JPH04125436A - Method for measuring reaction force on road surface - Google Patents

Method for measuring reaction force on road surface

Info

Publication number
JPH04125436A
JPH04125436A JP24781890A JP24781890A JPH04125436A JP H04125436 A JPH04125436 A JP H04125436A JP 24781890 A JP24781890 A JP 24781890A JP 24781890 A JP24781890 A JP 24781890A JP H04125436 A JPH04125436 A JP H04125436A
Authority
JP
Japan
Prior art keywords
road surface
mass body
force
external force
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24781890A
Other languages
Japanese (ja)
Inventor
Hideki Iwakuma
秀樹 岩隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Heavy Industries Ltd
Original Assignee
Sakai Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Heavy Industries Ltd filed Critical Sakai Heavy Industries Ltd
Priority to JP24781890A priority Critical patent/JPH04125436A/en
Publication of JPH04125436A publication Critical patent/JPH04125436A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a cost and save power by measuring reaction force on a road surface which a mass body is applied from difference in external force respectively functioning to the mass body between a state with the body on the road surface and a state with the body floating. CONSTITUTION:When vertical vibratory force F is applied to a mass body 2 on a road surface 6, the body is subjected to external force R(t) from the road surface 6, a frame 1, etc. where R(t)=Malpha0-F. When the vibratory force F is applied when the mass body 2 floats from the road surface 6, the body is subjected to external force R1(t) from the frame 1, etc. where R1(t)=Malpha1-F. By subtracting the external force R1(t) from the external force R(t), reaction force R0(+) can be obtained. External force functioning to the mass body 2 can be obtained from a product of vertical acceleration and a mass M with the vibratory force F subtracted therefrom. Thus indirect measurement of reac tion force is possible while a cost is reduced and power is saved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、振動ローラや振動コンパクタ等のように、
質量体を上下振動させて路面を締め固める装置を使用す
る際に、その質量体が路面から受ける反力を測定する方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to a vibrating roller, a vibrating compactor, etc.
The present invention relates to a method of measuring the reaction force that a mass body receives from a road surface when using a device that compacts a road surface by vertically vibrating the mass body.

〔従来の技術〕[Conventional technology]

振動ローラや振動コンパクタ等の締め固め装置は、ロー
ラやプレート等の質量体に上下方向の起振力を与え、そ
の時の質量体の上下動による衝撃力で路面を締め固める
装置である。
A compaction device such as a vibrating roller or a vibratory compactor is a device that applies an excitation force in the vertical direction to a mass body such as a roller or a plate, and compacts a road surface using the impact force generated by the vertical movement of the mass body at that time.

ここで、路面の締め固めが進むと、質量体の上下動によ
る路面の沈み込み量が少なべなるから、路面が質量体に
与える反力は、路面の締め固め度に比例して大きくなる
Here, as the compaction of the road surface progresses, the amount of depression of the road surface due to the vertical movement of the mass body decreases, so the reaction force exerted by the road surface on the mass body increases in proportion to the degree of compaction of the road surface.

従って、路面が質量体に与える反力を測定すれば、路面
の締め固め度を定量的に把握することができるから、締
め固めが不十分であったり、無駄な施工を繰り返し行う
等の不具合がなくなる。
Therefore, by measuring the reaction force exerted by the road surface on a mass body, it is possible to quantitatively understand the degree of compaction of the road surface, thereby preventing problems such as insufficient compaction or repeated unnecessary construction. It disappears.

そして、質量体が路面から受ける反力を測定する従来の
一つの方法として、路面内に土圧計を埋め込んで直接的
に測定する方法が考えられた。
One conventional method for measuring the reaction force that a mass body receives from the road surface is to embed an earth pressure gauge in the road surface and directly measure it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、路面に埋め込んだ土圧計によって路面か
ら受ける反力を直接測定する従来の方法では、実施工に
おいて広範囲の領域の反力を測定するには、多数の土圧
計が必要になるので、それに伴って多大なコスト及び労
力が費やされるため、現実には実行不可能であった。
However, with the conventional method of directly measuring the reaction force received from the road surface using soil pressure gauges embedded in the road surface, a large number of soil pressure gauges are required to measure the reaction force over a wide area during construction work. However, this method was impracticable in practice due to the enormous cost and labor involved.

この発明は、このような従来の技術が有する未解決の課
題に着目してなされたものであり、多大なコスト及び労
力を費やすことなく、締め固め装置の質量体が路面から
受ける反力を測定することができる方法を提供すること
を目的としている。
This invention was made by focusing on such unresolved problems with the conventional technology, and it is possible to measure the reaction force that the mass body of a compaction device receives from the road surface without expending a large amount of cost and effort. The purpose is to provide a method that can be used.

〔課題を解決するための手段] 上記目的を達成するために、請求項(1)記載の発明は
、質量体に上下方向の起振力を与えて路面を締め固める
際にその質量体が路面から受ける反力を測定する方法で
あって、前記路面上に置いた状態で前記質量体に前記起
振力を与えた時にその質量体に作用する外力から、前記
路面から浮かせた状態で前記質量体に前記起振力を与え
た時にその質量体に作用する外力を差し引いて、前記質
量体が前記路面から受ける反力を測定する。
[Means for Solving the Problems] In order to achieve the above object, the invention as set forth in claim (1) provides a method for causing the mass body to compact the road surface by applying an excitation force in the vertical direction to the mass body. A method of measuring the reaction force received from the mass body when the mass body is placed on the road surface from an external force that acts on the mass body when the vibration force is applied to the mass body when the mass body is placed on the road surface. The reaction force that the mass body receives from the road surface is measured by subtracting the external force that acts on the mass body when the vibration force is applied to the body.

また、請求項(2)記載の発明は、質量体に上下方向の
起振力を与えて路面を締め固める際にその質量体が路面
から受ける反力を測定する方法であって、前記路面上に
置いた状態で前記質量体に前記起振力を与えた時のその
質量体の上下加速度を測定し、その上下加速度と前記質
量体の質量とを掛け合わせた値から前記起振力を差し引
いて、路面上振動時に前記質量体に作用する外力を求め
、前記路面から浮かせた状態で前記質量体に前記起振力
を与えた時のその質量体の上下加速度を測定し、その上
下加速度と前記質量体の質量とを掛け合わせた値から前
記起振力を差し引いて、空中振動時に前記質量体に作用
する外力を求め、そして、前記路面上振動時に前記質量
体に作用する外力から、前記空中振動時に前記質量体に
作用する外力を差し引いて、前記質量体が前記路面から
受ける反力を測定する。
Further, the invention according to claim (2) is a method for measuring a reaction force that a mass body receives from a road surface when compacting a road surface by applying an excitation force in the vertical direction to a mass body, the method comprising: Measure the vertical acceleration of the mass body when the excitation force is applied to the mass body in a state where the mass body is placed at Then, determine the external force that acts on the mass body during vibration on the road surface, measure the vertical acceleration of the mass body when the vibration force is applied to the mass body while floating from the road surface, and calculate the vertical acceleration and The excitation force is subtracted from the value multiplied by the mass of the mass body to determine the external force that acts on the mass body during air vibration, and the external force that acts on the mass body during vibration on the road surface is calculated from the The reaction force that the mass body receives from the road surface is measured by subtracting the external force that acts on the mass body during aerial vibration.

〔作用〕[Effect]

路面上に置いた状態で質量体に上下方向の起振力Fを与
えると、質量体は、路面側や、締め固め装置のフレーム
側等から外力R(t)を受けつつ、所定の加速度α。で
上下動するので、質量体の質量をMとすれば、運動方程
式は、下記の(1)式のようになる。
When a vertical excitation force F is applied to the mass body placed on the road surface, the mass body receives a predetermined acceleration α while receiving an external force R(t) from the road surface side, the frame side of the compaction device, etc. . Since it moves up and down, if the mass of the mass body is M, the equation of motion is as shown in equation (1) below.

Mα。−F + R(t)         ・・・・
・・(1)従って、質量体に作用する外力R(t)は、
下記の(2)式のように表せる。
Mα. -F + R(t)...
...(1) Therefore, the external force R(t) acting on the mass body is
It can be expressed as the following equation (2).

R(t) −Mα。−F        ・・・・・・
(2)一方、路面から浮かせた状態で質量体に上下方向
の起振力Fを与えた場合も、質量体は、同様にフレーム
側等からの外力R,(t)を受けつつ加速度α1で上下
動するから、この場合の運動方程式は、下記の(3)式
のようになる。
R(t) −Mα. -F...
(2) On the other hand, when a vertical excitation force F is applied to the mass body while it is suspended from the road surface, the mass body receives an external force R, (t) from the frame side, etc., and receives an acceleration α1. Since it moves up and down, the equation of motion in this case is as shown in equation (3) below.

Mα+ =F+R+(t)        ・・・・・
・(3)従って、この状態で質量体に作用している外力
R+(t)は、下記の(4)式のように表せる。
Mα+ =F+R+(t)...
-(3) Therefore, the external force R+(t) acting on the mass body in this state can be expressed as in the following equation (4).

R+ (t) = Mα、−F        ・・・
・・・(4)そして、上記(2)式に示した外力R(t
)は、路面側から作用する外力、即ち路面が質量体に与
える反力R6(1)を含んでいるが、上記(4)式に示
した外力R+(t)には反力Ro(t)は含まれていな
いから、外力R(t)から外力R+(t)を差し引けば
、反力R8(1)が残る。
R+ (t) = Mα, -F...
...(4) Then, the external force R(t
) includes the external force acting from the road surface, that is, the reaction force R6 (1) that the road surface gives to the mass body, but the external force R + (t) shown in equation (4) above includes the reaction force Ro (t). is not included, so if external force R+(t) is subtracted from external force R(t), reaction force R8(1) remains.

従って、請求項(1)記載の発明のように、路面上に置
いた状態で起振力を与えた時に質量体に作用する外力か
ら、路面から浮かせた状態で起振力を与えた時に質量体
に作用する外力を差し引けば、質量体が路面から受ける
反力が求められる。
Therefore, as in the invention described in claim (1), from the external force that acts on the mass body when an excitation force is applied while it is placed on a road surface, the mass body when an excitation force is applied while it is suspended from the road surface. By subtracting the external force acting on the body, the reaction force that the mass body receives from the road surface can be found.

また、上記(2)及び(4)式に示すように、質量体に
作用する外力は、質量体の上下加速度α。、α1と質量
Mとを掛け合わせた値から起振力Fを差し引けば求めら
れる。
Furthermore, as shown in equations (2) and (4) above, the external force acting on the mass body is the vertical acceleration α of the mass body. , can be obtained by subtracting the excitation force F from the product of α1 and the mass M.

このため、請求項(2)記載の発明のように、質量体の
上下加速度を測定すれば、起振力や質量体の質量は既知
であるから、質量体に作用する外力は演算で求められ、
その結果、質量体が路面から受ける反力が測定される。
Therefore, if the vertical acceleration of the mass body is measured as in the invention described in claim (2), the excitation force and the mass of the mass body are known, so the external force acting on the mass body can be calculated by calculation. ,
As a result, the reaction force that the mass body receives from the road surface is measured.

〔実施例〕〔Example〕

以下、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は、締め固め装置の一つである振動ローラの概略
構成図であり、この振動ローラは、フレーム1に防振ゴ
ム等を介して取り付けられた質量体としてのロール2を
有していて、このロール2内には、ロール2に起振力を
与える起振機3が、ロール2と一体に(ただし回転方向
には独立に)設けである。
FIG. 1 is a schematic diagram of a vibrating roller, which is one of the compaction devices. In this roll 2, a vibrator 3 that applies an excitation force to the roll 2 is provided integrally with the roll 2 (but independently in the rotational direction).

起振機3は、フレーム1に対して水平で且つ互いに平行
な二つの回転軸3a及び3bを有し、これら回転軸3a
及び3bは、互いに逆方向に且つ等速に回転するように
、エンジン等から構成された図示しない回転駆動装置に
連結されている。
The exciter 3 has two rotating shafts 3a and 3b that are horizontal to the frame 1 and parallel to each other.
and 3b are connected to an unillustrated rotary drive device constituted by an engine or the like so as to rotate in opposite directions and at the same speed.

そして、回転軸3a及び3bのそれぞれには、軸心から
偏心した重り3c及び3dが固定されていて、それら重
り3c及び3dは、等しい質量であって、回転軸3a及
び3bの回転に伴って発生する遠心力の垂直方向成分は
同じ方向を向き且つ水平方向成分は逆の方向を向くよう
に固定されている。
Weights 3c and 3d eccentric from the axis are fixed to each of the rotating shafts 3a and 3b, and these weights 3c and 3d have the same mass and move as the rotating shafts 3a and 3b rotate. The vertical components of the generated centrifugal force are fixed in the same direction, and the horizontal components are fixed in opposite directions.

従って、回転軸3a及び3bが回転すると、それら回転
軸3a及び3bには重り3c及び3dによって遠心力が
発生するが、遠心力の水平方向成分はそれら回転軸3a
及び3b間で相殺されるため、起振機3には、上下方向
の起振力Fが発生する。
Therefore, when the rotating shafts 3a and 3b rotate, centrifugal force is generated on the rotating shafts 3a and 3b by the weights 3c and 3d, but the horizontal component of the centrifugal force is
and 3b, so that an excitation force F in the vertical direction is generated in the exciter 3.

また、起振機3には、これに生じる上下方向の加速度を
測定する加速度センサ4と、重り3dの重心が起振機3
の水平方向外側を向いた時にパルスを発生するパルスセ
ンサ5とが設けである。なお、第1図中、6は路面であ
る。
The exciter 3 also includes an acceleration sensor 4 that measures the vertical acceleration generated in the exciter 3, and a center of gravity of the weight 3d that is located on the exciter 3.
A pulse sensor 5 that generates a pulse when facing outward in the horizontal direction is provided. In addition, in FIG. 1, 6 is a road surface.

第2図は第1図に示した振動ローラをモデルにした図で
あって、フレームl及びロール2間のバネ定数をに1、
フレーム1及びロール2間の1衰定数をCI、ロール2
及び路面6間のバネ定数をに0、ロール2及び路面6間
の減衰定数を00、フレーム1の質量(バネ上質量)を
M8、ロール2の質量(バネ上質量)をM、ロール2の
上下方向変位をX、としている。
FIG. 2 is a diagram modeled on the vibrating roller shown in FIG. 1, in which the spring constant between the frame 1 and the roll 2 is
1 decay constant between frame 1 and roll 2 is CI, roll 2
and the spring constant between the road surface 6 is 0, the damping constant between the roll 2 and the road surface 6 is 00, the mass of the frame 1 (spring mass) is M8, the mass of the roll 2 (spring mass) is M, the mass of the roll 2 is Let the vertical displacement be X.

そして、起振力Fは、上述したように、二つの回転軸3
a及び3bを回転させた時に発生する遠心力の垂直方向
成分の合力であるため1.それら回転軸3a及び3bの
回転角速度をω、回転軸3a及び3bの各々に生じる遠
心力の大きさをF。/2とすれば、下記の(5)式のよ
うになる。
As mentioned above, the excitation force F is generated by the two rotating shafts 3.
1. Because it is the resultant force of the vertical component of the centrifugal force generated when rotating a and 3b. The rotational angular velocity of the rotating shafts 3a and 3b is ω, and the magnitude of the centrifugal force generated on each of the rotating shafts 3a and 3b is F. /2, the following equation (5) is obtained.

F −F 0CO3(L) t          −
・・・(5)従って、ロール2を路面6上に置いた状態
で起振力Fを与えた時(以下、路面上振動時と称す)の
運動方程式は、下記の(6)式のようになる。ただし、
フレーム1に発生する振動は、ロール2側の振動に比べ
て微小であるため、ここでは、フレームlは静止してい
るものと仮定している。
F −F 0CO3(L) t −
...(5) Therefore, when the excitation force F is applied to the roll 2 placed on the road surface 6 (hereinafter referred to as vibration on the road surface), the equation of motion is as shown in equation (6) below. become. however,
Since the vibrations generated in the frame 1 are minute compared to the vibrations on the roll 2 side, it is assumed here that the frame 1 is stationary.

MM+c、大+に+x+co大+kox=FoCO3ω
t・・・・・・(6) 一方、ロール2を路面6から浮かせた状態で起振力Fを
与えた時(以下、空中振動時と称す)の運動方程式は、
下記の(7)弐のようになる。
MM + c, large + x + co large + kox = FoCO3ω
t...(6) On the other hand, when the roll 2 is suspended from the road surface 6 and the excitation force F is applied (hereinafter referred to as air vibration), the equation of motion is:
It will look like (7) 2 below.

MX+c、i+に+x=FoCO3ωt・・・・・・(
7)そして、上記(6)弐に含まれる要素の内、路面6
側からロール2に与えられる外力、即ち、路面6がロー
ル2に与える反力R8(1)は、バネ定数k。
MX+c, i+ +x=FoCO3ωt...(
7) And among the elements included in (6) 2 above, road surface 6
The external force applied to the roll 2 from the side, that is, the reaction force R8 (1) applied to the roll 2 by the road surface 6 has a spring constant k.

及び減衰定数00に係る部分であるから、下記の(8)
式のように表せる。
and the part related to the damping constant 00, so the following (8)
It can be expressed as the formula.

Ro(t)−〇。i十k。X      ・旧・・(8
)従って、反力Re(t)を求めるためには、変位χ。
Ro(t)-〇. i tenk. X ・Old・(8
) Therefore, in order to find the reaction force Re(t), the displacement χ.

速度大、加速度i、質量M、バネ定数に+ 、 減衰定
数01及び起振力F。COSωtが既知となればよこれ
ら各僅の内、加速度父は加速度センサ4で測定すること
ができるし、ロール2の質量M及び起振力F。COSω
tは振動ローラの諸元値から決定される。そして、その
他の要素、空中振動時にロール2に作用する外力R+(
t)=c、x+に、xは、上記(7)式を変形した下記
の(9)式から求められる。
High speed, acceleration i, mass M, spring constant +, damping constant 01, and excitation force F. If COSωt is known, the acceleration factor can be measured by the acceleration sensor 4, the mass M of the roll 2, and the excitation force F. COSω
t is determined from the specification values of the vibrating roller. And other factors, external force R+(
t)=c, x+, and x is obtained from the following equation (9), which is a modification of the above equation (7).

R+(t)=FoCOSωt  M!     ・・・
・・・(9)さらに、路面上振動時にロール2に作用す
る外力R(t)=cli+klX+Co大+koは、加
速度賢が測定されれば、上記(6)式を変形した下記の
00式から求められる。
R+(t)=FoCOSωt M! ...
(9) Furthermore, the external force R (t) = cli + kl It will be done.

R(t) =  F 。COS ω t  −M  賢
            ・・・・・・0口)そして、
外力R,(t)、 R(t)及び反力RO(t)に着目
すれば、反力Ro(t)は、下記の01)式で求められ
ることが判る。
R(t) = F. COS ω t −M wise ・・・・・・0 mouth) And,
If we pay attention to the external force R, (t), R(t) and the reaction force RO(t), it can be seen that the reaction force Ro(t) is obtained by the following equation 01).

Ro(t)=R(t)  R+(t)       ・
・・・・・(11)しかし、起振力F。COSωtは所
定の周波数で振動する正弦波であるため、起振力F。C
OSωtと加速度賢との間の位相差が判らなければ、上
記(9)及び0(1)式の演算は行えない。
Ro(t)=R(t) R+(t) ・
...(11) However, the excitation force F. Since COSωt is a sine wave that vibrates at a predetermined frequency, the excitation force F. C
If the phase difference between OSωt and the acceleration value is not known, the above equations (9) and 0(1) cannot be calculated.

そこで、パルスセンサ5が回転軸3bの1回転毎に発す
るパルスと、加速度センサ4が測定する加速度にとに基
づいて、位相差を求める。
Therefore, the phase difference is determined based on the pulse that the pulse sensor 5 emits every rotation of the rotating shaft 3b and the acceleration that the acceleration sensor 4 measures.

第3図は、空中振動時の加速度賢と、パルスセンサ4の
出力パルスとを同一時間軸に描いたグラフである。ただ
し、起振機3の回転軸3a及び3bが接続されたエンジ
ンの回転数は1.60 Or pmであり、起振機3の
振動周波数は2112rpmであった。
FIG. 3 is a graph in which the acceleration during air vibration and the output pulse of the pulse sensor 4 are plotted on the same time axis. However, the rotational speed of the engine to which the rotating shafts 3a and 3b of the exciter 3 were connected was 1.60 Or pm, and the vibration frequency of the exciter 3 was 2112 rpm.

即ち、出力パルスと起振力F。CO8ωとの周期は等し
いから、この出力パルスと加速度父との位相差は、その
まま、起振力F。CO8ωtと加速度父との間の位相差
になる。
That is, the output pulse and the excitation force F. Since the period is the same as that of CO8ω, the phase difference between this output pulse and the acceleration source is the excitation force F. This is the phase difference between CO8ωt and the acceleration factor.

また、第4図は、路面上振動時の加速度父と、パルスセ
ンサ4の出力パルスとを同一時間軸に描いたグラフであ
る。この場合も、起振′a3の回転軸3a及び3bが接
続されたエンジンの回転数は1600rpmであったが
、起振機3の振動周波数は、2016rpmであった。
Further, FIG. 4 is a graph in which the acceleration rate during vibration on the road surface and the output pulse of the pulse sensor 4 are plotted on the same time axis. In this case as well, the rotational speed of the engine to which the rotating shafts 3a and 3b of the vibration generator 'a3 were connected was 1600 rpm, but the vibration frequency of the vibration generator 3 was 2016 rpm.

空中振動時と路面上振動時とで振動周波数が異なるのは
、空中振動時と路面上振動時での必要馬力が異なること
と、油圧で駆動するのでエンジン回転数で振動周波数を
正確に制御することが困難であるためであるが、この程
度の誤差は実際には問題にならない。
The reason why the vibration frequency is different when vibrating in the air and when vibrating on the road surface is that the required horsepower is different when vibrating in the air and when vibrating on the road surface.Since it is driven by hydraulic pressure, the vibration frequency can be accurately controlled by the engine speed. This is because it is difficult to do so, but an error of this degree does not actually pose a problem.

そして、第3図の結果から、空中振動時にロール2に生
じる力Midは第5図上段に示すように、ロール2の起
振力F。CO8ωtは第5図中段に示すようになり、こ
れらの差(上記(9)式参照)である外力R+ (t)
は、第5図下段に示すようになる。
From the results shown in FIG. 3, the force Mid generated on the roll 2 during aerial vibration is the excitation force F of the roll 2, as shown in the upper part of FIG. CO8ωt is shown in the middle row of Figure 5, and the external force R+ (t) which is the difference between these (see equation (9) above)
is as shown in the lower part of FIG.

ここで、第5図から判るように、外力R+(t)は、力
M賢及び起振力F 0CO3ωtから約π/2遅れてい
る。これは、フレーム1及びロール2間の減衰力の影響
が大きいからである。
Here, as can be seen from FIG. 5, the external force R+(t) lags behind the force M and the excitation force F0CO3ωt by about π/2. This is because the damping force between the frame 1 and the roll 2 has a large influence.

また、第4図の結果から、路面上振動時にロール2に生
じる力MWは第6図上段に示すように、ロール2の起振
力F。COSωtは第6図中段に示すようになり、これ
らの差(上記00式参照)である外力R(t)は、第6
図下段に示すようになる。
Furthermore, from the results shown in FIG. 4, the force MW generated on the roll 2 during vibration on the road surface is the excitation force F of the roll 2, as shown in the upper part of FIG. COSωt is shown in the middle part of Figure 6, and the external force R(t), which is the difference between these (see formula 00 above), is
The result will be as shown in the lower part of the figure.

なお、空中振動時の起振力F。COSωt(第5図中段
参照)と、路面上振動時の起振力F。COSωt(第6
図中段参照)とが若干異なるのは、上述したように、実
験条件の違いにより、振動周波数が若干異なっているた
めである。
In addition, the excitation force F during air vibration. COSωt (see the middle row of Figure 5) and the excitation force F during vibration on the road surface. COSωt (6th
(See the middle row of the figure) is slightly different because, as mentioned above, the vibration frequency is slightly different due to the difference in experimental conditions.

そして、外力R+(t)及びR(t)を一つのグラフに
描くと、第7図上段のようになり、これらの差を求める
と、第7図下段のようになる。これが、ロール2が路面
6から受ける反力R8(1)である。
If the external forces R+(t) and R(t) are drawn in one graph, it will be as shown in the upper part of FIG. 7, and if the difference between these is calculated, it will be as shown in the lower part of FIG. This is the reaction force R8(1) that the roll 2 receives from the road surface 6.

ただし、最終的な反力Ro(t)には、フレーム1及び
ロール2の静的型量分M+g+Mg (gは重力加速度
)を加えている。
However, the static molding amount M+g+Mg (g is gravitational acceleration) of the frame 1 and roll 2 is added to the final reaction force Ro(t).

このように、本実施例にあっては、ロール2が路面6か
ら受ける反力Ro(t)を、加速度センサ4の出力に基
づいて間接的に求めることができるため、従来の技術の
ように多数の土圧計等は不要であるから、多大なコスト
や労力を費やすことな〈実施することができる。
In this way, in this embodiment, the reaction force Ro(t) that the roll 2 receives from the road surface 6 can be determined indirectly based on the output of the acceleration sensor 4, so that Since a large number of soil pressure gauges and the like are not required, it can be carried out without expending a great deal of cost and labor.

そして、反力Ro(t)が測定されれば、路面6の締め
固め状態を定量的に把握することができるので、路面6
の締め固めが不十分となったり、充分締め固まった後に
無駄な施工を繰り返し行う等の不具合がなくなる。
If the reaction force Ro(t) is measured, it is possible to quantitatively understand the compaction state of the road surface 6.
Problems such as insufficient compaction or repeated unnecessary construction work after sufficient compaction are eliminated.

なお、上記実施例では、質量体としてロール2を有する
振動ローラに本発明を適用した場合について説明したが
、これに限定されるものではなく、質量体が平板状であ
る振動コンパクタであっても同様に適用できる。
In the above embodiment, the present invention is applied to a vibrating roller having the roll 2 as a mass body, but the present invention is not limited to this, and the present invention can also be applied to a vibrating compactor in which the mass body is in the form of a flat plate. The same applies.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、締め固め装置の
質量体が路面から受ける反力を多大なコストや労力を費
やすことなく間接的に求めることができるという効果が
あり、その結果、実施工において路面の締め固め状態を
容易に且つ定量的に把握することができる。
As explained above, according to the present invention, there is an effect that the reaction force that the mass body of the compaction device receives from the road surface can be determined indirectly without spending a great deal of cost or effort. The compacted state of the road surface can be easily and quantitatively understood during construction work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は振動ローラの概略構成図、第2図は第1図の構
成をモデルで示した図、第3図は空中振動時の出力パル
スと加速度とを示すグラフ、第4図は路面上振動時の出
力パルスと加速度とを示すグラフ、第5図は空中振動時
にロールに働く力と起振力と外力とを示すグラフ、第6
図は路面上振動時にロールに働く力と起振力と外力とを
示すグラフ、第7図はロールに働く外力と路面からの反
力を示すグラフである。
Fig. 1 is a schematic configuration diagram of the vibrating roller, Fig. 2 is a model showing the configuration of Fig. 1, Fig. 3 is a graph showing output pulses and acceleration during vibration in the air, and Fig. 4 is a graph showing the vibration roller on the road surface. A graph showing the output pulse and acceleration during vibration, Fig. 5 is a graph showing the force acting on the roll, excitation force, and external force during air vibration, Fig. 6
The figure is a graph showing the force acting on the roll, the excitation force, and the external force during vibration on the road surface, and FIG. 7 is a graph showing the external force acting on the roll and the reaction force from the road surface.

Claims (2)

【特許請求の範囲】[Claims] (1)質量体に上下方向の起振力を与えて路面を締め固
める際にその質量体が路面から受ける反力を測定する方
法であって、前記路面上に置いた状態で前記質量体に前
記起振力を与えた時にその質量体に作用する外力から、
前記路面から浮かせた状態で前記質量体に前記起振力を
与えた時にその質量体に作用する外力を差し引いて、前
記質量体が前記路面から受ける反力を測定することを特
徴とする路面反力測定方法。
(1) A method for measuring the reaction force that a mass body receives from the road surface when compacting the road surface by applying a vertical vibrational force to the mass body, the method of measuring the reaction force that the mass body receives from the road surface while the mass body is placed on the road surface. From the external force that acts on the mass body when the excitation force is applied,
The road surface reaction method is characterized in that the reaction force that the mass body receives from the road surface is measured by subtracting the external force that acts on the mass body when the excitation force is applied to the mass body while it is suspended from the road surface. Force measurement method.
(2)質量体に上下方向の起振力を与えて路面を締め固
める際にその質量体が路面から受ける反力を測定する方
法であって、前記路面上に置いた状態で前記質量体に前
記起振力を与えた時のその質量体の上下加速度を測定し
、その上下加速度と前記質量体の質量とを掛け合わせた
値から前記起振力を差し引いて、路面上振動時に前記質
量体に作用する外力を求め、前記路面から浮かせた状態
で前記質量体に前記起振力を与えた時のその質量体の上
下加速度を測定し、その上下加速度と前記質量体の質量
とを掛け合わせた値から前記起振力を差し引いて、空中
振動時に前記質量体に作用する外力を求め、そして、前
記路面上振動時に前記質量体に作用する外力から、前記
空中振動時に前記質量体に作用する外力を差し引いて、
前記質量体が前記路面から受ける反力を測定することを
特徴とする路面反力測定方法。
(2) A method of measuring the reaction force that the mass body receives from the road surface when compacting the road surface by applying an excitation force in the vertical direction to the mass body, wherein the mass body is placed on the road surface. The vertical acceleration of the mass body when the vibration excitation force is applied is measured, and the vibration force is subtracted from the value obtained by multiplying the vertical acceleration and the mass of the mass body. Find the external force acting on the mass body, measure the vertical acceleration of the mass body when the excitation force is applied to the mass body while floating from the road surface, and multiply the vertical acceleration by the mass of the mass body. Subtract the excitation force from the above value to determine the external force that acts on the mass body during aerial vibration, and calculate the external force that acts on the mass body during the vibration on the road surface from the external force that acts on the mass body during the air vibration. Subtracting the external force,
A road surface reaction force measuring method, comprising measuring a reaction force that the mass body receives from the road surface.
JP24781890A 1990-09-18 1990-09-18 Method for measuring reaction force on road surface Pending JPH04125436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24781890A JPH04125436A (en) 1990-09-18 1990-09-18 Method for measuring reaction force on road surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24781890A JPH04125436A (en) 1990-09-18 1990-09-18 Method for measuring reaction force on road surface

Publications (1)

Publication Number Publication Date
JPH04125436A true JPH04125436A (en) 1992-04-24

Family

ID=17169119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24781890A Pending JPH04125436A (en) 1990-09-18 1990-09-18 Method for measuring reaction force on road surface

Country Status (1)

Country Link
JP (1) JPH04125436A (en)

Similar Documents

Publication Publication Date Title
EP0459063B1 (en) Apparatus and method for controlling the frequency of vibration of a compacting machine
US6431790B1 (en) Method of measuring mechanical data of a soil, and of compacting the soil, and measuring or soil-compaction device
US7483791B2 (en) Determination of soil stiffness levels
Ichihara et al. Earth pressure during earthquake
US5164641A (en) Apparatus and method for controlling the frequency of vibration of a compacting machine
EP0053598A1 (en) A method of compacting a material layer and a compacting machine for carrying out the method
US9389156B2 (en) Method for determining the stiffness and/or damping of an area of a physicalness
SE9303387D0 (en) Control of a packing machine measuring the properties of the substrate
JPH05195509A (en) Compacting machine and method for compacting
US10385530B1 (en) Method for compaction detection and control when compacting a soil with a deep vibrator
US5213184A (en) Device for compensating a vibrational force or torque acting on a body
JPH0222165B2 (en)
US8171789B2 (en) Dynamic balancing apparatus and method using simple harmonic angular motion
JPH04125436A (en) Method for measuring reaction force on road surface
Maurice et al. The influence of belt dynamics on cornering and braking properties of tyres
Smith Changing the effective mass to control resonance problems
Tran et al. Effect of an innovative vertical vibro-tracked vehicle on soil compaction
JPH0755668A (en) Measuring method for modulus of foundation
SU961550A3 (en) Method and device for automatically controlling vibratory roll compactor (modifications)
Dunn et al. Measured and Predicted Dynamic Horizontal Sliding and Rocking Response of an Embedded Footing at TAMU NGES Site
SU974801A1 (en) Vibration tamper
SU780904A1 (en) Sieve
JPS6131071Y2 (en)
McCarthy et al. RECENT EXPERIMENTAL DEVICES TO OBTAIN THE DYNAMIC 0 PARAMETERS OF BRIDGES
Pistrol et al. Recent Advances in Dynamic Compaction with Oscillating Rollers