JPH04125915A - Manufacture of dielectric composition and capacitor using same - Google Patents

Manufacture of dielectric composition and capacitor using same

Info

Publication number
JPH04125915A
JPH04125915A JP24818490A JP24818490A JPH04125915A JP H04125915 A JPH04125915 A JP H04125915A JP 24818490 A JP24818490 A JP 24818490A JP 24818490 A JP24818490 A JP 24818490A JP H04125915 A JPH04125915 A JP H04125915A
Authority
JP
Japan
Prior art keywords
film
dopant
dielectric composition
capacitor
solution containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24818490A
Other languages
Japanese (ja)
Other versions
JPH0758659B2 (en
Inventor
Sanemori Soga
曽我 真守
Nobuo Sonoda
園田 信雄
Yoshio Kishimoto
岸本 良雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2248184A priority Critical patent/JPH0758659B2/en
Publication of JPH04125915A publication Critical patent/JPH04125915A/en
Publication of JPH0758659B2 publication Critical patent/JPH0758659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture film type polymer dielectric material of high resistance, by a method wherein polymerizable monomer is subjected to electrolysis polymerization in the solution containing solvent containing supporting electrolyte and dopant-soluble plasticizer, and then electrolysis reduction is performed. CONSTITUTION:Nitrobenzene solution containing thiophene, perchloric acid tetra-n-butyl ammonium, and solvent di(2-ethylhexyl) phthalate is contained in a glass vessel and kept at about 5 deg.C. Electrolysis oxidation polymerization is performed for about 30 seconds by using ITO glass electrodes. Subsequently, the polarity is inverted and electrolysis reduction is performed for about one minute. After that, by methanol washing and vacuum drying, a polythiophene film of about 200nm in thickness is obtained on the surface of the ITO glass electrode. Thereby a thin film can be easily formed. When said film is used as a film capacitor, it can be utilized as a capacitor having high dielectric breakdown strength and large capacitance.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は高分子誘電材料の製造方法およびそれを用いた
コンデンサに関するものである。特にπ電子共役系の有
機重合体からなる高分子誘電材料の製造方法およびそれ
を用いたコンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a polymeric dielectric material and a capacitor using the same. In particular, the present invention relates to a method for producing a polymeric dielectric material made of a π-electron conjugated organic polymer and a capacitor using the same.

[従来の技術] チオフェンあるいはピロールのような複素五員環化合物
を電解重合した後、電解還元することにより誘電体組成
物が得られることは知られている。
[Prior Art] It is known that a dielectric composition can be obtained by electrolytically polymerizing a five-membered heterocyclic compound such as thiophene or pyrrole and then electrolytically reducing the compound.

(Mol、 Cr7sL Lig、Cr7sf、、 8
3. 253(19g2) )。
(Mol, Cr7sL Lig, Cr7sf, 8
3. 253 (19g2)).

これらの電解重合によって電極に析出し形成される重合
体の膜は例えば6000オングストローム(600nm
)以下の非常に薄い膜を形成できるので、例えばこれら
の薄膜がコンデンサの誘電体層として利用できれば、コ
ンデンサの容量は用いる誘電体の厚みに反比例するので
、容量の大きなコンデンサの製造に極めて有利になる。
The polymer film deposited and formed on the electrode by these electrolytic polymerizations has a thickness of, for example, 6000 angstroms (600 nm).
) The following very thin films can be formed, so if these thin films can be used as the dielectric layer of a capacitor, for example, the capacitance of the capacitor is inversely proportional to the thickness of the dielectric used, making it extremely advantageous for manufacturing capacitors with large capacitance. Become.

[発明が解決しようとする課題] しかしながら、チオフェンやピロールなど電解重合物は
、電解重合の際に支持電解質のアニオン成分が重合体が
析出する電極に同様に引き寄せられるので、これらのア
ニオンがドーパントとして析出する重合体中に取り込ま
れてしまう。そこでこれらのドーパントを脱ドープする
ために電界の方向を逆にして電解還元しているが、電解
還元しても、ドーパントが一部脱ドープされずに重合物
中に残り、得られた電解重合による高分子重合体は高抵
抗体とならず、導電率が10’  S/cm程度で、高
抵抗が要求されるコンデンサの誘電体としては使えない
という欠点があった。
[Problems to be Solved by the Invention] However, in electrolytically polymerized products such as thiophene and pyrrole, during electrolytic polymerization, the anion components of the supporting electrolyte are similarly attracted to the electrode where the polymer is deposited, so these anions cannot be used as dopants. It is incorporated into the precipitated polymer. Therefore, in order to dedope these dopants, electrolytic reduction is carried out by reversing the direction of the electric field, but even after electrolytic reduction, some of the dopants remain in the polymer without being dedoped, resulting in the resulting electrolytic polymerization. The high molecular weight polymer obtained by the above method does not have a high resistance, and has a conductivity of about 10' S/cm, which has the disadvantage that it cannot be used as a dielectric material for capacitors that require high resistance.

本発明は上記の欠点のない誘電体として有効に使用でき
る高抵抗の誘電体組成物を電解重合で製造する方法なら
びにかかる誘電体組成物を誘電体として用いたコンデン
サを提供するものである。
The present invention provides a method for producing, by electrolytic polymerization, a high-resistance dielectric composition that can be effectively used as a dielectric without the above-mentioned drawbacks, and a capacitor using such a dielectric composition as a dielectric.

[課題を解決するための手段] 本発明はかかる課題を解決するために次の構成を有する
[Means for Solving the Problems] In order to solve the problems, the present invention has the following configuration.

(1)支持電解質とドーパント可溶性の可塑剤を含む溶
解材を含有する溶液中で重合性モノマーを電解重合させ
、その後、電解還元することを特徴とする誘電体組成物
の製造方法。
(1) A method for producing a dielectric composition, which comprises electrolytically polymerizing a polymerizable monomer in a solution containing a dissolving material containing a supporting electrolyte and a dopant-soluble plasticizer, and then electrolytically reducing the monomer.

(2)可塑剤が、フタル酸エステル、燐酸エステル、脂
肪酸エステル、ポリエステルから選ばれた少なくとも一
つを含む可塑剤である前記1項に記載の誘電体組成物の
製造方法。
(2) The method for producing a dielectric composition according to item 1 above, wherein the plasticizer is a plasticizer containing at least one selected from phthalic esters, phosphoric esters, fatty acid esters, and polyesters.

(3)ドーパントが、5bF6−イオンより小さい半径
のイオンよりなる前記1または2項に記載の誘電体組成
物の製造方法。
(3) The method for producing a dielectric composition according to item 1 or 2 above, wherein the dopant is an ion with a radius smaller than that of the 5bF6- ion.

(4)支持電解質とドーパント可溶性の可塑剤を含む溶
解材を含有する溶液中で重合性モノマーを電解重合させ
、その後、電解還元することにより得た誘電体組成物を
誘電層に用いたことを特徴とするコンデンサ。
(4) A dielectric composition obtained by electrolytically polymerizing a polymerizable monomer in a solution containing a dissolving material containing a supporting electrolyte and a dopant-soluble plasticizer, and then electrolytically reducing it was used for the dielectric layer. Characteristic capacitors.

[作用] 電解重合時に、重合高分子中にドーパント可溶性の可塑
剤を含む溶解材が取り込まれことにより、前記高分子の
可塑性が高まる。しかも、ドーパントは可塑剤を含む溶
解材層に溶解するので、ドーパントの易動度が増し、脱
ドープされやすくなる。
[Function] During electrolytic polymerization, a dissolving agent containing a dopant-soluble plasticizer is incorporated into the polymerized polymer, thereby increasing the plasticity of the polymer. Moreover, since the dopant is dissolved in the melting material layer containing the plasticizer, the mobility of the dopant increases and it becomes easier to be dedoped.

その結果、電解還元により容易に脱ドープされ、従って
高抵抗の誘電体組成物が得られる。
As a result, a dielectric composition that is easily dedoped by electrolytic reduction and therefore has high resistance is obtained.

また、電解重合によって電極に重合体を析出させるので
、通常の溶融成形などでは得られないような誘電体組成
物の薄いフィルム膜を容易に得ることができ、これを誘
電層に用いたコンデンサは容量を高めることができる。
In addition, since the polymer is deposited on the electrode by electrolytic polymerization, it is possible to easily obtain a thin film of the dielectric composition that cannot be obtained by ordinary melt molding, and capacitors using this for the dielectric layer are Capacity can be increased.

[実施例コ 支持電解質とドーパント可溶性の可塑剤を含む溶解材を
含有する溶液中で重合性モノマーを電解重合させると、
第1図に示すように、高分子1にドーパント可溶性の可
塑剤を含む溶解材2と前記支持電解質のアニオン成分か
らなる電子伝導性のドーパント3が分散された構造とな
る。溶解材2が高分子1.1間に入り込み、高分子1.
1間の強い結合が高分子1と溶解材分子のとの結合にな
り、従って強い結合がゆるめられ、溶解材があたかも高
分子1.1間で潤滑油のような働きをする。
[Example] When a polymerizable monomer is electrolytically polymerized in a solution containing a dissolving material containing a supporting electrolyte and a dopant-soluble plasticizer,
As shown in FIG. 1, the polymer has a structure in which a dissolving material 2 containing a dopant-soluble plasticizer and an electronically conductive dopant 3 consisting of an anion component of the supporting electrolyte are dispersed in a polymer 1. The melting material 2 enters between the polymers 1.1 and the polymers 1.1.
The strong bond between the polymers 1 and 1 becomes a bond between the polymer 1 and the molecules of the dissolving material, and therefore the strong bond is loosened, and the dissolving material acts as if it were a lubricating oil between the polymers 1 and 1.

ドーパント3はこの高分子の間にできた溶解材層に溶解
する。また、高分子のまわりが溶解材層でおおわれてい
るので、電解還元による電気化学的な作用によって脱ド
ープすると、ドーパントが従来の導電性高分子組成物に
比べて抜けやすくなる。
The dopant 3 is dissolved in the dissolving material layer formed between the polymers. In addition, since the polymer is surrounded by a dissolving material layer, when dedoping is performed by the electrochemical action of electrolytic reduction, the dopant comes out more easily than in conventional conductive polymer compositions.

高分子1は重合性モノマーの電解重合物で、重合性モノ
マーとしては電解重合可能なモノマーであればよ(、複
素5員環化合物や芳香族化合物などが一般に用い得られ
る。モノマーの具体例としてはチオフェン、ピロール、
フラン、ベンゼン、アニリンおよびその誘導体などが代
表的なものである。
The polymer 1 is an electropolymerized product of a polymerizable monomer, and the polymerizable monomer may be any monomer that can be electrolytically polymerized (5-membered heterocyclic compounds, aromatic compounds, etc. are generally used. Specific examples of monomers include are thiophene, pyrrole,
Typical examples include furan, benzene, aniline and their derivatives.

溶解材2としては、通常の高分子可塑剤および高沸点溶
剤ないしはこれらの混合物が有効であり、なかでもフタ
ル酸エステル、燐酸エステル、脂肪酸エステル、ポリエ
ステル系の可塑剤が特に有効である。
As the dissolving material 2, ordinary polymeric plasticizers, high boiling point solvents, or mixtures thereof are effective, and among them, phthalate ester, phosphoric ester, fatty acid ester, and polyester plasticizers are particularly effective.

フタル酸エステル系の可塑剤としては、例えばフタル酸
ジー2−エチルヘキシル、ジブチルフタレート、ジオク
チルフタレート、ジオクチルフタレート、ジイソデシル
フタレート、プチルラウリルフタレート、ジトリデシル
フタレート、ブチルベンジルフタレートなどが例示され
る。
Examples of phthalate ester plasticizers include di-2-ethylhexyl phthalate, dibutyl phthalate, dioctyl phthalate, dioctyl phthalate, diisodecyl phthalate, butyl lauryl phthalate, ditridecyl phthalate, and butylbenzyl phthalate.

燐酸エステル系の可塑剤としては、例えばトリクレジル
フォスフェート、トリオクチルフォスフェートなどが例
示される。
Examples of the phosphoric ester plasticizer include tricresyl phosphate and trioctyl phosphate.

脂肪酸エステル系の可塑剤としては例えばプロピレンア
ジペート、ジオクチルアジペート、ジオクチルアゼレー
ト、ジオクチルセバケート、メチルアセチルリシルレー
トなどが例示される。
Examples of fatty acid ester plasticizers include propylene adipate, dioctyl adipate, dioctyl azelate, dioctyl sebacate, and methyl acetyl lysyllate.

ポリエステル系の可塑剤としては例えば分子量が1,0
00前後のポリエステルが代表的な例であるが、分子量
は特にこれに限定されるものではなく、必要に応じて異
なる分子量のものを使用してよいことは勿論である。
For example, polyester plasticizers with a molecular weight of 1.0
A typical example is polyester having a molecular weight of about 0.000, but the molecular weight is not particularly limited to this, and it goes without saying that polyesters with different molecular weights may be used as necessary.

ドーパント3としては、電解重合の際に用いた支持電解
質のアニオン成分が電解重合において生成重合体中にド
ープされるが、電解還元などによる脱ドープを行なう場
合などの易動性を考慮するとイオン半径が小さい方が好
ましく、少なくとも5bF6−イオンより小さい方がよ
り好ましい。
As dopant 3, the anion component of the supporting electrolyte used during electrolytic polymerization is doped into the produced polymer during electrolytic polymerization, but considering the mobility when dedoping by electrolytic reduction etc., the ionic radius is is preferably smaller, and more preferably smaller than at least 5bF6- ion.

具体的には、電子受容体としてノ10ゲン(CIB r
−、I  −) 、BF  −C104So −1PF
 −1AsF6−、5bF6−等があげられる。
Specifically, NO10gen (CIBr) is used as an electron acceptor.
-, I-), BF -C104So -1PF
-1AsF6-, 5bF6-, etc.

支持電解質は上記ドーパントをアニオン成分とする電解
質が用いられるが、最も代表的なものがテトラアルキル
アンモニウム塩である。アルキル基の炭素数としては通
常1〜6、特に好ましくは1〜4のものが好ましく、メ
チル基、エチル基、プロピル基、ブチル基、ペンチル基
、ヘキシル基、などであり、4つの各アルキル基は同一
のものでも異なるものでもよい。
As the supporting electrolyte, an electrolyte containing the above dopant as an anion component is used, and the most typical one is a tetraalkylammonium salt. The number of carbon atoms in the alkyl group is usually 1 to 6, particularly preferably 1 to 4, such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, etc., and each of the four alkyl groups may be the same or different.

電解重合する際の溶媒としては電解重合に通常使用され
ているモノマーを溶解する溶媒を適宜選定して用いれば
よく、特に限定するものではない。
The solvent used in electrolytic polymerization is not particularly limited, and may be any solvent that dissolves the monomer that is commonly used in electrolytic polymerization.

用いるモノマーによって異なるが例えば、ニトロベンゼ
ン、プロピレンカーボネート、アセトニトリルなどがあ
げられる。
Although it varies depending on the monomer used, examples thereof include nitrobenzene, propylene carbonate, and acetonitrile.

電解重合の条件は、用いる重合装置などの種類やスケー
ルなどによって異なるが、通常、電流密度としては0.
5〜10 m A、 / c m ”の範囲が好ましく
用いられる。
The conditions for electrolytic polymerization vary depending on the type and scale of the polymerization apparatus used, but usually the current density is 0.
A range of 5 to 10 mA,/cm'' is preferably used.

電極上に生成する電解重合体フィルムの厚みは、電流密
度と通電時間によって容易にコントロールすることがで
き、この両者の積の値が大きいほど、重合体の生成量も
多くなる。従って、重合時間は、目的に応じて変わるの
で、−概に規定することはできないが、簡単な実験によ
り、容易に必要な条件を設定することができる。
The thickness of the electrolytic polymer film produced on the electrode can be easily controlled by the current density and current application time, and the larger the value of the product of the two, the greater the amount of polymer produced. Therefore, since the polymerization time varies depending on the purpose, it cannot be generally specified, but the necessary conditions can be easily set by simple experiments.

電解還元の条件も、上述の様な条件や、用いた溶解材の
種類や、重合体中に取り込まれたドーパントの種類など
によって異なるが、通常、電流密度としては0.5〜1
0mA/cm2の範囲が好ましく用いられる。
The conditions for electrolytic reduction also vary depending on the conditions mentioned above, the type of melting material used, the type of dopant incorporated into the polymer, etc., but the current density is usually 0.5 to 1.
A range of 0 mA/cm2 is preferably used.

次に具体的な実施例を用いて本発明を説明する。Next, the present invention will be explained using specific examples.

実施例1 チオフェン0.2M、過塩素酸テトラ−n−ブチルアン
モニウム0.02M、溶解材フタル酸ジー2−エチルヘ
キシル0.2Mを含んだニトロベンゼン溶液300m 
lをガラス容器に入れて5℃に保ち、ITO(酸化イン
ジウム・酸化スズ)ガラス電極(50x 70mm)を
用い、2m A / cm2で30秒間電解酸化重合し
、引き続いて極性を反転し2mA/cm2で1分間電解
還元した。
Example 1 300ml of nitrobenzene solution containing 0.2M of thiophene, 0.02M of tetra-n-butylammonium perchlorate, and 0.2M of di-2-ethylhexyl phthalate as a dissolving agent.
1 was placed in a glass container and kept at 5°C, and electrolytically oxidized and polymerized using an ITO (indium oxide/tin oxide) glass electrode (50 x 70 mm) at 2 mA/cm2 for 30 seconds, followed by reversing the polarity and increasing the temperature at 2 mA/cm2. Electrolytic reduction was carried out for 1 minute.

その後、メタノール洗浄し、真空乾燥して、ITOガラ
ス電極表面に厚さ約200nmのポリチオフェンフィル
ムを得た。このフィルム上に径10mmの金蒸着電極を
形成し、ITO電極との間で、フィルムの厚さ方向の導
電率を測定した。結果はまとめて第1表に示す。
Thereafter, it was washed with methanol and dried under vacuum to obtain a polythiophene film with a thickness of about 200 nm on the surface of the ITO glass electrode. A gold vapor-deposited electrode with a diameter of 10 mm was formed on this film, and the conductivity in the thickness direction of the film was measured between it and the ITO electrode. The results are summarized in Table 1.

実施例2 ピロール0.2M、ヘキサフルオロアンチモンのテトラ
−n−ブチルアンモニウム塩0.02M。
Example 2 Pyrrole 0.2M, hexafluoroantimony tetra-n-butylammonium salt 0.02M.

溶解材リン酸トリクレジル0.2Mを含んだプロピレン
カーボネート溶液を用い実施例1と同じ実験をし、IT
Oガラス電極表面に厚さ約200nmのポリピロールフ
ィルムを得た。実施例1と同様にして厚さ方向の導電率
を測定した。
The same experiment as in Example 1 was carried out using a propylene carbonate solution containing 0.2 M of tricresyl phosphate as a dissolving material, and IT
A polypyrrole film with a thickness of about 200 nm was obtained on the surface of the O glass electrode. The conductivity in the thickness direction was measured in the same manner as in Example 1.

実施例3 フラン0.2M、テトラ−n−プチルアンモニラムフル
オロボレー50.02M、溶解材プロピレンアジペート
0.2Mを含んだアセトニトリル溶液を用い実施例1と
同じ実験をし、ITOガラス電極表面に厚さ約200 
nmのポリフランフィルムを得た。実施例1と同様にし
て厚さ方向の導電率を測定した。
Example 3 The same experiment as in Example 1 was carried out using an acetonitrile solution containing 0.2 M of furan, 50.02 M of tetra-n-butylammonylam fluoroborey, and 0.2 M of propylene adipate as a dissolving material. Approximately 200
A polyfuran film of nm size was obtained. The conductivity in the thickness direction was measured in the same manner as in Example 1.

実施例4 チオフェンの代わりに3−ヘキシルチオフェンを用いて
実施例1と同じ実験をした。
Example 4 The same experiment as in Example 1 was conducted using 3-hexylthiophene instead of thiophene.

ITOガラス電極表面に厚さ約200nmのポリ−3−
へキシルチオフェンフィルムを得た。実施例1と同様に
して厚さ方向の導電率を測定した。
Approximately 200 nm thick poly-3- on the surface of the ITO glass electrode.
A hexylthiophene film was obtained. The conductivity in the thickness direction was measured in the same manner as in Example 1.

実施例5 ピロールの代わりに3−ブチルピロールを用いて、実施
例2と同じ実験をした。
Example 5 The same experiment as in Example 2 was carried out using 3-butylpyrrole instead of pyrrole.

ITOガラス電極表面に厚さ約200nmのポリ−3−
ブチルピロールフィルムを得た。実施例1と同様にして
厚さ方向の導電率を測定した。
Approximately 200 nm thick poly-3- on the surface of the ITO glass electrode.
A butylpyrrole film was obtained. The conductivity in the thickness direction was measured in the same manner as in Example 1.

実施例6 フランの代わりに3−エチルフランを用いて、実施例3
と同じ実験をした。
Example 6 Example 3 using 3-ethylfuran instead of furan
I did the same experiment.

ITOガラス電極表面に厚さ約200nmのポリ−3−
エチルフランフィルムを得た。実施例1と同様にして厚
さ方向の導電率を測定した。
Approximately 200 nm thick poly-3- on the surface of the ITO glass electrode.
An ethylfuran film was obtained. The conductivity in the thickness direction was measured in the same manner as in Example 1.

比較例1 実施例1において溶解材フタル酸ジー2−エチルヘキシ
ルを含まない溶液で同じ実験をした。
Comparative Example 1 The same experiment as in Example 1 was conducted using a solution that did not contain the dissolving agent di-2-ethylhexyl phthalate.

比較例2 実施例2でフタル酸ジー2−エチルヘキシルを含まない
溶液で実施例2と同じ実験をした。
Comparative Example 2 The same experiment as in Example 2 was conducted using a solution that did not contain di-2-ethylhexyl phthalate.

比較例3 実施例3でプロピレンアジペー、トを含まない溶液で実
施例3と同じ実験をした。
Comparative Example 3 In Example 3, the same experiment as in Example 3 was conducted using a solution that did not contain propylene adipate.

実施例1〜6および比較例1〜3の試料の導電率を二端
子法で測定した。その結果を第1表に示す。
The electrical conductivity of the samples of Examples 1 to 6 and Comparative Examples 1 to 3 was measured by a two-terminal method. The results are shown in Table 1.

第1表 第1表から明らかなように、比較例では1O−8S /
 c m程度の誘電体組成物しか得られなかったが、本
発明の実施例の支持電解質とドーパント可溶性の可塑剤
を含む溶解材を含有する溶液中で重合性モノマーを電解
重合させ、その後、電解還元することにより10”S/
cm以下の導電率を持つ誘電体組成物を製造できること
がわかる。
Table 1 As is clear from Table 1, in the comparative example, 1O-8S/
Although only a dielectric composition of about cm was obtained, the polymerizable monomer was electrolytically polymerized in a solution containing a dissolving agent containing the supporting electrolyte and a dopant-soluble plasticizer of the example of the present invention, and then electrolytically polymerized. By reducing 10”S/
It can be seen that a dielectric composition having a conductivity of less than cm can be manufactured.

実施例7 実施例1においてITOガラス電極の代わりに厚さ10
0 μmのアルミ箔(100mmX 100mm)を用
いた。得られた誘電体組成物(厚さ約200nm)上に
電極用としてアルミ蒸着した。この試料を5mmx15
mmに切取り、折り重ね画電極にリード線を取り付け、
フィルムコンデンサ素子を試作した。
Example 7 In Example 1, instead of the ITO glass electrode, a thickness of 10
0 μm aluminum foil (100 mm x 100 mm) was used. Aluminum was deposited on the obtained dielectric composition (thickness: about 200 nm) for electrodes. This sample is 5mm x 15
Cut it to mm, fold it over and attach the lead wire to the image electrode.
We prototyped a film capacitor element.

実施例8 実施例2においてITOガラス電極の代わりに厚さ10
0 μmのアルミ箔(100mmX 100mm)を用
い、実施例7と同様に誘電体組成物(厚さ約200 n
m)を用いたフィルムコンデンサを試作した。
Example 8 In Example 2, instead of the ITO glass electrode, a thickness of 10
Using a 0 μm aluminum foil (100 mm x 100 mm), a dielectric composition (approximately 200 nm thick
We prototyped a film capacitor using m).

実施例9 実施例3においてITOガラス電極の代わりに厚さ10
0μmのアルミ箔(100mmX 100mm)を用い
、実施例7と同様に誘電体組成物(厚さ約200nm)
を用いたフィルムコンデンサを試作した。
Example 9 In Example 3, instead of the ITO glass electrode, a thickness of 10
A dielectric composition (approximately 200 nm thick) was prepared in the same manner as in Example 7 using 0 μm aluminum foil (100 mm x 100 mm).
We prototyped a film capacitor using

実施例7〜9のコンデンサの絶縁破壊強度を測定したと
ころ、実施例7の試料は50〜80kV/ m m 、
実施例8の試料は45〜70、実施例9の試料は40〜
65kV/mmで優れた絶縁特性を示した。
When the dielectric breakdown strength of the capacitors of Examples 7 to 9 was measured, the sample of Example 7 had 50 to 80 kV/mm,
The sample of Example 8 is 45-70, and the sample of Example 9 is 40-70.
It showed excellent insulation properties at 65 kV/mm.

[発明の効果] 以上説明したように、本発明によれば、支持電解質とド
ーパント可溶性の可塑剤を含む溶解材を含有する溶液中
で重合性モノマーを電解重合させ、その後、電解還元す
る方法により、高抵抗な誘電体組成物が容易にフィルム
状で得られるという優れた効果を達成できる。
[Effects of the Invention] As explained above, according to the present invention, a polymerizable monomer is electrolytically polymerized in a solution containing a dissolving material containing a supporting electrolyte and a dopant-soluble plasticizer, and then electrolytically reduced. The excellent effect of easily obtaining a high-resistance dielectric composition in the form of a film can be achieved.

また、本発明で得られた誘電体組成物は高抵抗であるた
め、また、容易に薄膜が形成できるのでフィルムコンデ
ンサとして用いた場合、絶縁破壊強度が優れ、また、容
量を大きくしやすいという優れた効果がある。
In addition, since the dielectric composition obtained in the present invention has high resistance and can be easily formed into a thin film, when used as a film capacitor, it has excellent dielectric breakdown strength and is easy to increase capacitance. It has a positive effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電解重合によって得られる、誘電体組
成物の製造方法における電解還元前の重合体組成物の一
例を示す概念断面図である。 1・・・高分子、 2・・・溶解材、 3・・・ドーパント 第1図 3・・・ドーパント 手続補正111F動式) %式% 2、発明の名称 住所 大阪府門真市大字門真1006番地名称 (58
2)松下電器産業株式会社住所 〒530大阪市北区画
人満4丁目9番2号西天満ビル210号 氏名 (9555)弁理士 池 内 寛 幸(電話番号
 06−361−9334)5、補正命令の日付 平成
3年1月22日(手続補正指令書見送日) 6、補正の対象 明細書の「発明の詳細な説明の欄」 7、補正の内容 明細書第2頁第1行目と第2行目の間に次の項目を挿入
する。 「3、発明の詳細な説明」
FIG. 1 is a conceptual cross-sectional view showing an example of a polymer composition obtained by electrolytic polymerization of the present invention before electrolytic reduction in the method for producing a dielectric composition. 1...Polymer, 2...Dissolving material, 3...Dopant Figure 1 3...Dopant procedure amendment 111F dynamic type) % formula% 2. Name of invention Address 1006 Kadoma, Kadoma City, Osaka Prefecture Name (58
2) Matsushita Electric Industrial Co., Ltd. Address: 210 Nishitenma Building, 4-9-2 Nishima, Kita-ku, Osaka 530 Name (9555) Patent Attorney Hiroyuki Ikeuchi (Telephone number 06-361-9334) 5. Amendment Order Date: January 22, 1991 (date of postponement of procedural amendment order) 6. “Detailed explanation of the invention” column of the specification to be amended 7. Lines 1 and 2 of page 2 of the specification of the contents of the amendment Insert the following item between lines. "3. Detailed explanation of the invention"

Claims (1)

【特許請求の範囲】 (1)支持電解質とドーパント可溶性の可塑剤を含む溶
解材を含有する溶液中で重合性モノマーを電解重合させ
、その後、電解還元することを特徴とする誘電体組成物
の製造方法。 (2)可塑剤が、フタル酸エステル、燐酸エステル、脂
肪酸エステル、ポリエステルから選ばれた少なくとも一
つを含む可塑剤である請求項第1記載の誘電体組成物の
製造方法。(3)ドーパントが、SbF_6^ ̄イオン
より小さい半径のイオンよりなる請求項1または2に記
載の誘電体組成物の製造方法。 (4)支持電解質とドーパント可溶性の可塑剤を含む溶
解材を含有する溶液中で重合性モノマーを電解重合させ
、その後、電解還元することにより得た誘電体組成物を
誘電層に用いたことを特徴とするコンデンサ。
[Scope of Claims] (1) A dielectric composition characterized in that a polymerizable monomer is electrolytically polymerized in a solution containing a dissolving material containing a supporting electrolyte and a dopant-soluble plasticizer, and then electrolytically reduced. Production method. (2) The method for producing a dielectric composition according to claim 1, wherein the plasticizer is a plasticizer containing at least one selected from phthalic esters, phosphoric esters, fatty acid esters, and polyesters. (3) The method for producing a dielectric composition according to claim 1 or 2, wherein the dopant comprises an ion having a radius smaller than that of the SbF_6^^ ion. (4) A dielectric composition obtained by electrolytically polymerizing a polymerizable monomer in a solution containing a dissolving material containing a supporting electrolyte and a dopant-soluble plasticizer, and then electrolytically reducing it was used for the dielectric layer. Characteristic capacitors.
JP2248184A 1990-09-17 1990-09-17 Method for producing dielectric composition Expired - Fee Related JPH0758659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2248184A JPH0758659B2 (en) 1990-09-17 1990-09-17 Method for producing dielectric composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2248184A JPH0758659B2 (en) 1990-09-17 1990-09-17 Method for producing dielectric composition

Publications (2)

Publication Number Publication Date
JPH04125915A true JPH04125915A (en) 1992-04-27
JPH0758659B2 JPH0758659B2 (en) 1995-06-21

Family

ID=17174454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2248184A Expired - Fee Related JPH0758659B2 (en) 1990-09-17 1990-09-17 Method for producing dielectric composition

Country Status (1)

Country Link
JP (1) JPH0758659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530576A (en) * 2014-09-29 2016-03-30 Univ Tartu Method of forming a dielectric layer on an electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530576A (en) * 2014-09-29 2016-03-30 Univ Tartu Method of forming a dielectric layer on an electrode
US10087541B2 (en) 2014-09-29 2018-10-02 University Of Tartu Method of forming a dielectric through electrodeposition on an electrode for a capacitor
GB2530576B (en) * 2014-09-29 2019-12-25 Univ Tartu Method of forming a dielectric layer on an electrode

Also Published As

Publication number Publication date
JPH0758659B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US4910645A (en) Solid electrolytes, and electrolyte capacitors containing same
EP1498920B1 (en) Electrolytic capacitors having polythiophene with alkylenoxythiathiopen units
US7916455B2 (en) Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
JP4974095B2 (en) Method for producing water-soluble π-conjugated polymer
EP1798259B1 (en) Conductive composition and process for producing the same, antistatic paint, antistatic coating and antistatic film, optical filter, optical information recording medium, and capacitor and process for producing the same
JP5491246B2 (en) Conductive polymer and method for producing the same, conductive polymer dispersion, solid electrolytic capacitor and method for producing the same
EP1391474B1 (en) Substituted polyalkylene dioxythiophene as solid state electrolyte in electrolyte capacitors
EP2014718B1 (en) Conductive composition, and their production method
US20070096066A1 (en) Conductive composition, conductive coating material, conductive resin, capacitor, photoelectric transducer, and their production method
JP2014502288A (en) PEDOT dispersion in organic solvent
US7602602B2 (en) Conductive polymer and solid electrolytic capacitor using the same
JP2006185973A (en) Conductive polymer solution and its manufacturing method, conductor, capacitor, and its manufacturing method
JPH04125915A (en) Manufacture of dielectric composition and capacitor using same
EP2202765A2 (en) Electrically conducting polymer, solid electrolytic capacitor and manufacturing method thereof
CN102731970A (en) Electroconductive polymer suspension, its preparation method, conductive organic material, electrolytic capacitor and its preparation method
US6660188B1 (en) Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof
KR100722973B1 (en) Method of producing a solid electrolytic capacitor by using a conductive polymer electrolytic composition
JP4732101B2 (en) Conductive porous separator, method for producing the same, and electrochemical device
JPH0682590B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3076873B2 (en) Supporting electrolyte composition for manufacturing solid electrolytic capacitors
JPH08255730A (en) Solid electrolytic capacitor
KR102337435B1 (en) Electrolytic capacitor and manufacturing method thereof
JPH0488013A (en) Production of dielectric composition and capacitor
JPH03220266A (en) Conductive polymer composition
JPH0334303A (en) Solid-state electrolytic capacitor and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees