JPH0412580B2 - - Google Patents

Info

Publication number
JPH0412580B2
JPH0412580B2 JP18663583A JP18663583A JPH0412580B2 JP H0412580 B2 JPH0412580 B2 JP H0412580B2 JP 18663583 A JP18663583 A JP 18663583A JP 18663583 A JP18663583 A JP 18663583A JP H0412580 B2 JPH0412580 B2 JP H0412580B2
Authority
JP
Japan
Prior art keywords
radio wave
slot
wave absorber
anode body
cylindrical anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18663583A
Other languages
Japanese (ja)
Other versions
JPS6079643A (en
Inventor
Tsutomu Tanaka
Yoshihiko Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
SHINNIPPON MUSEN KK
Original Assignee
SHINGIJUTSU JIGYODAN
SHINNIPPON MUSEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN, SHINNIPPON MUSEN KK filed Critical SHINGIJUTSU JIGYODAN
Priority to JP18663583A priority Critical patent/JPS6079643A/en
Publication of JPS6079643A publication Critical patent/JPS6079643A/en
Publication of JPH0412580B2 publication Critical patent/JPH0412580B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
    • H01J25/52Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode
    • H01J25/54Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode having only one cavity or other resonator, e.g. neutrode tubes
    • H01J25/55Coaxial cavity magnetrons

Landscapes

  • Microwave Tubes (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はレーダ、線形加速器、マイクロ波加熱
装置等に必要な高電力のマイクロ波エネルギを発
生するのに適した同軸型マグネトロンに関し、特
に平均出力の大きい高能率な同軸型マグネトロン
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a coaxial type magnetron suitable for generating high-power microwave energy necessary for radars, linear accelerators, microwave heating devices, etc. Concerning a large and highly efficient coaxial magnetron.

〔発明の背景〕[Background of the invention]

同軸型マグネトロンは通常のマグネトロンに比
し発振周波数の高安定度、長寿命、高能率の利点
があるため高性能のレーダ、線形加速器などに広
く利用されている。
Coaxial magnetrons have the advantages of higher oscillation frequency stability, longer life, and higher efficiency than ordinary magnetrons, so they are widely used in high-performance radars, linear accelerators, etc.

一般に同軸型マグネトロンの陽極部は内部空胴
および外部空胴からなり、両空胴はそれら相互間
の隔壁となる筒状陽極体に開けられた複数個のス
ロツトにより結合されており、その発振周波数は
大勢において外部空胴の寸法によつて決定され
る。
Generally, the anode section of a coaxial magnetron consists of an inner cavity and an outer cavity, and the two cavities are connected by multiple slots formed in a cylindrical anode body that acts as a partition wall between them, and the oscillation frequency is largely determined by the dimensions of the external cavity.

同軸型マグネトロンは一般に外部空胴のTE011
と呼ばれるモードで発振するが、陽極部にはその
外側に種々の高次モードが存在し、またスロツト
部自体やスロツト部と内部空胴との結合による所
謂スロツトモード等、多数の不要なモードが存在
する。これらの不要モードのうち、正規の発振を
妨げる主なものとして外部空胴のTE121モードお
よび前記スロツトモードがあり、これら不要モー
ドの寄生発振を防止するために陽極部の一部に電
波吸収体を装荷する方法がとられている。電波吸
収体は正規発振モードへの影響の少ない場所を選
んで装荷されるが発振電力の一部はこれらの電波
吸収体に吸収され吸収体は発熱する。吸収体の温
度上昇はガス発生を招くので冷却が必要となる
が、後述するごとく一般に電波吸収体の冷却は材
質的、構造的な理由から効果的に行なうことが難
しく、特にスロツトモード抑制用の電波吸収体は
内部空胴端部の狭い部分に装荷されるためその冷
却が困難であり、この冷却上の難点が同軸型マグ
ネトロンの高出力化、特に高パルス率、連続波動
作等平均出力の大きい同軸型マグネトロンを設計
する上での最大の隘路となつていた。
Coaxial magnetrons are generally external cavity TE 011
However, there are various higher-order modes outside the anode section, and there are also many unnecessary modes such as the so-called slot mode due to the slot section itself and the coupling between the slot section and the internal cavity. do. Among these unnecessary modes, the main ones that interfere with normal oscillation are the TE 121 mode of the external cavity and the slot mode mentioned above, and in order to prevent parasitic oscillation of these unnecessary modes, a radio wave absorber is installed in a part of the anode section. A loading method is used. The radio wave absorbers are loaded in a selected location where they have little influence on the normal oscillation mode, but a portion of the oscillation power is absorbed by these radio wave absorbers, which generate heat. An increase in the temperature of the absorber causes gas generation, so it must be cooled, but as will be explained later, it is generally difficult to cool the radio wave absorber effectively due to material and structural reasons. Since the absorber is loaded in a narrow area at the end of the internal cavity, it is difficult to cool it, and this difficulty in cooling is a major problem when it comes to increasing the output of coaxial magnetrons, especially those with high pulse rates and continuous wave operation, which have large average outputs. This was the biggest bottleneck in designing a coaxial magnetron.

第1図は従来の同軸型マグネトロンの概要を示
す要部縦断面図である。同図におて、1は陰極、
2は筒状陽極体、3は偶数個からなる陽極片で前
記筒状陽極体2の内面に前記陰極1の方向に向つ
て放射状に等間隔に配列、固着されている。4は
外部空胴で、5,6はその端板、7はその外軸で
あり、内軸となる前記筒状陽極体2とともに同軸
型共振空胴を形成している。8は前記筒状陽極体
2に管軸方向に沿つて開けられた細長いスロツト
で、隣り合う陽極片3に挾まれた小空胴の一つ置
きの小空胴と外部空胴4とを空間的に連結するよ
う複数個設けられており、内部空胴と外部空胴と
を高周波的に結合する役目を果している。9,1
0は一対の磁極片でこれを通じて外部磁石からの
磁界が陽極片3と陰極1との間隙に供給される。
11は例えば炭化した多孔質アルミナ、フエライ
ト等の環状の電波吸収体であり、前記スロツト8
の端部8′を覆うように前記筒状陽極体2の内面
に沿つて配置され、この電波吸収体11は筒状陽
極体2の内面または磁極片9に固着される。
FIG. 1 is a longitudinal cross-sectional view of a main part of a conventional coaxial magnetron. In the figure, 1 is a cathode,
Reference numeral 2 denotes a cylindrical anode body, and numeral 3 denotes an even number of anode pieces, which are arranged and fixed on the inner surface of the cylindrical anode body 2 at equal intervals radially toward the cathode 1. 4 is an external cavity, 5 and 6 are its end plates, and 7 is its outer shaft, which forms a coaxial resonant cavity together with the cylindrical anode body 2 serving as the inner shaft. Reference numeral 8 denotes a long and narrow slot opened in the cylindrical anode body 2 along the tube axis direction, which separates every other small cavity sandwiched between adjacent anode pieces 3 and the external cavity 4. A plurality of them are provided so as to be connected to each other, and serve to couple the inner cavity and the outer cavity at high frequency. 9,1
0 is a pair of magnetic pole pieces through which a magnetic field from an external magnet is supplied to the gap between the anode piece 3 and the cathode 1.
Reference numeral 11 is a ring-shaped radio wave absorber made of carbonized porous alumina, ferrite, etc., and the slot 8
The radio wave absorber 11 is disposed along the inner surface of the cylindrical anode body 2 so as to cover the end portion 8' of the cylindrical anode body 2, and the radio wave absorber 11 is fixed to the inner surface of the cylindrical anode body 2 or the magnetic pole piece 9.

このような構成において、電波吸収体11はス
ロツトモードの磁気エネルギの要部を蓄えるスロ
ツト端部8′を覆つて設けられるのでスロツトモ
ードのQを下げることができ、その発振を抑制す
る役目を果すが、同時に正規発振モードの発振電
流の一部はスロツト端部8′に流れるため、その
電流により発振電力の一部が電波吸収体11に吸
収され電波吸収体11は発熱する。発生した熱は
通常筒状陽極体2または磁極片9を通して伝導冷
却されるが、一般に電波吸収体11はそれ自体の
熱伝導性が悪いうえに、ロウ付、溶接等による金
属への接着が難しく、機械的に固定される場合が
多いので熱接触抵抗が大きくなりある程度の温度
上昇は避けがたく、パルス率の小さい通常の同軸
型パルスマグネトロンにおいてさえ電波吸収体1
1の発熱に伴うガス放出を処理するために製造工
程で長時間を要することが珍しくない。
In such a configuration, the radio wave absorber 11 is provided to cover the slot end portion 8' that stores the main part of the magnetic energy of the slot mode, so that the Q of the slot mode can be lowered and plays the role of suppressing its oscillation. At the same time, a part of the oscillation current in the normal oscillation mode flows to the slot end 8', so that part of the oscillation power is absorbed by the radio wave absorber 11, and the radio wave absorber 11 generates heat. The generated heat is normally conductively cooled through the cylindrical anode body 2 or the magnetic pole piece 9, but the radio wave absorber 11 generally has poor thermal conductivity itself and is difficult to bond to metal by brazing, welding, etc. , because it is often fixed mechanically, the thermal contact resistance increases and a certain degree of temperature rise is unavoidable.
It is not uncommon for the manufacturing process to take a long time to deal with the outgassing associated with the heat generation of 1.

〔発明の目的〕 本発明の目的は、スロツトモード抑制用電波吸
収体の冷却が容易とすることにより、製造上の利
点ををもたらし、発振能率を改善するとともに平
均出力の大きな同軸型マグネトロンを提供するこ
とにある。
[Object of the Invention] An object of the present invention is to provide a coaxial magnetron with manufacturing advantages by facilitating cooling of a radio wave absorber for suppressing slot mode, improving oscillation efficiency, and having a large average output. There is a particular thing.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために、本発明は、
スロツトモード抑制用の電波吸収体が設けられて
いる筒状陽極体のスロツト端部またはその一部を
筒状陽極体の外側から小間隙を隔てて覆うように
導電性の筒状体を設けたものであり、これにより
スロツトモードの抑制効果を損うことなく正規発
振電力が電波吸収体へ吸収される量を減じること
が可能となるので冷却必要量が軽減され、平均出
力の大きい同軸型マグネトロンの設計を容易にす
ることができるものである。
In order to achieve such an objective, the present invention
A conductive cylindrical body is provided so as to cover the slot end of a cylindrical anode body or a part thereof with a small gap from the outside of the cylindrical anode body, which is provided with a radio wave absorber for suppressing slot mode. This makes it possible to reduce the amount of normal oscillation power absorbed into the radio wave absorber without sacrificing the slot mode suppression effect, which reduces the amount of cooling required and enables the design of a coaxial magnetron with a high average output. It is something that can be easily done.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明による同軸型マグネトロンの一
実施例を示す要部縦断面図である。また、第3図
は第2図の一部拡大図である。第2図において第
1図と同符号のものは同一部分を示す。第1図と
異なる構成は導電性筒状体12が設けられてお
り、この導電性筒状体12は、例えば銅からな
り、電波吸収体11の設けられている各スロツト
端部8′の外部空胴4側にこれら端部8′またはそ
の一部を小間隙を隔てて覆うように配置され、そ
の内径の小さくされた端部において筒状陽極体2
の外面端部に嵌合しロウ付等の方法で固着されて
いる。
FIG. 2 is a longitudinal sectional view of a main part showing an embodiment of a coaxial magnetron according to the present invention. Moreover, FIG. 3 is a partially enlarged view of FIG. 2. In FIG. 2, the same reference numerals as in FIG. 1 indicate the same parts. A configuration different from that in FIG. 1 is that a conductive cylindrical body 12 is provided, and this conductive cylindrical body 12 is made of copper, for example, and is connected to the outside of each slot end 8' where the radio wave absorber 11 is provided. The cylindrical anode body 2 is disposed on the side of the cavity 4 so as to cover these end portions 8' or a portion thereof with a small gap therebetween, and the cylindrical anode body 2 is disposed at the end portion having a smaller inner diameter.
It is fitted onto the outer edge of the holder and fixed by brazing or other methods.

このように導電性筒状体12が設けられている
と、電波吸収体11の置かれているスロツト端部
8′を流れようとする一部の発振電流は外部空胴
4内までの電気長が長くなること、および筒状陽
極体2との間隙を静電容量的にバイパスすること
になるために抑制され、その結果として電波吸収
体11に吸収される正規発振電力の損失量を減ら
すことができる。また正規発振モードTE011の外
部空胴4内における電流パターンは筒状陽極体2
の外面では本質的に円周方向であるため導電性筒
状体12の設置によつて電流パターンがくずされ
ることはなく、Q特性に悪影響を及ぼすことはな
い。また導電性筒状体12はスロツト端部に設け
られるため正規発振モードの内・外空胴間の結合
への影響も無視し得るほどに小さい。
When the conductive cylindrical body 12 is provided in this way, a part of the oscillating current that attempts to flow through the slot end 8' where the radio wave absorber 11 is placed will not reach the electrical length up to the inside of the external cavity 4. To reduce the amount of loss of normal oscillation power that is suppressed due to the increase in length and the capacitive bypass of the gap with the cylindrical anode body 2, and as a result is absorbed by the radio wave absorber 11. I can do it. In addition, the current pattern in the external cavity 4 in the regular oscillation mode TE 011 is the same as that in the cylindrical anode body 2.
Since the outer surface of the conductive tube 12 is essentially circumferential, the current pattern is not disrupted by the installation of the conductive cylindrical body 12, and the Q characteristic is not adversely affected. Further, since the conductive cylindrical body 12 is provided at the end of the slot, its influence on the coupling between the inner and outer cavities in the normal oscillation mode is negligibly small.

一方、スロツトモードについてはその電流の主
要部分がスロツト端部に集中して流れることおよ
びその周波数が正規発振モードの周波数の1/2〜
1/1.5と低いため導電性筒状体にバイパスされる
量が少ないので導電性筒状体がない場合と同様に
効果的にスロツトモードのQを低下させることが
できる。導電性筒状体12と筒状陽極体2の間隙
寸法および導電性筒状体のスロツト端部を覆う部
分の長さを適当に選べばスロツトモードの吸収効
果を損うことなく正規発振モードの吸収量を減ら
すことができる。
On the other hand, in the slot mode, the main part of the current flows concentrated at the slot end, and the frequency is 1/2 to 1/2 of the frequency of the normal oscillation mode.
Since it is as low as 1/1.5, the amount bypassed by the conductive cylindrical body is small, so that the Q of the slot mode can be reduced as effectively as in the case without the conductive cylindrical body. If the gap between the conductive cylindrical body 12 and the cylindrical anode body 2 and the length of the portion of the conductive cylindrical body that covers the slot end are appropriately selected, the normal oscillation mode can be absorbed without impairing the slot mode absorption effect. The amount can be reduced.

第4図は第2図および第3図に示された実施例
における発振電力の損失率を従来構造の場合と比
較した特性図である。横軸(l/l0)は正規化した電
波吸収体11の位置寸法である。ここにlは第3
図に示すようにスロツト8の末端より電波吸収体
11の管内側末端までの距離、l0はスロツト8の
全長である。縦軸は正規発振モードの損失率で下
記のように定義したものである。
FIG. 4 is a characteristic diagram comparing the loss rate of oscillation power in the embodiment shown in FIGS. 2 and 3 with that of the conventional structure. The horizontal axis (l/l 0 ) is the normalized positional dimension of the radio wave absorber 11. Here l is the third
As shown in the figure, the distance l 0 from the end of the slot 8 to the inside end of the radio wave absorber 11 is the total length of the slot 8. The vertical axis is the loss rate of the normal oscillation mode, which is defined as follows.

損失率=電波吸収体11に消費される発
振電力/発振出力×100(%) 図中aは従来構造の場合、bはaに導電性筒状
体12を装荷した本実施例の場合の特性を示す。
bにおいては導電性筒状体12のスロツト8の末
端から、その開放端までの長さA(第3図に示す)
は、本例においてはスロツトモードの抑制効果が
aの場合と等価である範囲に選び、正規化寸法と
してA/l0=0.046とした。a,b共にlの増大と
ともに損失率は増大するが、aに比しbは低く、
例えばl/l0=0.08のときaでは損失率1.9%である
のに対しbでは0.9%で1%だけ低い。このこと
は本実施例の場合、従来構造に比し、電波吸収体
11に消費される電力がその分だけ減少するので
発振出力が相当分改善されることを意味するが、
同時に冷却すべき電波吸収体11の発熱量が半減
することを意味している。冷却すべき発熱量が半
減すれば同一冷却構造で2倍の発振出力の場合に
対応できることになるので、その利点は極めて大
きい。スロツトモードの抑制効果を保つためには
lの下限がありそれ以下にはできないが、lは小
さいほど上記利点は顕著となる。
Loss rate = Oscillation power consumed by radio wave absorber 11 / Oscillation output x 100 ( % ) In the figure, a is the characteristic for the conventional structure, and b is the characteristic for this embodiment in which a is loaded with the conductive cylindrical body 12. shows.
In b, the length A from the end of the slot 8 of the conductive cylindrical body 12 to its open end (as shown in FIG. 3)
In this example, is selected within a range where the slot mode suppression effect is equivalent to that in case a, and the normalized dimension is set to A/l 0 =0.046. The loss rate of both a and b increases as l increases, but b is lower than a,
For example, when l/l 0 =0.08, the loss rate is 1.9% in a, while it is 0.9% in b, which is only 1% lower. This means that in the case of this embodiment, compared to the conventional structure, the power consumed by the radio wave absorber 11 is reduced by that amount, and the oscillation output is considerably improved.
This means that the amount of heat generated by the radio wave absorber 11, which should be cooled at the same time, is halved. If the amount of heat generated to be cooled is halved, the same cooling structure can handle twice the oscillation output, so this is an extremely significant advantage. In order to maintain the effect of suppressing the slot mode, there is a lower limit of l, which cannot be lowered, but the smaller l is, the more remarkable the above advantages become.

第5図および第6図はそれぞれれ本発明の他の
実施例を示す要部拡大縦断面図である。第5図に
示す実施例では導電性筒状体12の開放端部1
2′の内径は他の部分より小さく加工されている。
この場合スロツトモードの抑制効果はある程度減
殺されるが正規発振モードの損失率はより小さく
することができる。
FIGS. 5 and 6 are enlarged vertical sectional views of main parts showing other embodiments of the present invention, respectively. In the embodiment shown in FIG.
The inner diameter of 2' is machined to be smaller than the other parts.
In this case, the effect of suppressing the slot mode is reduced to some extent, but the loss rate of the normal oscillation mode can be made smaller.

第6図に示す実施例は、導電性筒状体12の形
状は第5図の場合と同様であるが、筒状陽極体2
との間隙に補助電波吸収体13を設けた場合であ
り、スロツトモードの抑制効果を強化することが
できる。導電性筒状体12の開放端部12′の内
径は必ずしも径を小さくしなくてもよいが、その
場合は補助電波吸収体13は正規発振モードへの
影響を少くするために、前記間隙の奥まつた部分
に設ける必要がある。
In the embodiment shown in FIG. 6, the shape of the conductive cylindrical body 12 is the same as that in FIG. 5, but the cylindrical anode body 2
This is a case in which the auxiliary radio wave absorber 13 is provided in the gap between the two, and the effect of suppressing the slot mode can be strengthened. The inner diameter of the open end 12' of the conductive cylindrical body 12 does not necessarily have to be made small, but in that case, the auxiliary radio wave absorber 13 should be made smaller in the gap in order to reduce the influence on the normal oscillation mode. It needs to be installed in the inner part.

上述した各実施例では説明の便宜上導電性筒状
体12の内面末端をスロツトの末端と一致して示
しているが、特に一致させる必要はない。また導
電性筒状体12を外部空胴の端板5まで延長して
取付面を端板5とすることもできる。また導電性
筒状体の内外径はそれぞれ一様である必要はなく
段差またはテーパー部分があつて差支えない。導
電性筒状体12と筒状陽極体2または端板5とが
一体加工されてもよいことはいうまでもない。
In each of the above-described embodiments, the inner end of the conductive cylindrical body 12 is shown to coincide with the end of the slot for convenience of explanation, but it is not necessary to do so. Alternatively, the conductive cylindrical body 12 may be extended to the end plate 5 of the external cavity, so that the end plate 5 serves as the mounting surface. Further, the inner and outer diameters of the conductive cylindrical body do not have to be uniform, and may have a step or a tapered portion. It goes without saying that the conductive cylindrical body 12 and the cylindrical anode body 2 or the end plate 5 may be integrally processed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように従来構造の同軸型マグネト
ロンに導電性筒状体を設けることにより、同軸型
マグネトロンの難点であるスロツトモード抑制用
電波吸収体の冷却が容易となるので、製造上の利
点はもとより、発振能率の改善とともに平均出力
の大きい同軸型マグネトロンの設計を容易にする
ことができる。
As explained above, by providing a conductive cylindrical body in a coaxial type magnetron having a conventional structure, it becomes easy to cool the radio wave absorber for suppressing the slot mode, which is a drawback of a coaxial type magnetron. It is possible to easily design a coaxial magnetron with improved oscillation efficiency and a large average output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の同軸型マグネトロンの一例を示
す要部縦断面図、第2図は本発明の同軸型マグネ
トロンの一実施例を示す要部縦断面図、第3図は
第2図の部分拡大図、第4図は第2図に示す実施
例における発振電力の損失率を従来構造の場合と
比較した特性図例、第5図および第6図はそれぞ
れ本発明の他の実施例の要部拡大縦断面図であ
る。 2…筒状陽極体、3…陽極片、4…外部空胴、
5,6…端板、7…外軸、8…スロツト、9,1
0…磁極片、11…電波吸収体、12…導電性筒
状体、13…補助電波吸収体。
FIG. 1 is a vertical cross-sectional view of a main part showing an example of a conventional coaxial magnetron, FIG. 2 is a vertical cross-sectional view of a main part showing an embodiment of a coaxial magnetron of the present invention, and FIG. An enlarged view, FIG. 4 is an example of a characteristic diagram comparing the oscillation power loss rate in the embodiment shown in FIG. 2 with that of the conventional structure, and FIGS. FIG. 2... Cylindrical anode body, 3... Anode piece, 4... External cavity,
5, 6... End plate, 7... Outer shaft, 8... Slot, 9, 1
0... Magnetic pole piece, 11... Radio wave absorber, 12... Conductive cylindrical body, 13... Auxiliary radio wave absorber.

Claims (1)

【特許請求の範囲】 1 複数個の陽極片と複数個のスロツトを有する
筒状陽極体とにより構成された内部空胴と、前記
筒状陽極体の外側に前記スロツトを介して結合さ
れた外部空胴を有し、前記筒状陽極体の内側に前
記スロツトの端部を覆うように電波吸収体を設け
てなるマグネトロンにおいて、前記筒状陽極体の
外周に、前記電波吸収体の設けられているスロツ
ト端部の少なくとも一部を覆うように導電性筒状
体を設けたことを特徴とする同軸型マグネトロ
ン。 2 前記導電性筒状体は前記筒状陽極体との間に
補助電波吸収体を挾持するようにした特許請求の
範囲第1項記載の同軸型マグネトロン。
[Scope of Claims] 1. An internal cavity constituted by a plurality of anode pieces and a cylindrical anode body having a plurality of slots, and an external cavity connected to the outside of the cylindrical anode body through the slots. In a magnetron having a cavity and having a radio wave absorber provided inside the cylindrical anode body so as to cover an end of the slot, the radio wave absorber is provided on the outer periphery of the cylindrical anode body. A coaxial type magnetron characterized in that a conductive cylindrical body is provided so as to cover at least a part of the end of the slot. 2. The coaxial magnetron according to claim 1, wherein the conductive cylindrical body has an auxiliary radio wave absorber sandwiched between the cylindrical anode body and the cylindrical anode body.
JP18663583A 1983-10-05 1983-10-05 Coaxial magnetron Granted JPS6079643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18663583A JPS6079643A (en) 1983-10-05 1983-10-05 Coaxial magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18663583A JPS6079643A (en) 1983-10-05 1983-10-05 Coaxial magnetron

Publications (2)

Publication Number Publication Date
JPS6079643A JPS6079643A (en) 1985-05-07
JPH0412580B2 true JPH0412580B2 (en) 1992-03-05

Family

ID=16192030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18663583A Granted JPS6079643A (en) 1983-10-05 1983-10-05 Coaxial magnetron

Country Status (1)

Country Link
JP (1) JPS6079643A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5341442B2 (en) * 2008-09-17 2013-11-13 古野電気株式会社 Magnetron

Also Published As

Publication number Publication date
JPS6079643A (en) 1985-05-07

Similar Documents

Publication Publication Date Title
JP4670027B2 (en) Magnetron
US3293480A (en) Pole piece and collector assembly for high frequency electron discharge device with cooling ribs
JP6118112B2 (en) Coaxial magnetron and its assembly method
US4891557A (en) Magnetron device
KR100519340B1 (en) Small type Anode for magnetron
JPH0412580B2 (en)
JP3329509B2 (en) Magnetron for microwave oven
CN109755084A (en) X-band bimodulus multiple-beam klystron
US5621269A (en) Cathode assembly of a magnetron
JPS62130Y2 (en)
JPH07302548A (en) Magnetron
US4896073A (en) Discharge tubes
JPH02168539A (en) Progressive wave tube device
JP3334694B2 (en) Traveling wave tube
JP2868806B2 (en) Magnetron for microwave oven
KR200165763Y1 (en) Lower yoke structure of magnetron
KR100451234B1 (en) Disk structure of magnetron
JPS6217971Y2 (en)
JP2001023531A (en) Magnetron
JPH0538520Y2 (en)
JP2001060440A (en) Magnetron
JPH0228596Y2 (en)
JP2661517B2 (en) Traveling wave tube
JPH0424593Y2 (en)
KR200152147Y1 (en) An upper shield hat structure of magnetron