JPH0412473B2 - - Google Patents

Info

Publication number
JPH0412473B2
JPH0412473B2 JP22907882A JP22907882A JPH0412473B2 JP H0412473 B2 JPH0412473 B2 JP H0412473B2 JP 22907882 A JP22907882 A JP 22907882A JP 22907882 A JP22907882 A JP 22907882A JP H0412473 B2 JPH0412473 B2 JP H0412473B2
Authority
JP
Japan
Prior art keywords
display device
image
screen
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22907882A
Other languages
Japanese (ja)
Other versions
JPS59123871A (en
Inventor
Yoshikyo Futagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22907882A priority Critical patent/JPS59123871A/en
Publication of JPS59123871A publication Critical patent/JPS59123871A/en
Publication of JPH0412473B2 publication Critical patent/JPH0412473B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、液晶等の電気光学素子による複数個
の画素形成ユニツトよりなる薄型化された大型表
示装置の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a large, thin display device comprising a plurality of pixel forming units using electro-optical elements such as liquid crystal.

従来大型表示装置としては、映写機、オーバ・
ヘツド・プロジエクタ、高感度ブラウン管画像を
スクリーン背面側で拡大投写する等の種々なる大
型表示装置がある。ここでは、従来の大型表示装
置例として、第1図の様な後者の例で説明する。
Conventional large display devices include movie projectors and over-the-top displays.
There are various large-sized display devices such as head projectors and those that enlarge and project high-sensitivity cathode ray tube images on the back side of the screen. Here, the latter example as shown in FIG. 1 will be explained as an example of a conventional large display device.

第1図で、1は高感度ブラウン管で、この映像
を拡大するレンズを有している。2は光路で、2
aと2bで光路境界を表わす。3は反射鏡、4は
半透面のスクリーンである。又、カラー表示装置
にするには、高感度ブラウン管1を3個用いて、
3原色独立にスクリーン上の投写すれば良い。こ
こで、大型表示装置とは、画面の大きさを1m角
近傍以上を目安とするものとする。
In Fig. 1, numeral 1 is a high-sensitivity cathode ray tube, which has a lens that magnifies the image. 2 is the optical path, 2
A and 2b represent the optical path boundaries. 3 is a reflecting mirror, and 4 is a semi-transparent screen. In addition, to make a color display device, three high-sensitivity cathode ray tubes 1 are used,
It is sufficient to project the three primary colors independently on the screen. Here, a large display device is defined as having a screen size of around 1 m square or more.

第1図の従来の大型表示装置では、映像の拡大
率が大きい為に、高感度ブラウン管でも映像の明
るさが不満足な欠点がある。光路長を長く取る必
要から反射鏡3を大きくするか、奥行を取つて配
せる必要がある。いずれの場合も大型表示装置と
して奥行の深いものとなり、家庭用のテレビ等に
応用するには不向である欠点を有する。更には、
カラー映像にするには、3個のブラウン管の画素
合せ、色合せが困難である欠陥を有する。従つ
て、一見第1図の装置は安価に製造可能の如きに
みえるが、高価になる欠陥も有する。
The conventional large-sized display device shown in FIG. 1 has a disadvantage that the image brightness is unsatisfactory even with a high-sensitivity cathode ray tube because the enlargement ratio of the image is large. Since it is necessary to have a long optical path length, it is necessary to make the reflecting mirror 3 large or arrange it with a certain depth. In either case, the display device is large and has a large depth, making it unsuitable for use in home televisions and the like. Furthermore,
It has a defect that makes it difficult to match the pixels and colors of the three cathode ray tubes to produce a color image. Therefore, although the device of FIG. 1 appears to be inexpensive to manufacture, it also has defects that make it expensive.

本発明はかかる欠陥を除去せんとするものであ
る。本発明の目的は、液晶等の電気光学素子によ
る表示体で元来薄型であるが、マルチプレクス数
が大きく取れないことから、多数ある画素を形成
するに、マルチプレツクス数を画質を損こなわな
い程度にして、全体画素数を分割した複数個のユ
ニツトで構成して、薄形化した安価な大型表示装
置を提供することにある。
The present invention seeks to eliminate such defects. The object of the present invention is to use an electro-optical element display such as a liquid crystal, which is originally thin, but since the number of multiplexes cannot be large, in order to form a large number of pixels, it is necessary to increase the number of multiplexes at the expense of image quality. The object of the present invention is to provide a thin and inexpensive large-sized display device constructed by a plurality of units in which the total number of pixels is divided to the extent that the total number of pixels is divided.

以下図に従つて、本発明を説明する。第2図
は、本発明の概要を説明する図で、aは横断面
図、bは正面図である。図では、5×5=25ユニ
ツトで大画面を構成した例を示す。5は半透明の
スクリーン、6は画素形成ユニツトで画面辺が7
aで、光路8の様にこれを拡大して7bにして隣
のユニツトとの画素間に空白がない様にして、全
体画面が均質に得られる様にする。bで、7a角
の画面を7b角の画面に拡大表示したことを示
す。第2図に示す画素形成ユニツト側を第3図で
説明する。以下全図に亘つて同一番号は、同じか
類似の意味、又は手段を表わすものとする。第3
図は、光源の異なつた本発明になる大型表示装置
を構成する画素形成ユニツトの実施例をa、b、
cで示す。
The present invention will be explained below with reference to the figures. FIG. 2 is a diagram explaining the outline of the present invention, in which a is a cross-sectional view and b is a front view. The figure shows an example in which a large screen is composed of 5×5=25 units. 5 is a translucent screen, 6 is a pixel forming unit, and the screen side is 7.
At step a, this is enlarged like the optical path 8, and at step 7b, there is no blank space between the pixels of the adjacent unit, so that the entire screen can be obtained uniformly. b shows that the 7a square screen is enlarged and displayed on the 7b square screen. The pixel forming unit side shown in FIG. 2 will be explained with reference to FIG. In the following figures, the same numbers represent the same or similar meanings or means. Third
The figures show examples of pixel forming units constituting a large display device according to the present invention with different light sources.
Indicated by c.

10はユニツトの框体、11は適当なマルチプ
レクス数で駆動され所定の画像を形成する液晶表
示体、12はプリント基体で、表示体11を所定
の方式で駆動表示させる駆動回路13、及びユニ
ツト外から取込むデータ等と接続するコネクタ1
4と連絡するものである。15は平面光源で、例
えば平面に塗布された蛍光物質を平面的に放射す
る熱電子、又は通常の蛍光灯の様に紫外線で励起
され発光するものである。平面で発光させれば比
較的平行光線成分が強いのである。16は光源1
5の波長分布を適当にするフイルタで、光源15
は適当な波長分布で発光していれば、不要であ
る。
10 is a frame of the unit; 11 is a liquid crystal display that is driven with an appropriate number of multiplexes to form a predetermined image; 12 is a printed substrate; a drive circuit 13 that drives and displays the display 11 in a predetermined manner; Connector 1 that connects to data imported from outside
4. Reference numeral 15 denotes a flat light source, which emits thermoelectrons from a fluorescent material coated on a flat surface, or is excited by ultraviolet rays like a normal fluorescent lamp and emits light. If light is emitted on a flat surface, the parallel ray component will be relatively strong. 16 is light source 1
The light source 15 is filtered to suit the wavelength distribution of the light source 15.
is not necessary if the light is emitted with an appropriate wavelength distribution.

17は凹レンズで光路を変更して画像を拡大す
る。スクリーン5上に凹レンズを経過した光は実
像を形成するわけでない故、スクリーン5は半透
明にして乱通過させて丁度実像を形成した如くに
する。無論、凸レンズを使用して実像をスクリー
ン上に結ばせても良いが、光路が長くなる為、奥
行が大きくなり表示装置の薄型には不向きであ
る。凹レンズ17はユニツト毎に作成しても良い
が、表示装置全体に亘つて各ユニツトに対応した
位置にプラスチツクで一体成形すれば安価なもの
が得られる。18は光源15の光の表示体11の
画素、又は画像の外側の光路を示す。19は隣の
ユニツトの場合の光を表わす。aの如く各ユニツ
トを構成すれば、bに示す如く、スキ間のない均
一な大画面がスクリン5上に形成される。
17 is a concave lens that changes the optical path and enlarges the image. Since the light passing through the concave lens does not form a real image on the screen 5, the screen 5 is made semi-transparent so that it passes through the light irregularly, so that it looks as if a real image is formed. Of course, a convex lens may be used to form a real image on the screen, but since the optical path becomes long, the depth increases, which is not suitable for thin display devices. Although the concave lenses 17 may be made for each unit, they can be made at low cost by integrally molding them from plastic at positions corresponding to each unit throughout the display device. Reference numeral 18 indicates an optical path of light from the light source 15 outside the pixels of the display body 11 or the image. 19 represents the light from the adjacent unit. By configuring each unit as shown in a, a uniform large screen with no gaps is formed on the screen 5 as shown in b.

bは平行光源を得るのに安価なフイラメントラ
ンプ20の如き点光源を用いた例を示す。21は
放物反射鏡である。
b shows an example in which an inexpensive point light source such as a filament lamp 20 is used to obtain a parallel light source. 21 is a parabolic reflector.

cは平行光源を得るのに他の方式の例を示す。
22は棒状蛍光灯を表わし、長さは紙面と垂直方
向に並設された各ユニツトに亘るものとする。
c shows an example of another method for obtaining a parallel light source.
Reference numeral 22 represents a rod-shaped fluorescent lamp, and its length extends to each unit arranged in a direction perpendicular to the plane of the paper.

23は蛍光灯22に平行に断面が放物状である
反射鏡でほヾ平行光が得られる様にする。点線で
示す24は光導管で更に平行度を改良するもので
ある。光の平行度が良ければ、隣接する画素の影
響を受けず元画に忠実な映像が得られる。光導管
24は断面形状が四角形、又は六角形の肉薄な不
透明材で多数連結したものである。光導管24の
断面開口と長さの比を充分取れば、昼間の井戸か
ら星を観察出来る原理で充分な平行光線が得られ
る。第3図のユニツトを薄形化からみると、a,
b,cの順であるが、コスト面からは逆順であろ
う。
Reference numeral 23 is a reflecting mirror parallel to the fluorescent lamp 22 and having a parabolic cross section, so that almost parallel light can be obtained. Reference numeral 24 indicated by a dotted line is an optical conduit that further improves parallelism. If the parallelism of the light is good, images that are faithful to the original image can be obtained without being affected by adjacent pixels. The light pipe 24 is made of a plurality of thin opaque materials connected to each other and has a rectangular or hexagonal cross section. If the ratio between the cross-sectional opening and the length of the light pipe 24 is sufficient, sufficient parallel light rays can be obtained on the principle that stars can be observed from a well in the daytime. Looking at the unit in Figure 3 from the perspective of thinning, a,
The order is b and c, but from a cost perspective, the order should be reversed.

次に第3図で使用されている映像、又は画素を
形成する表示体11を第4図で説明する。25は
透明なガラス等の平板基板で基板25aと25b
で液晶を挟持している。基板25aは、水平方向
に3本共通にして透明電極を26aと26bを配
してある。基板25bには紙面上の上下に分割し
て透明電極27aと27bを配してある。液晶が
ツイスト・ネマチツクであれば、液晶を所定に配
向させる。この場合は、図示してないが、基板2
5の両側で所定の方向に偏光面を持つ様に2板の
偏光板を用いる。表示体11はこの様にして、上
下方向に走査信号を順次印加して水平方向に画素
データを加えれば、電極26と27に所定電界が
発生して一様に加えられている平行光線の透過量
を制御して、第4図は部分的な画像を構成する。
走査信号は所定周期のクロツク33を受けて、走
査信号発生器32より線29aと29bを介して
電極26aと26bに与える。画素データは、画
素データ31bをデータ駆動回路30aと30b
にシリアルに与えて、順次記憶して走査信号に同
期してラツチホールドして線28aと28bを介
して電極27aと27bに与える。階調は、ラツ
チホールドした画素データの出力時間を走査信号
周期を100%として、データ駆動回路に別に与え
られる階調データによつて短縮する。データ駆動
回路30の中にG、R、Bと記しているのは、表
示装置をカラー表示する場合に三原色の緑、赤、
青に対応するものである。34がカラー表示の場
合の最小の画素単位である。電極27に対応し
て、基板25、又は偏光板、更には別の基板上に
G、R、Bのフイルタをストライプ、又は島状に
設ける。第4図の例では島状に示してある。図で
は、最小画素を実際は1×3=3に対して、見か
け上3×3=9にしてあるのは、実験的に後者の
方が映像として自然さがあつたことによる。
Next, the display body 11 forming images or pixels used in FIG. 3 will be explained with reference to FIG. 4. Reference numeral 25 denotes a flat substrate made of transparent glass or the like, and includes substrates 25a and 25b.
The LCD is held between the two. The substrate 25a has three common transparent electrodes 26a and 26b arranged in the horizontal direction. Transparent electrodes 27a and 27b are arranged on the substrate 25b divided into upper and lower parts on the plane of the drawing. If the liquid crystal is twisted nematic, the liquid crystal is oriented in a predetermined manner. In this case, although not shown, the board 2
Two polarizing plates are used on both sides of 5 so that the plane of polarization is in a predetermined direction. In this way, the display body 11 can be constructed by sequentially applying scanning signals in the vertical direction and adding pixel data in the horizontal direction, thereby generating a predetermined electric field between the electrodes 26 and 27 and transmitting the uniformly applied parallel light rays. By controlling the amount, FIG. 4 constructs a partial image.
The scanning signal is supplied from a scanning signal generator 32 to the electrodes 26a and 26b via lines 29a and 29b in response to a clock 33 having a predetermined period. The pixel data is transferred from the pixel data 31b to the data drive circuits 30a and 30b.
is applied serially, stored sequentially, latched and held in synchronization with the scanning signal, and applied to electrodes 27a and 27b via lines 28a and 28b. The gradation is shortened by setting the scan signal period to 100% and using gradation data separately provided to the data drive circuit to output the latch-held pixel data. G, R, and B in the data drive circuit 30 indicate the three primary colors green, red, and
It corresponds to blue. 34 is the smallest pixel unit for color display. Corresponding to the electrodes 27, G, R, and B filters are provided in stripes or islands on the substrate 25, the polarizing plate, or another substrate. In the example of FIG. 4, it is shown as an island. In the figure, the minimum pixel is actually 1 x 3 = 3, but the reason why it appears to be 3 x 3 = 9 is because the latter is experimentally found to be more natural as an image.

尚、第4図の例では、マルチプレクス数を2で
画素数を2×4×2=16で示しているが、現在の
液晶材料の特性では、光の透過量の開閉比、開閉
スピードからマルチプレクス数は32が精々であ
る。これ以上であると、コントラスト、明るさが
不満足となる。
In the example shown in Figure 4, the number of multiplexes is 2 and the number of pixels is 2 x 4 x 2 = 16. However, with the characteristics of current liquid crystal materials, the opening/closing ratio of the amount of light transmitted and the opening/closing speed The maximum number of multiplexes is 32. If it is more than this, the contrast and brightness will be unsatisfactory.

従つて、本発明になる大型表示装置をテレビに
応用すると、NTSC方式による有効走査線数に
480程度である故、480÷32=15、又は第4図の様
にマルチプレクス数は同じで、上下に分割併設す
ると480÷(32×2)÷8となり、水平方向のライ
ン数によるが、15、又は8の整数倍の多数のユニ
ツトが必要となる。多数のユニツトでの表示装置
は組立上からはコストアツプの要因であるが、光
源の種類によるが奥行が50mm程度で画面が1m角
以上の壁掛テレビが可能となり、コストパフオー
マンス大であるが、本発明になる大型表示装置の
特徴である。更には、液晶表示体自体は低消費電
力型であるので、高い効率の光源を使用すれば、
ブラウン管方式より、はるかに低消費電力型の大
型表示装置が得られるのも本発明の特徴である。
Therefore, if the large display device of the present invention is applied to a television, the number of effective scanning lines according to the NTSC system will be reduced.
Since it is about 480, 480 ÷ 32 = 15, or as shown in Figure 4, the number of multiplexes is the same, and if they are divided and installed above and below, it becomes 480 ÷ (32 × 2) ÷ 8, depending on the number of horizontal lines, A number of units of 15 or an integer multiple of 8 are required. Display devices with multiple units are a factor in increasing costs from the perspective of assembly, but depending on the type of light source, it is possible to install a wall-mounted TV with a depth of about 50 mm and a screen of 1 m square or more, which has great cost performance. This is a feature of large-sized display devices. Furthermore, since the liquid crystal display itself has low power consumption, if a highly efficient light source is used,
Another feature of the present invention is that a large display device with much lower power consumption than the cathode ray tube method can be obtained.

尚、光の透過を開閉、又は制御する表示体11
をツイストネマチツク液晶材を応用した場合で説
明したが、DSM型の液晶でも構わない。更には、
エレクトロクロミツクス等の電気光学効果を持つ
他の材料でも所定の光の開閉スピードを持てば構
わない。
In addition, the display body 11 that opens, closes, or controls the transmission of light
Although this was explained using a twisted nematic liquid crystal material, a DSM type liquid crystal may also be used. Furthermore,
Other materials having an electro-optic effect such as electrochromics may also be used as long as they have a predetermined light opening/closing speed.

次に、第5図で本発明になる大型表示装置をテ
レビに応用した構成例を簡単に説明する。図で、
35は受信アンテナ、36はチユーナ、37は選
択された映像信号をGR、Bに色別にされたアナ
ログ映像信号をデイジタル信号に変換するA/D
(アナログ−デイジタル)変換器でする。この
A/D変換器を3系列に分割したのは、A/D速
度を低減する為である。40は本発明になる大型
表示装置で簡単な3×4、又は(3×2)×4の
ユニツト数で示してある。39は色別に映像信号
を大型表示装置40の系列に対応する如く、1フ
イルド、又は1フレームのデータを格納するメモ
リー手段である。38は制御回路で、垂直同期信
号、水平同期信号を参照して、A/D変換器37
のデータをメモリー手段39へ格納する制御と、
メモリー手段39のデータを大型表示装置40へ
読出し制御する。ここで、メモリー手段39を用
いるのは、本発明になる大型表示装置がリアルタ
イム処理出来るマルチプレス数を有しない欠陥が
あるからある。メモリー手段39の容量を計算す
ると、 480(垂直)×400(水平)×3(色) ×3(階調ビツト)≒64Kビツト×27 となる。
Next, a configuration example in which the large display device according to the present invention is applied to a television will be briefly explained with reference to FIG. In the figure,
35 is a receiving antenna, 36 is a tuner, and 37 is an A/D that converts the selected video signal into GR and B color-coded analog video signals into digital signals.
(analog-digital) converter. The reason why this A/D converter is divided into three series is to reduce the A/D speed. 40 is a large-sized display device according to the present invention, and is shown as a simple unit number of 3×4 or (3×2)×4. Reference numeral 39 denotes a memory means for storing one field or one frame of data of video signals for each color in correspondence with the series of large display devices 40. 38 is a control circuit which refers to the vertical synchronization signal and the horizontal synchronization signal and controls the A/D converter 37.
control for storing the data in the memory means 39;
Data in the memory means 39 is read and controlled to the large display device 40. The reason why the memory means 39 is used here is that the large display device according to the present invention has a defect in that it does not have the number of multi-presses that can be processed in real time. The capacity of the memory means 39 is calculated as follows: 480 (vertical) x 400 (horizontal) x 3 (color) x 3 (gradation bits) ≒ 64K bits x 27.

64KビツトのRAMを27個用いれば良く、最近
半導体技術の進歩で年々安価になつているので、
問題にする程ではない。尚、第5図で矢印は信号
の流れの概略を示す。
You only need to use 27 pieces of 64K bit RAM, and with recent advances in semiconductor technology, it has become cheaper each year.
It's not enough to be a problem. Note that in FIG. 5, arrows indicate the outline of the signal flow.

以上述べた如く、液晶等の光の透過量を制御出
来る電気光学効果を有する材料で複数個の画素を
制御するユニツトを多数配列して、これ等のユニ
ツト毎の画像を拡大して、各ユニツト間の空白を
埋めることにより、品質の良い画面が得られるだ
けでなく薄形で、かつコストパフオーマンスの良
い大型表示装置が提供可能で効果大である。
As mentioned above, by arranging a large number of units that control multiple pixels using materials such as liquid crystals that have an electro-optic effect that can control the amount of light transmitted, and enlarging the image of each of these units, it is possible to By filling in the gaps, it is possible to not only obtain a high-quality screen, but also to provide a thin, large-sized display device with good cost performance, which is highly effective.

換言すると、映写機、オーバヘツドプロジエク
タ等への置替可能で、映像界に革命をもたらすも
のである。
In other words, it can be replaced with a movie projector, overhead projector, etc., and will bring about a revolution in the video world.

以上述べた如く、本発明によれば、特に電気光
学素子を通過した画像を拡大するのに凹レンズを
用いたので、光路が短くなりしたがつて、薄型の
大型表示装置が実現できる。
As described above, according to the present invention, a concave lens is used to magnify an image that has passed through an electro-optical element, so the optical path is shortened, and a thin and large display device can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のブラウン管の映像を拡大投射し
てなる大型表示装置の例の断面図を示す。第2図
は本発明になる大型表示装置を示す図で、aは断
面図、bは正面図を示す。第3図は本発明になる
大型表示装置を構成するユニツトの実施例を示す
図である。aはユニツトに必要な平行光線を平面
光源で得た例を示す。bはユニツトに必要な平行
光線を点光源と放物反射鏡で得た例を示す。cは
ユニツトに必要な平行光線を複数のユニツトに亘
たる棒状光源と多数の導光管によつて得た例を示
す。第4図はユニツトの光の透過量を制御する表
示体を液晶等の電気光学効果を有する材料で構成
した例を示す図である。第5図は本発明になる大
型表示装置をテレビに応用した場合のブロツク図
を示す。
FIG. 1 shows a sectional view of an example of a large-sized display device that enlarges and projects images from a conventional cathode ray tube. FIG. 2 is a diagram showing a large-sized display device according to the present invention, in which a is a sectional view and b is a front view. FIG. 3 is a diagram showing an embodiment of a unit constituting a large-sized display device according to the present invention. A shows an example in which the parallel light beams required for the unit are obtained using a plane light source. b shows an example in which the parallel rays required for the unit are obtained using a point light source and a parabolic reflector. Figure c shows an example in which the parallel light beams required for the units are obtained by a rod-shaped light source extending over a plurality of units and a large number of light guide tubes. FIG. 4 is a diagram showing an example in which the display body for controlling the amount of light transmitted through the unit is made of a material having an electro-optic effect, such as liquid crystal. FIG. 5 shows a block diagram when the large display device according to the present invention is applied to a television.

Claims (1)

【特許請求の範囲】[Claims] 1 光源と、複数個の画素を電気光学的に開閉す
る電気光学素子と、該電気光学素子を通過した画
像を拡大する凹レンズとを有する表示ユニツトが
多数個並設されてなり、該表示ユニツトの全面に
画像が投写されるスクリーンが配置されたことを
特徴とする大型表示装置。
1. A large number of display units are arranged in parallel, each having a light source, an electro-optical element that electro-optically opens and closes a plurality of pixels, and a concave lens that magnifies an image that has passed through the electro-optical element. A large display device characterized by having a screen on which an image is projected over the entire surface.
JP22907882A 1982-12-29 1982-12-29 Large display unit Granted JPS59123871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22907882A JPS59123871A (en) 1982-12-29 1982-12-29 Large display unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22907882A JPS59123871A (en) 1982-12-29 1982-12-29 Large display unit

Publications (2)

Publication Number Publication Date
JPS59123871A JPS59123871A (en) 1984-07-17
JPH0412473B2 true JPH0412473B2 (en) 1992-03-04

Family

ID=16886395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22907882A Granted JPS59123871A (en) 1982-12-29 1982-12-29 Large display unit

Country Status (1)

Country Link
JP (1) JPS59123871A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203915A (en) * 1984-03-28 1985-10-15 Matsushita Electric Ind Co Ltd Large-sized liquid crystal display device
JPS61138288A (en) * 1984-12-10 1986-06-25 シャープ株式会社 Liquid crystal display

Also Published As

Publication number Publication date
JPS59123871A (en) 1984-07-17

Similar Documents

Publication Publication Date Title
KR100223724B1 (en) The color display apparatus and addressing circuit thereof
KR100246248B1 (en) Image projection method with lcd panel and display using them
EP0703560B1 (en) Visual display system
KR0159258B1 (en) Active Matrix Reflective Projection System
US5108172A (en) Active matrix reflective image plane module and projection system
US6637888B1 (en) Full color rear screen projection system using a single monochrome TFT LCD panel
JPH1068997A (en) Picture projector
US20080316378A1 (en) Hybrid multiplexed 3d display and displaying method thereof
EP0485435B1 (en) Module for reflective light encoding system
GB2191057A (en) Colour video display arrangement
KR101210524B1 (en) High contrast liquid crystal display
US5357288A (en) Liquid crystal projector and method of projecting image
US6005645A (en) Stereoscopic display device having particular circuits
CN100385291C (en) Imaging light source with polarization and color recovery
JPS61150487A (en) Liquid crystal video projector
US7319439B2 (en) Image display device and projector
JP2001166739A (en) Optical display system and method, active and passive dithering using double refraction, color image superposition, and display emphasis using phase integrating polarizing switch
JPH0412473B2 (en)
JPH0723986B2 (en) Projection display device
US20120002124A1 (en) Hybrid multiplexed 3d display and displaying method thereof
JP2746267B2 (en) Manufacturing method of projection type color display device
JP2006330058A (en) Projector
WO2002017547A2 (en) Very-large-scale very-high-resolution multiple-projector tiled display with uniform intensity, color temperature and color balance throughout by use of a single light source for each color; intensity and spectral management in all light paths; and optional fresnel lenses behind each display tile
JPH04291292A (en) Projection color display device
JPH08307888A (en) Color image display device