lens - Google Patents
Intraocular lensInfo
- Publication number
- JPH04126144A JPH04126144A JP24850290A JP24850290A JPH04126144A JP H04126144 A JPH04126144 A JP H04126144A JP 24850290 A JP24850290 A JP 24850290A JP 24850290 A JP24850290 A JP 24850290A JP H04126144 A JPH04126144 A JP H04126144A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- curvature
- intraocular lens
- minimum value
- optical axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000000695 crystalline len Anatomy 0.000 claims abstract description 72
- 230000004075 alteration Effects 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- 210000001525 retina Anatomy 0.000 claims abstract description 9
- 230000004304 visual acuity Effects 0.000 claims description 4
- 230000004438 eyesight Effects 0.000 abstract 1
- 210000001747 pupil Anatomy 0.000 description 9
- 210000001508 eye Anatomy 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 208000008516 Capsule Opacification Diseases 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 206010010071 Coma Diseases 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Landscapes
- Prostheses (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は水晶体を摘出した人眼に挿入して視力の矯正を
行う眼内レンズに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intraocular lens for correcting visual acuity by being inserted into a human eye from which the crystalline lens has been removed.
[従来の技術]
白内障で濁った水晶体を摘出後に、眼内レンズを移植す
る手術が広く行われている。この眼内レンズの形状には
平凸、メニスカス、両凸のものがある。[Prior Art] Surgery is widely performed in which an intraocular lens is implanted after removing a crystalline lens clouded by cataract. The shapes of this intraocular lens include plano-convex, meniscus, and biconvex.
これらの眼内レンズの形状はデザイン的に差別化する目
的のこともあるが、主として固定位置や周辺組織への影
響を考慮して決定されていた。Although the shape of these intraocular lenses is sometimes intended to differentiate them in terms of design, they are mainly determined by considering the fixation position and the effect on surrounding tissues.
後戻レンズの普及とともに、2次白内障を防ぎ後置との
密着性を良くするために両凸レンズが主として採用され
るに至っている。その前後面の曲率比は1ニー1や1ニ
ー3のものが知られている。With the spread of retrograde lenses, biconvex lenses have come to be mainly used to prevent secondary cataracts and improve adhesion with posterior lenses. It is known that the curvature ratio of the front and rear surfaces is 1 knee 1 or 1 knee 3.
[発明が解決しようとする課題]
しかし、上記いずれの形状を採用するにしても収差を考
慮した光学性能(解像力、偏心による像の劣化)をレン
ズ形状選択に反映させてその形状を選択するということ
はなかった。[Problem to be solved by the invention] However, no matter which shape is adopted, the lens shape must be selected by reflecting optical performance (resolving power, image deterioration due to eccentricity) in consideration of aberrations. That never happened.
本発明は、上記理由に鑑み案出されたもので、収差を考
慮した光学性能のよい眼内レンズを提供することを技術
課題とする。The present invention has been devised in view of the above-mentioned reasons, and its technical problem is to provide an intraocular lens with good optical performance in consideration of aberrations.
[課題を解決するための手段]
本発明の眼内レンズは、水晶体を摘出した人眼に挿入し
て視力の矯正を行う眼内レンズにおいて、レンズの1面
の曲率に対して標準的な網膜上での三次収差による横収
差量がほぼ最小な値を有するような曲率比でレンズの他
面を形成したことを特徴としている。[Means for Solving the Problems] The intraocular lens of the present invention is an intraocular lens that is inserted into a human eye from which the crystalline lens has been removed to correct visual acuity, and has a standard retinal curvature for one surface of the lens. The lens is characterized in that the other surface of the lens is formed with a curvature ratio such that the amount of transverse aberration due to the third-order aberration described above has a substantially minimum value.
上記標準的な網膜は、グルストランドの模型眼に基づい
て決定されていることを特徴としている。The standard retina is characterized by being determined based on Gullstrand's eye model.
また、上記レンズの他面の曲率比は、光軸からの複数の
距離でのレンズシェイプファクタに対する横収差量の最
小な値を求め、最小な値を与える光軸からの距離に対す
るレンズシェイプファクタの近似関数を求めることによ
り決定することを特徴としている。In addition, the curvature ratio of the other surface of the lens is calculated by finding the minimum value of the amount of lateral aberration with respect to the lens shape factor at multiple distances from the optical axis, and determining the lens shape factor with respect to the distance from the optical axis that gives the minimum value. It is characterized by being determined by finding an approximate function.
さらに、上記光軸からの距離は1.5=乃至2.5閣の
範囲内であることを特徴としている。Furthermore, the distance from the optical axis is within a range of 1.5 to 2.5 degrees.
[実施例]
第1図は本発明にかかる眼内レンズの正面図の一例であ
り、第2図はその側面図である。[Example] FIG. 1 is an example of a front view of an intraocular lens according to the present invention, and FIG. 2 is a side view thereof.
なお、正面図の形状は本発明の形状を限定する意味はな
く、例えば楕円形状のものでも良い。Note that the shape in the front view has no meaning in limiting the shape of the present invention, and may be, for example, elliptical.
次に本゛レンズの前面及び後面の形状の選定方法につい
て説明する。Next, a method for selecting the shapes of the front and rear surfaces of this lens will be explained.
本実施例では以下の条件の下でGu I l s jr
andの模型眼のデータに基づいて計算した。In this example, Gu I l s jr under the following conditions
It was calculated based on the data of model eyes of and.
眼軸長は24mm、物点は無限遠方にあるものとし、網
膜上で結像するように角膜前面曲率で補正できるものと
する。眼内レンズ後面から網膜までの距離は19.8m
mと設定する。レンズ屈折力は20デイオプターで直径
6mm、レンズ端厚みも一定で、0.35mmとする。It is assumed that the axial length of the eye is 24 mm, that the object point is at an infinite distance, and that it can be corrected by the front surface curvature of the cornea so that the image is formed on the retina. The distance from the back surface of the intraocular lens to the retina is 19.8 m.
Set as m. The refractive power of the lens is 20 dayopters, the diameter is 6 mm, and the thickness at the end of the lens is constant, 0.35 mm.
さらに偏心はなく、半画角は5度であるものとする。Furthermore, it is assumed that there is no eccentricity and that the half angle of view is 5 degrees.
以上の条件の模型眼は次の表のように表わすことができ
る。The model eye under the above conditions can be expressed as shown in the table below.
Rは曲率半径、dは面間隔、ndはヘリウムの輝線スペ
クトルに対する屈折力を示す。また、rl、r2、dl
、d2は眼内レンズの形状によって定まる値である。R is the radius of curvature, d is the interplanar spacing, and nd is the refractive power with respect to the helium emission line spectrum. Also, rl, r2, dl
, d2 are values determined by the shape of the intraocular lens.
角膜前面の中心部の曲率半径をr。とすると、角膜周辺
部での曲率半径は次式で示されることが知られている。The radius of curvature at the center of the anterior surface of the cornea is r. It is known that the radius of curvature at the corneal periphery is expressed by the following equation.
ここで、r′は光軸方向の角膜頂点からの距離、hは光
軸に垂直な方向の光軸からの距離である。Here, r' is the distance from the corneal vertex in the optical axis direction, and h is the distance from the optical axis in the direction perpendicular to the optical axis.
眼内レンズの場合収差は三次まで考慮すれば十で表わす
ことができる。In the case of an intraocular lens, aberrations can be expressed as 10 if up to the third order is considered.
なお、NA=A/f、Y=tan 5である。Note that NA=A/f and Y=tan 5.
ここで、■は球面収差、■はコマ収差、■は非点収差、
■は像面湾曲、■は歪曲のそれぞれ収差係数であり、A
は主平面に投影した入射瞳の半径、fは眼球全体の焦点
距離である。Here, ■ is spherical aberration, ■ is coma aberration, ■ is astigmatism,
■ is the aberration coefficient of field curvature, ■ is the aberration coefficient of distortion, and A
is the radius of the entrance pupil projected onto the principal plane, and f is the focal length of the entire eyeball.
焦点距離が1になるように正規化した3次収差係数の計
算結果は以下のように表わされる。The calculation result of the third-order aberration coefficient normalized so that the focal length becomes 1 is expressed as follows.
Xはレンズ形状の特性を表わすレンズシェイプファクタ
で、レンズの前面曲率を01、後面曲率を02とすると
、
C,−C2
で表わされる。参考のためにレンズシェイプファクタの
値の変化によるレンズ形状の概略を第3図に示す)。X is a lens shape factor representing the characteristics of the lens shape, and is expressed as C, -C2, where the front curvature of the lens is 01 and the rear curvature is 02. For reference, an outline of the lens shape due to changes in the value of the lens shape factor is shown in FIG. 3).
以上に基づいて直径2mmから5mmの瞳孔径(絞り)
について計算した横収差量を第4図に示す。第4図の各
曲線は最小自乗法により得られたものである。Based on the above, the pupil diameter (aperture) is between 2 mm and 5 mm.
FIG. 4 shows the amount of lateral aberration calculated for the following. Each curve in FIG. 4 was obtained by the least squares method.
それぞれの曲線を二次回帰分析して最小値となるレンズ
シェイプファクタの値を瞳孔径(絞り)に対してプロッ
トしたものを第5図に示す。FIG. 5 shows a plot of the minimum lens shape factor value obtained by quadratic regression analysis of each curve against the pupil diameter (aperture).
第5図において2mm〜5mmの瞳孔径(P)の範囲に
おけるXの値は、最小自乗法により以下の3次式で表わ
される。In FIG. 5, the value of X in the range of pupil diameter (P) from 2 mm to 5 mm is expressed by the following cubic equation using the method of least squares.
X=0.00827−0.35208 P+0.178
21 P2O,01776P3
これに基づいて、各瞳孔径(絞り)の大きさに対する最
適なレンズシェイプファクタの値が得られる。X=0.00827-0.35208 P+0.178
21 P2O, 01776P3 Based on this, the optimum lens shape factor value for each pupil diameter (aperture) can be obtained.
瞳孔径が3mm付近から5mmの範囲の最適形状はX=
0.154〜0.429である。これはレンズの1面の
曲率に対するレンズの他面の曲率比(Q)が−1,4〜
−2,3に相当する。The optimal shape for a pupil diameter range from around 3 mm to 5 mm is X =
It is 0.154-0.429. This means that the curvature ratio (Q) of the other surface of the lens to the curvature of one surface of the lens is -1.4 to
-2,3.
なお、曲率比QとレンズシェイプファクタXとは、
Q=X+1
の関係にある。Note that the curvature ratio Q and lens shape factor X are:
The relationship is Q=X+1.
以上の結果は偏心がない場合であるが、レンズシェイプ
ファクタは小さいほど偏心に対しては許容度が大きくな
るので、実際の眼内レンズの製造においては3mm前後
の瞳孔径の最適なレンズシェイプファクタの値またはや
やそれより小さい値を選択することが好ましい。このよ
うな場合3mmの瞳孔径についての収差量を計算するこ
とにより複雑な操作をすることなく直ちに必要な値が得
られる。The above results are for the case where there is no eccentricity, but the smaller the lens shape factor, the greater the tolerance for eccentricity, so in actual intraocular lens manufacturing, the optimal lens shape factor for a pupil diameter of around 3 mm is used. It is preferable to choose a value of , or slightly smaller. In such a case, by calculating the amount of aberration for a pupil diameter of 3 mm, the necessary value can be obtained immediately without complicated operations.
以上の計算はレンズ屈折力が20デイオプターという代
表的な値について行ったが、同様にして任意のレンズ屈
折力について計算することができる。Although the above calculations were performed for a typical value of lens refractive power of 20 diopters, calculations can be similarly made for any lens refractive power.
以下には眼内レンズに用いられるレンズの屈折力のほぼ
上限と下限である10デイオプタと30デイオプタの場
合についての算出結果を示しておく。Below, calculation results will be shown for cases of 10 and 30 diopters, which are approximately the upper and lower limits of the refractive power of a lens used in an intraocular lens.
屈折力が10デイオプタの場合、
X=0.00702−0.27766 P+0.170
63 P2−001682 P3
屈折力が30デイオプタの場合、
X=0.00958−0.47611 P+0.209
28 P2−0.02043 P3
なお、収差を計算する基礎となるデータは本実施例のも
のが唯一のものではないことは当業者には明らかであり
、例えばグルストランドの模型眼の代わりにヘルツホル
ムの模型眼を使用する等の変容は本発明に含まれるもの
である。When the refractive power is 10 dayopters, X=0.00702-0.27766 P+0.170
63 P2-001682 P3 When the refractive power is 30 dayopters, X=0.00958-0.47611 P+0.209
28 P2-0.02043 P3 It is clear to those skilled in the art that the data used in this example is not the only one that is the basis for calculating aberrations; for example, instead of Gullstrand's model eye, Hertzholm's Modifications such as using a model eye are included in the present invention.
[効果]
本発明に基づいて設計された眼内レンズによれば、収差
を最小にできるので網膜上に鮮明な物体像が得られる眼
内レンズを提供することができる。[Effects] According to the intraocular lens designed based on the present invention, since aberrations can be minimized, it is possible to provide an intraocular lens that can provide a clear object image on the retina.
第1図は実施例の眼内レンズの正面図であり、第2図は
その側面図である。第3図はレンズシェイプファクタ(
X)の値の変化に伴うレンズ形状の変化を表わす説明図
、第4図はレンズシェイプファクタ(X)と横収差量と
の関係を示すグラフ、第5図は瞳孔径とレンズシェイプ
ファクタ(X)との関係を示すグラフである。FIG. 1 is a front view of the intraocular lens of the example, and FIG. 2 is a side view thereof. Figure 3 shows the lens shape factor (
Fig. 4 is a graph showing the relationship between the lens shape factor (X) and the amount of lateral aberration, and Fig. 5 is a graph showing the relationship between the pupil diameter and the lens shape factor (X). ) is a graph showing the relationship between
Claims (4)
う眼内レンズにおいて、 レンズの1面の曲率に対して標準的な網膜上での三次収
差による横収差量がほぼ最小な値を有するような曲率比
でレンズの他面を形成したことを特徴とする眼内レンズ
。(1) In an intraocular lens that is inserted into a human eye with the crystalline lens removed to correct visual acuity, the amount of lateral aberration due to third-order aberration on the standard retina is approximately the minimum value for the curvature of one surface of the lens. An intraocular lens characterized in that the other surface of the lens is formed with a curvature ratio such that
に基づいて決定されていることを特徴とする眼内レンズ
。(2) An intraocular lens characterized in that the standard retina of item 1 is determined based on Gullstrand's model eye.
数の距離でのレンズシェイプファクタに対する横収差量
の最小な値を求め、最小な値を与える光軸からの距離に
対するレンズシェイプファクタの近似関数を求めること
により決定することを特徴とする眼内レンズ。(3) The curvature ratio of the other surface of the lens in the first term is determined by finding the minimum value of the amount of lateral aberration for the lens shape factor at multiple distances from the optical axis, and then determining the curvature ratio for the distance from the optical axis that gives the minimum value. An intraocular lens characterized in that the intraocular lens is determined by obtaining an approximation function of a lens shape factor.
mmの範囲内であることを特徴とする眼内レンズ。(4) The distance from the optical axis of the third term is 1.5 mm to 2.5 mm.
An intraocular lens characterized in that it is within the range of mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24850290A JP3247691B2 (en) | 1990-09-17 | 1990-09-17 | Intraocular lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24850290A JP3247691B2 (en) | 1990-09-17 | 1990-09-17 | Intraocular lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04126144A true JPH04126144A (en) | 1992-04-27 |
JP3247691B2 JP3247691B2 (en) | 2002-01-21 |
Family
ID=17179131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24850290A Expired - Fee Related JP3247691B2 (en) | 1990-09-17 | 1990-09-17 | Intraocular lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3247691B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006108004A2 (en) * | 2005-04-05 | 2006-10-12 | Alcon, Inc. | Optimal iol shape factors for human eyes |
JP2007510521A (en) * | 2003-11-10 | 2007-04-26 | アドバンスト メディカル オプティクス, インコーポレーテッド | Multi-zone intraocular lens for optical aberration correction |
US11116624B2 (en) | 2016-02-09 | 2021-09-14 | Amo Groningen B.V. | Progressive power intraocular lens, and methods of use and manufacture |
US11452595B2 (en) | 2007-08-27 | 2022-09-27 | Amo Groningen B.V. | Multizonal lens with enhanced performance |
-
1990
- 1990-09-17 JP JP24850290A patent/JP3247691B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011041826A (en) * | 2003-11-10 | 2011-03-03 | Abbott Medical Optics Inc | Multi-zonal intraocular lens for correcting optical aberration |
JP4808159B2 (en) * | 2003-11-10 | 2011-11-02 | アボット・メディカル・オプティクス・インコーポレイテッド | Multi-zone intraocular lens for optical aberration correction |
JP2007510521A (en) * | 2003-11-10 | 2007-04-26 | アドバンスト メディカル オプティクス, インコーポレーテッド | Multi-zone intraocular lens for optical aberration correction |
US7350916B2 (en) | 2005-04-05 | 2008-04-01 | Alcon, Inc. | Intraocular lens |
JP2008520402A (en) * | 2005-04-05 | 2008-06-19 | アルコン,インコーポレイティド | IOL shape factor optimal for the human eye |
EP2062553A1 (en) | 2005-04-05 | 2009-05-27 | Alcon, Inc. | Optimal iol shape factors for human eyes |
JP2010155148A (en) * | 2005-04-05 | 2010-07-15 | Alcon Inc | Optimal iol shape factor for human eye |
WO2006108004A2 (en) * | 2005-04-05 | 2006-10-12 | Alcon, Inc. | Optimal iol shape factors for human eyes |
AU2009201400B2 (en) * | 2005-04-05 | 2011-03-24 | Alcon Inc. | Optimal IOL shape factors for human eyes |
WO2006108004A3 (en) * | 2005-04-05 | 2006-12-21 | Alcon Inc | Optimal iol shape factors for human eyes |
JP2014131742A (en) * | 2005-04-05 | 2014-07-17 | Alcon Inc | Optimal iol shape factor for human eye |
US11452595B2 (en) | 2007-08-27 | 2022-09-27 | Amo Groningen B.V. | Multizonal lens with enhanced performance |
US11116624B2 (en) | 2016-02-09 | 2021-09-14 | Amo Groningen B.V. | Progressive power intraocular lens, and methods of use and manufacture |
Also Published As
Publication number | Publication date |
---|---|
JP3247691B2 (en) | 2002-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018267627B2 (en) | Intraocular lens that matches an image surface to a retinal shape, and method of designing same | |
US7381221B2 (en) | Multi-zonal monofocal intraocular lens for correcting optical aberrations | |
EP1838245B1 (en) | Contrast-enhancing aspheric intraocular lens | |
JP4764507B2 (en) | Aspheric intraocular lens and method for designing such an IOL | |
US20180256317A1 (en) | Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same | |
JP5367849B2 (en) | Computer system for selecting an intraocular lens | |
KR101842378B1 (en) | Ophthalmic lens for correcting astigmatism | |
US20100211169A1 (en) | Intraocular lens configured to offset optical effects caused by optic deformation | |
WO2009142961A1 (en) | Optimized intraocular lens | |
KR102328526B1 (en) | Ophthalmic implants with extended depth of field and improved distance vision | |
JPH04126144A (en) | Intraocular lens | |
CN112043459B (en) | Intraocular lens and method for optimizing depth of focus and peripheral image quality of field of view |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |