JPH04124784A - Method for generating fault plane from three-dimensional picture - Google Patents

Method for generating fault plane from three-dimensional picture

Info

Publication number
JPH04124784A
JPH04124784A JP2245640A JP24564090A JPH04124784A JP H04124784 A JPH04124784 A JP H04124784A JP 2245640 A JP2245640 A JP 2245640A JP 24564090 A JP24564090 A JP 24564090A JP H04124784 A JPH04124784 A JP H04124784A
Authority
JP
Japan
Prior art keywords
plane
interpolation
dimensional
point
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2245640A
Other languages
Japanese (ja)
Other versions
JP2834560B2 (en
Inventor
Mamoru Nakanishi
衛 中西
Hiroshi Miyanaga
博史 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2245640A priority Critical patent/JP2834560B2/en
Publication of JPH04124784A publication Critical patent/JPH04124784A/en
Application granted granted Critical
Publication of JP2834560B2 publication Critical patent/JP2834560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Generation (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To speedily prevent the deterioration of picture quality with the aid of arbitrary profile angle by deciding the direction of interpolation from the angle of an object fault plane, deciding the density value of a point on the fault plane from the interpolation, and distributing the density value in a two-dimensional plane after projection. CONSTITUTION:Two coordinates are chosen from among coordinates X, Y, Z on the profile to be projected, and the rest one coordinate is obtained by the formula on the fault plane. There are three ways in this selection. The amount of change of a projection point is determined by this way of selection, and the method for interpolation with the smallest amount of change among these is utilized to the generation of fault plane afterwards. Then, the value of the object point of the projection is decided while performing interpolation in the direction of the interpolation adapted in the front stage. On the other hand, the point is projected to a two-dimensional coordinate system 10 formed on the fault plane based on the projection conversion formula. After the projection, the addition of the value of a point 11 is performed while distributing it to a neighboring lattice point 12, and the fault picture is finally obtained. Thus, high-quality fault plane generation can be performed with the small number of access of a three-dimensional external memory.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多断面に渡って採集されたX!ICT像など
の2次元画像を積み重ねた3次元画像において、そのデ
ータを2次元的なデイスプレィやプリンタなどの表示装
置に表示するための断層面生成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to X! The present invention relates to a tomographic plane generation method for displaying data on a two-dimensional display device such as a two-dimensional display or printer in a three-dimensional image obtained by stacking two-dimensional images such as ICT images.

〔従来技術〕[Prior art]

3次元空間に置かれた物体の3次元画像データを元に、
ある2次元平面に投影したり、ある断面で切断しその断
層面画像を求めるとき、データの補間処理が必要となる
Based on 3D image data of an object placed in 3D space,
When projecting onto a certain two-dimensional plane or cutting at a certain cross section to obtain a tomographic image, data interpolation processing is required.

従来、この投影変換における補間法は、次の2通りが使
われている。
Conventionally, the following two interpolation methods have been used in this projection transformation.

まず、第1の補間法として、第5図に示すように、2吹
元投影面10の格子点12に対応する3次元空間1上の
座標を順次求め、その点5の値を近傍の点7から補間決
定する方法が挙げられる。
First, as a first interpolation method, as shown in FIG. 7 to determine the interpolation method.

この補間法は、第5図のように、近傍8点からの補間を
すれば画質の良いものが得られるが、3次元メモリの参
照回数が非常に多く、処理時間が大きい。次に第2の補
間法として第6図に示すように、3次元空間1の格子点
7に対応する2次元投影面10上の座標を順次求め、そ
の3次元格子点7以上の値をこの2次元投影面10上で
近傍の格子点12に振り分け、元の値に加算していく方
法である。この補間法は3次元空間をすべて投影するよ
うな場合に有効であり、また、3次元メモリの参照回数
が少なく、高速に実行できる。
With this interpolation method, as shown in FIG. 5, a good image quality can be obtained by interpolating from 8 neighboring points, but the number of times the three-dimensional memory is referenced is extremely large and the processing time is long. Next, as a second interpolation method, as shown in FIG. This is a method in which the values are distributed to neighboring grid points 12 on the two-dimensional projection plane 10 and added to the original values. This interpolation method is effective when projecting the entire three-dimensional space, and also requires fewer references to the three-dimensional memory and can be executed at high speed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、断面生成においては、断面上の点は格子点上
に存在しないため、また、その断面の傾斜角に応じて著
しく画質が劣化することがあるといった問題点が存在し
、第2の補間法は用いることができない、そこで速度は
遅いが断層面生成においては第1の補間法が利用されて
いる6本発明は、前記問題点を解決するためになされた
ものであり、本発明の目的は、断層面生成の際に、高速
化を維持しながら画質の劣化を防ぐことが可能な技術を
提供することにある。
However, when generating a cross-section, there are problems in that the points on the cross-section do not lie on grid points, and the image quality may deteriorate significantly depending on the inclination angle of the cross-section. Therefore, although the speed is slow, the first interpolation method is used for tomographic plane generation.6 The present invention has been made to solve the above problems, and the purpose of the present invention is to The object of the present invention is to provide a technique that can prevent deterioration of image quality while maintaining high speed when generating tomographic planes.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述及び添付図面によって明らかになるであろ
う。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔課題を解決するための手段〕 前記目的を達成するために、本発明は、3次元空間の格
子点に対応する2次元投影面上の座標を順次求め、その
3次元格子点以上の値をこの2次元投影面上で近傍の格
子点に振り分け、元の値に加算していくことにより、3
次元画像データから任意の断層面画像を得る断層面生成
方法において、対象断層面の角度により補間方向を決定
し、その方向の補間により断層面上の点の密度値を決定
し、投影後の2次元平面での密度値を振り分けることを
最も主要な特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention sequentially obtains coordinates on a two-dimensional projection plane corresponding to grid points in a three-dimensional space, and calculates values greater than or equal to the three-dimensional grid points. By distributing it to neighboring grid points on this two-dimensional projection plane and adding it to the original value, 3
In a tomographic plane generation method that obtains an arbitrary tomographic image from dimensional image data, the interpolation direction is determined based on the angle of the target tomographic plane, the density value of a point on the tomographic plane is determined by interpolation in that direction, and the The most important feature is distributing density values on a dimensional plane.

〔作用〕[Effect]

前述の手段によれば、対象断層面の角度により補間方向
を決定し、その方向の補間により断層面上の点の密度値
を決定し、投影後の2次元平面での密度値を振り分ける
ことにより、高速で、かつ任意の断面角で画質の劣化を
防ぐことができる。
According to the above-mentioned means, the interpolation direction is determined based on the angle of the target tomographic plane, the density value of the point on the tomographic plane is determined by interpolation in that direction, and the density values on the two-dimensional plane after projection are distributed. , it is possible to prevent deterioration of image quality at high speed and at any cross-sectional angle.

〔発明の実施例〕[Embodiments of the invention]

以下5本発明の一実施例を図面を用いて具体的に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

なお、実施例を説明するための全図において、同一機能
を有するものは同一符号を付け、その繰り返しの説明は
省略する。
In addition, in all the figures for explaining the embodiment, parts having the same functions are given the same reference numerals, and repeated explanations thereof will be omitted.

第1図は、本発明の3次元画像からの断層面生成方法の
一実施例のX方向補間による断層面生成を説明するため
の説明図、 第2図は1本実施例の断層面のパラメータα。
FIG. 1 is an explanatory diagram for explaining generation of a tomographic plane by X-direction interpolation in one embodiment of the tomographic plane generation method from a three-dimensional image of the present invention, and FIG. 2 is a diagram showing parameters of a tomographic plane in this embodiment. α.

βを説明するための説明図、 第3図は1本実施例の3方向の補間方向を説明するため
の説明図、 第4図は、本実施例の断層面の角度に応じて適用できる
補間方向の領域区分図である。
Figure 3 is an explanatory diagram to explain the interpolation directions in three directions in this embodiment. Figure 4 is an explanatory diagram to explain the interpolation directions in three directions in this embodiment. FIG. 3 is a directional area division diagram.

第1図〜第4図において、1は3次元空間、2は断面、
3はY−Z平面上にある格子点、4は格子点3からの垂
線、5は垂!!4と断面2との交点、6は垂NlA4上
の格子点、10は2次元投影面(断面の座標系)、11
は点5に対応する平面10上の点、12は平面lo上の
格子点、20は原点から断面2に下ろした垂線ベクトル
(法g)、21は垂線ベクトル20をX−Y平面に投影
したベクトル、22はX−Y平面と垂線ベクトル20の
なす角(β)、23はベクトル21とX軸のなす角(α
)である。
In Figures 1 to 4, 1 is a three-dimensional space, 2 is a cross section,
3 is a grid point on the Y-Z plane, 4 is a perpendicular from grid point 3, and 5 is a vertical! ! 4 and the cross section 2, 6 is the lattice point on the vertical NlA4, 10 is the two-dimensional projection plane (coordinate system of the cross section), 11
is a point on plane 10 corresponding to point 5, 12 is a grid point on plane lo, 20 is a perpendicular vector (modulus g) drawn from the origin to section 2, and 21 is a projection of perpendicular vector 20 onto the X-Y plane. The vector 22 is the angle (β) between the X-Y plane and the perpendicular vector 20, and 23 is the angle (α) between the vector 21 and the X axis.
).

本実施例の3次元画像からの断層面生成方法は、断層面
生成において、従来の技術で述べた第2の補間法を格子
点以外の点を投影の対象とし、断層面の傾斜角に適応さ
せ1画質の劣化を防止するものである。
The method of generating a tomographic plane from a three-dimensional image of this embodiment uses the second interpolation method described in the conventional technique as a projection target for points other than grid points, and adapts it to the inclination angle of the tomographic plane. This is to prevent deterioration of image quality.

以下、本実施例の3次元画像からの断層面生成方法を、
第1図にしたがって、具体的に説明する。
Hereinafter, the method of generating a tomographic plane from a three-dimensional image according to this example will be explained as follows.
This will be explained in detail with reference to FIG.

第2図に示すように、3次元空間1をX、Y、Z軸で定
義し、0≦x<ny+o≦Y < n v + O≦Z
〈n2の区間の整数の座標にのみ値をもつものとする。
As shown in Figure 2, a three-dimensional space 1 is defined by the X, Y, and Z axes, and 0≦x<ny+o≦Y < n v + O≦Z
<Assume that there are values only at integer coordinates in the interval n2.

第1図において、まず、投影を行う断面上の点の座標を
決定する。X、Y、Zのうち2つの座標を選び、その2
つの座標に関しては整数となるようなすべての組合せを
選ぶ。例えば、Y、zとする。
In FIG. 1, first, the coordinates of a point on the cross section to be projected are determined. Select two coordinates from X, Y, and Z, and
For the two coordinates, select all combinations that are integers. For example, let's say Y and z.

残りの1つの座標について、断層面の方程式より求める
The remaining coordinate is determined from the equation of the tomographic plane.

この例ではXとなる。この選び方は、第3図に示すとお
り、3通りがある。選んだ2座標のうちの一方、例えば
、Yだけ変化させた時の2次元平面での投影点の変化量
を、さらに別の方、例えば2を1だけ変化させた時の2
次元平面での投影点の座標の変化量を実際の投影変換式
より求め、この中で一番大きい変量をこの選び方での変
化量とする。
In this example, it is X. As shown in FIG. 3, there are three ways to select this. The amount of change of the projection point on the two-dimensional plane when one of the two selected coordinates, for example, Y, is changed, and the amount of change of the projection point on the two-dimensional plane when one of the two selected coordinates, for example, Y, is changed, and the amount of change of the projection point on the two-dimensional plane when one of the two selected coordinates, for example, 2 is changed by 1.
The amount of change in the coordinates of the projection point on the dimensional plane is determined from the actual projection transformation formula, and the largest variable among these variables is taken as the amount of change in this selection method.

3通りの選び方で投影点の変化量をそれぞれ求め、この
中で一番変化量が小さくなる補間法を以後断面層生成に
使用する補間法として採用する。
The amount of change in the projection point is determined by each of the three selection methods, and the interpolation method that provides the smallest amount of change is adopted as the interpolation method that will be used to generate the cross-sectional layer from now on.

次に、前段で採用した補間方向に補間して投影の対象点
の値を決定する。第1図に示す例では、X、Y座標を選
び、2方向に補間している。この場合、X、YをO≦X
<n、、O≦Y < n、の範囲の01・n9個の整数
の組について、断層面上のZ座標値を求め、その点5の
値を近傍の点6から補間して決定する。
Next, the value of the projection target point is determined by interpolation in the interpolation direction adopted in the previous step. In the example shown in FIG. 1, the X and Y coordinates are selected and interpolated in two directions. In this case, let X and Y be O≦X
For a set of 01·n9 integers in the range <n, O≦Y<n, the Z coordinate value on the tomographic plane is determined, and the value of point 5 is determined by interpolating from the neighboring point 6.

一方、その点を投影変換式に基づき、断面上に形成され
た2次元座標系10に投影する。従来の技術で述べた第
2の方法に使われた振り分は方と同様、投影後、その点
11の値を近傍の格子点12に値を振り分けながら加算
していくことにより、最終的に断層面像が得られる。
On the other hand, that point is projected onto a two-dimensional coordinate system 10 formed on the cross section based on a projection transformation formula. The distribution used in the second method described in the conventional technique is the same as in the previous method, by adding the value of the point 11 after projection while distributing the value to the neighboring grid points 12, and finally A tomographic image can be obtained.

すなわち、第2図に示すように、断面2への垂線ベクト
ル(法線)20をX−Y平面に投影したベクトル、22
はX−Y平面と垂直ベクトル20とのなす角(β)、2
3はベクトル21とX軸のなす角(α)婁とした、3次
元空間1内の断面像を求める処理を例をあげて説明する
That is, as shown in FIG.
is the angle (β) between the X-Y plane and the vertical vector 20, 2
3 describes the process of obtaining a cross-sectional image in the three-dimensional space 1 with an angle (α) between the vector 21 and the X-axis as an example.

3次元空間1での座@ (X、Y、Z)から、2次元平
面の座標(x + y )への投影変換式を(1)式と
する。
The projection transformation formula from the locus @ (X, Y, Z) in the three-dimensional space 1 to the coordinates (x + y) on the two-dimensional plane is expressed as equation (1).

・ ・ ・ (1) 断面の方程式は(2)式とする。・ ・ ・(1) The equation of the cross section is Equation (2).

X cos a cosβ十Y sin a cosβ
+Z sinβ=k・・・ (2) 但し、kは原点(0,0,0)と断面の距離である。
X cos a cosβ tenY sin a cosβ
+Z sinβ=k... (2) However, k is the distance between the origin (0, 0, 0) and the cross section.

まず、断層面の角度(α、β)により補間方向を決定す
る。(1)式に(2)式を代入してx、y、zのうちの
一パラメータを消去し、各々の座標での変化量の関係を
求めると、(3)〜(5)式が得られる。
First, the interpolation direction is determined based on the angle (α, β) of the tomographic plane. By substituting equation (2) into equation (1), eliminating one parameter among x, y, and z, and finding the relationship between the amount of change at each coordinate, equations (3) to (5) are obtained. It will be done.

(3)式から(5)式において、係数行列A、B、Cの
それぞれの要素の絶対値が大きいとき、2次元平面上に
投影される点が疎らになり、格子点のデータに抜けを生
じてしまう。第3図に示す3方向の補間法のうち一番係
数の小さい補間法がきめ細かい画質の断層面が生成され
る。この係数は、断層面を決定する変数α、βにより、
変化し、このα。
In equations (3) to (5), when the absolute value of each element of the coefficient matrices A, B, and C is large, the points projected onto the two-dimensional plane become sparse, and there are gaps in the data of the grid points. It will happen. Among the three interpolation methods shown in FIG. 3, the interpolation method with the smallest coefficient generates a tomographic plane with fine image quality. This coefficient is determined by the variables α and β that determine the tomographic plane.
Change this α.

βに応じて補間法を取捨選択することにした。We decided to select the interpolation method depending on β.

例えば、α=c、β=τのとき、係数A、B、Cはそれ
ぞれ。
For example, when α=c and β=τ, the coefficients A, B, and C are respectively.

るため、この角度のときは、Z方向の補間法を採用する
ことになる。
Therefore, at this angle, interpolation in the Z direction is used.

このように断層面への変換式を定めたとき、その断層面
の角度であるα、βにより画質の優劣が存在する。断層
面の生成をする場合、与えられたα、βから画質がよい
補間方向を決定することができる。
When a conversion formula to a tomographic plane is determined in this manner, the image quality is superior or inferior depending on the angles α and β of the tomographic plane. When generating a tomographic plane, an interpolation direction with good image quality can be determined from the given α and β.

本実施例に挙げた(1)式の変換式を用いる場合、第4
図に示すように、斜線模様の領域においてはX方向の補
間を、横縞模様の領域においてはY方向の補間を、縦縞
模様の領域においては2方向の補間を適用することにな
る。
When using the conversion formula (1) listed in this example, the fourth
As shown in the figure, interpolation in the X direction is applied to areas with diagonal lines, interpolation in the Y direction is applied to areas with horizontal stripes, and interpolation in two directions is applied to areas with vertical stripes.

前記の方法にしたがって補間方向を定め、変換の対象と
なる断層面上の点を求め1次に投影光の2次元平面上で
値を近傍の格子点に振り分ける操作を行う。
The interpolation direction is determined according to the method described above, the points on the tomographic plane to be converted are found, and the values are first distributed to neighboring grid points on the two-dimensional plane of the projection light.

以上の説明かられかるように、本実施例によれば、対象
断層面の角度により補間方向を決定し、その方向の補間
により断層面上の点の密度値を決定し、投影後の2次元
平面での密度値を振り分けることにより、断層面生成に
は適用できなかった従来法(第2の補間法)を適用でき
るようになり、3次元外部メモリの少ないアクセス回数
で高画質の断層面生成が可能となる。
As can be seen from the above explanation, according to this embodiment, the interpolation direction is determined based on the angle of the target tomographic plane, the density value of the point on the tomographic plane is determined by interpolation in that direction, and the two-dimensional By distributing the density values on a plane, it is now possible to apply the conventional method (second interpolation method) that could not be applied to tomographic plane generation, allowing high-quality tomographic plane generation with a small number of accesses to the 3D external memory. becomes possible.

これにより、高速で、かつ任意の断面角で画質の劣化を
防ぐことができる。
This makes it possible to prevent deterioration of image quality at high speed and at any cross-sectional angle.

以上、本発明を実施例にもとづき具体的に説明したが1
本発明は、前記実施例に限定されるものではなく、その
要旨を逸脱しない範囲において種々変更可能であること
は言うまでもない。
The present invention has been specifically described above based on examples, but 1.
It goes without saying that the present invention is not limited to the embodiments described above, and can be modified in various ways without departing from the spirit thereof.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明によれば、対象断層面の
角度により補間方向を決定し、その方向の補間により断
層面上の点の密度値を決定し、投影後の2次元平面での
密度値を振り分けることにより、高速で、かつ任意の断
面角で画質の劣化を防ぐことができる。
As explained above, according to the present invention, the interpolation direction is determined based on the angle of the target tomographic plane, the density value of the point on the tomographic plane is determined by interpolation in that direction, and the density value of the point on the tomographic plane after projection is determined. By distributing density values, it is possible to prevent deterioration of image quality at high speed and at any cross-sectional angle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の3次元画像からの断層面生成方法の
一実施例のX方向補間による断層面生成を説明するため
の説明図、 第2図は、本実施例の断層面のパラメータα。 βを説明するための説明図、 第3図は、本実施例の3方向の補間方向を説明するため
の説明図、 第4図は、本実施例の断層面の角度に応じて適用できる
補間方向の領域区分図。 第5図は、従来の第1の補間法による断層面生成の問題
点を説明するための説明図、 第6図は、従来の第2の補間法により補間法による断層
面生成の問題点を説明するための説明図である。 図中、1・・・3次元空間、2・・・断面、3・・・Y
−Z平面上にある格子点、4・・格子点3からの垂線、
5・・・垂線4と断面2との交点、6・・・垂線4上の
格子点、10・・・2次元投影面(断面の座標系)、1
1・・・点5に対応する平面10上の点、12・・・平
面10上の格子点、20・・・原点から断面2に下ろし
た垂線ベクトル、21・・・垂線ベクトル20をx−Y
平面に投影したベクトル、22・・・X−Y平面と垂線
ベクトル20のなす角(β)、23・・・ベクトル21
とX軸のなす角(α)。
FIG. 1 is an explanatory diagram for explaining generation of a tomographic plane by X-direction interpolation in an embodiment of the tomographic plane generation method from a three-dimensional image of the present invention. FIG. α. FIG. 3 is an explanatory diagram for explaining the interpolation directions in three directions in this embodiment. FIG. 4 is an explanatory diagram for explaining the interpolation directions in three directions in this embodiment. Directional area division diagram. FIG. 5 is an explanatory diagram for explaining the problem of tomographic plane generation using the conventional first interpolation method. FIG. 6 is an explanatory diagram for explaining the problem of tomographic plane generation using the conventional second interpolation method. It is an explanatory diagram for explanation. In the figure, 1... three-dimensional space, 2... cross section, 3... Y
- Grid points on the Z plane, 4... perpendicular from grid point 3,
5... Intersection of perpendicular line 4 and cross section 2, 6... Grid point on perpendicular line 4, 10... Two-dimensional projection plane (coordinate system of cross section), 1
1... Point on plane 10 corresponding to point 5, 12... Grid point on plane 10, 20... Perpendicular vector drawn from the origin to section 2, 21... Perpendicular vector 20 as x- Y
Vector projected onto a plane, 22... Angle (β) between the X-Y plane and the perpendicular vector 20, 23... Vector 21
and the angle (α) formed by the X axis.

Claims (1)

【特許請求の範囲】[Claims] (1)3次元空間の格子点に対応する2次元投影面上の
座標を順次求め、その3次元格子点以上の値をこの2次
元投影面上で近傍の格子点に振り分け、元の値に加算し
ていくことにより、3次元画像データから任意の断層面
画像を得る断層面生成方法において、対象断層面の角度
により補間方向を決定し、その方向の補間により断層面
上の点の密度値を決定し、投影後の2次元平面での密度
値を振り分けることを特徴とする断層面生成方法。
(1) Sequentially find the coordinates on the two-dimensional projection plane corresponding to the grid points in the three-dimensional space, distribute the values greater than or equal to those three-dimensional grid points to neighboring grid points on this two-dimensional projection plane, and return them to the original values. In a tomographic plane generation method that obtains an arbitrary tomographic image from three-dimensional image data by adding up, the interpolation direction is determined based on the angle of the target tomographic plane, and the density value of a point on the tomographic plane is determined by interpolation in that direction. A tomographic plane generation method characterized by determining the density value on a two-dimensional plane after projection.
JP2245640A 1990-09-14 1990-09-14 Method for generating tomographic plane from three-dimensional image Expired - Fee Related JP2834560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2245640A JP2834560B2 (en) 1990-09-14 1990-09-14 Method for generating tomographic plane from three-dimensional image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2245640A JP2834560B2 (en) 1990-09-14 1990-09-14 Method for generating tomographic plane from three-dimensional image

Publications (2)

Publication Number Publication Date
JPH04124784A true JPH04124784A (en) 1992-04-24
JP2834560B2 JP2834560B2 (en) 1998-12-09

Family

ID=17136665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2245640A Expired - Fee Related JP2834560B2 (en) 1990-09-14 1990-09-14 Method for generating tomographic plane from three-dimensional image

Country Status (1)

Country Link
JP (1) JP2834560B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511765A (en) * 1999-10-07 2003-03-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Derivation of cross section distribution from object dataset
JP2005058327A (en) * 2003-08-08 2005-03-10 Mamoru Mitsuishi Projection image preparation and display method and operation supporting device using the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511765A (en) * 1999-10-07 2003-03-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Derivation of cross section distribution from object dataset
JP4792187B2 (en) * 1999-10-07 2011-10-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Deriving cross-sectional distribution from object dataset
JP2005058327A (en) * 2003-08-08 2005-03-10 Mamoru Mitsuishi Projection image preparation and display method and operation supporting device using the method

Also Published As

Publication number Publication date
JP2834560B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
US6239808B1 (en) Method and apparatus for determining texture values of graphical images
JPH0261953A (en) Scanning type electron microscope and pseudo color display device
JPH04220783A (en) Display apparatus and display method
US11276142B2 (en) Apparatus and method for synthesizing virtual viewpoint images
EP3877952B1 (en) Disparity estimation from a wide angle image
JP3517256B2 (en) Image synthesis device
EP3573018B1 (en) Image generation device, and image display control device
EP0986906B1 (en) A method and device for generating display frames from a sequence of source frames through synthesizing one or more intermediate frames exclusively from an immediately preceding source frame
JPH04124784A (en) Method for generating fault plane from three-dimensional picture
JP2726366B2 (en) Viewpoint / object position determination method
JPH08315129A (en) Image enlargement system
EP1237125B1 (en) Method and system for generating and handling a harmonized network of points
US10825135B2 (en) Method and device for determining a transition between two display images, and vehicle
KR19980060719A (en) Height map generation method and height map synthesis method from 2D video image
CA2456835C (en) A method of rendering an image and a method of animating a graphics character
JPH11265440A (en) Image compositing method for optional light source position and display device
JP4925112B2 (en) Free viewpoint image generation method
Oswal et al. Image morphing: a comparative study
JPH0285978A (en) Method for processing hidden-surface of solid
JP2998689B2 (en) How to map image data
JP4087010B2 (en) Image processing device
JP2656707B2 (en) Reconstruction method of 3D image by density interpolation
JPH087123A (en) Method and device for processing three-dimensional image
JP2604711B2 (en) Image conversion device
JP2767807B2 (en) Object surface shape data creation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees