JPH0412399Y2 - - Google Patents

Info

Publication number
JPH0412399Y2
JPH0412399Y2 JP7213686U JP7213686U JPH0412399Y2 JP H0412399 Y2 JPH0412399 Y2 JP H0412399Y2 JP 7213686 U JP7213686 U JP 7213686U JP 7213686 U JP7213686 U JP 7213686U JP H0412399 Y2 JPH0412399 Y2 JP H0412399Y2
Authority
JP
Japan
Prior art keywords
signal
circuit
light
infrared
light emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7213686U
Other languages
Japanese (ja)
Other versions
JPS62185400U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7213686U priority Critical patent/JPH0412399Y2/ja
Publication of JPS62185400U publication Critical patent/JPS62185400U/ja
Application granted granted Critical
Publication of JPH0412399Y2 publication Critical patent/JPH0412399Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は赤外線測距方式を用いた近接信管に関
する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a proximity fuze using an infrared ranging method.

(従来技術) 従来の光学式信管は目標物検出方式、測距方式
あるいは近接方式を用いたものがある。これらは
それぞれ次のような欠点を有している。
(Prior Art) Conventional optical fuzes include those using a target detection method, a distance measurement method, or a proximity method. Each of these has the following drawbacks.

(イ) 目標物検出方式;目標物検出方式は目標物が
ミサイル又はジエツト機など、目標物自体の動
力源より多量の熱すなわち赤外光を放射する目
標物の検出方式で、この方式は熱を放射する目
標物にしか適用できないこと、非目標物の放射
する熱量の大小により曳火距離に差が生ずるな
どの欠点がある。
(b) Target detection method: The target detection method is a method for detecting targets such as missiles or jet aircraft that emit a large amount of heat or infrared light from their own power source; The disadvantages include that it can only be applied to targets that emit heat, and that the towing distance varies depending on the amount of heat radiated by non-target objects.

(ロ) 測距方式;測距方式は信管より光パルスを放
射して、その光パルスが目標物から反射してき
た反射光を受光し、放射した光パルスと受光し
た反射光との時間差を測り、この時間差から距
離換算するいわゆるパルスレーダ方式で、この
方式は測距精度を上げることは可能であるが、
測距精度1mを得るためには約3nsec単位でパ
ルス信号の識別をする必要があり、信号処理回
路の応答速度を超高速化しなければならないと
いう欠点がある。
(b) Distance measurement method: The distance measurement method emits a light pulse from a fuze, receives the reflected light that is reflected from the target object, and measures the time difference between the emitted light pulse and the received reflected light. This is a so-called pulse radar method that converts distance from this time difference. Although this method can improve distance measurement accuracy,
In order to obtain a distance measurement accuracy of 1 m, it is necessary to identify pulse signals in units of approximately 3 nsec, which has the drawback that the response speed of the signal processing circuit must be extremely high.

(ハ) 近接方式;近接方式は信管より光(パルス又
はCW)を放射し、その光が目標物から反射し
てきた反射光を受光し、その放射した光と受光
した光との強さの差あるいはドプラー周波数を
検出するアクテイブ方式である。この方式で放
射した光と受光した光の強さの差による方式は
目標物の反射有効面積、反射角度によつて強さ
の差が異なり、またドプラー周波数による方式
は目標物が移動物体か静止物体か、さらに信管
飛翔速度の変化によつて信管と目標物が同一距
離であつても、ドプラー周波数は異なる値とな
る。従つて、放射した光と受光した光との光の
強さの差による場合は目標物の反射有効面積、
反射角また、ドプラー周波数による場合は目標
物が移動物体か静動物体か、信管の飛翔速度の
変化等条件を考慮するとき、検出条件を一元的
には決められないため、ごく条件の限られた範
囲での使用しかできないという欠点がある。
(c) Proximity method: In the proximity method, light (pulsed or CW) is emitted from a fuze, the reflected light from the target is received, and the difference in intensity between the emitted light and the received light is detected. Alternatively, it is an active method that detects the Doppler frequency. This method uses the difference in intensity between the emitted light and the received light, and the difference in intensity differs depending on the effective reflection area and reflection angle of the target, while the method using Doppler frequency determines whether the target is a moving object or a stationary object. Even if the fuze and target are at the same distance, the Doppler frequency will have different values due to changes in the object or the fuze flight speed. Therefore, if it is due to the difference in the intensity of the emitted light and the received light, the effective reflective area of the target,
Reflection angle In addition, when using Doppler frequency, detection conditions cannot be determined uniformly when considering conditions such as whether the target is a moving object or a stationary object and changes in the flight speed of the fuze. The disadvantage is that it can only be used within certain limits.

(考案が解決しようとする問題点) 以上述べたように、従来、いくつかの方式を利
用した信管が提案されているが、それぞれの方式
によつて、誤差を生じたり、精度を上げようとす
ると高速応答が要求され、また条件設定の複雑化
などの問題点を有している。
(Problems that the invention aims to solve) As mentioned above, fuzes using several methods have been proposed, but each method produces errors or attempts to improve accuracy. This requires a high-speed response, and also poses problems such as complicated condition settings.

(問題点を解決するための手段) 以上の欠点を解決した本考案について図を用い
て詳細に説明する。第1図は本考案の信号系の実
施例であつて、まず各部の信号のみを記し、機能
と動作については第2図および第3図を併せて説
明する。図において、1は投射レンズ、2は発光
体、3は発光体駆動回路、4は発光信号回路、5
は同期回路、6はクロツク回路、7は信号発生
器、8は受光レンズ、9は赤外線通過形フイル
タ、10は複数分割赤外線検出器、11はアナロ
グスイツチ回路、12はタイミング回路、13は
増幅回路、14はサンプルホールド回路、15は
アナログデイジタル変換回路、16は演算回路、
17は距離設定部、18は発火回路、19は伝爆
部、20は前記各構成の必要箇所へ電力を供給す
る電源回路である。
(Means for Solving the Problems) The present invention that solves the above drawbacks will be explained in detail using figures. FIG. 1 shows an embodiment of the signal system of the present invention, and first only the signals of each part will be described, and the functions and operations will be explained together with FIGS. 2 and 3. In the figure, 1 is a projection lens, 2 is a light emitter, 3 is a light emitter drive circuit, 4 is a light emission signal circuit, and 5
is a synchronization circuit, 6 is a clock circuit, 7 is a signal generator, 8 is a light receiving lens, 9 is an infrared passing filter, 10 is a multi-division infrared detector, 11 is an analog switch circuit, 12 is a timing circuit, 13 is an amplifier circuit , 14 is a sample hold circuit, 15 is an analog-to-digital conversion circuit, 16 is an arithmetic circuit,
17 is a distance setting section, 18 is an ignition circuit, 19 is an explosive section, and 20 is a power supply circuit that supplies power to necessary parts of each of the above components.

第2図イおよびロは本考案の光学系を説明する
ための図である。赤外線ダイオード、赤外線レー
ザー・ダイオード等を用いた発光体2から発する
赤外光L1を投射レンズ1を通して移動物体、静
止物体、海面上物体あるいは地上面上物体等の目
標物Xに投射する。次に目標物Xからの反射光
L2を発光体2から所定の距離(基線長l)離れ
配置されている複数分割赤外線検出器10によつ
て受光レンズ8および赤外線通過フイルタ9を通
過した反射光L2を検出する。レンズ系と基線上
の位置により複数分割赤外線検出器10での反射
光L2の合焦位置が異なる。合焦位置は複数分割
赤外線検出器10の各分割素子間の出力を比較す
ることにより検出できる。第2図ロで示す如く、
合焦位置はDであるとする。これは三角測量方式
を基準にした距離検出器で、複数分割赤外線検出
器10を3〜10分割ではゾーンフオーカス、100
分割以上ではアルフオーカスとなり分割数により
検出距離精度が異なる。
FIGS. 2A and 2B are diagrams for explaining the optical system of the present invention. Infrared light L1 emitted from a light emitter 2 using an infrared diode, an infrared laser diode, etc. is projected through a projection lens 1 onto a target object X such as a moving object, a stationary object, an object on the sea surface, or an object on the ground surface. Next, the reflected light from target X
The reflected light L 2 that has passed through the light receiving lens 8 and the infrared passing filter 9 is detected by the multi-segment infrared detector 10 which is arranged a predetermined distance (baseline length l) from the light emitter 2 . The focal position of the reflected light L2 at the multi-segment infrared detector 10 differs depending on the lens system and the position on the base line. The in-focus position can be detected by comparing the output between each divided element of the multi-divided infrared detector 10. As shown in Figure 2 B,
It is assumed that the in-focus position is D. This is a distance detector based on the triangulation method, and the multi-divided infrared detector 10 is divided into 3 to 10 zones for zone focus, 100
If the number of divisions is greater than that, alpha focus will occur, and the detection distance accuracy will vary depending on the number of divisions.

次に第3図は第1図の図中に示した符号a〜j
で示す位置の信号をタイミングチヤートで示した
図である。このタイミングチヤート図で中間の破
線で示した部分は繰り返し部の省略である。第3
図を用いて第1図の実施例の動作を説明する。
Next, in FIG. 3, the symbols a to j shown in the diagram of FIG.
FIG. 3 is a timing chart showing signals at positions indicated by . In this timing chart, the portion indicated by a broken line in the middle is a repeated portion. Third
The operation of the embodiment shown in FIG. 1 will be explained with reference to the drawings.

信号発生器7で信号aを発生し、クロツク回路
6によりクロツク信号が得られる。同期回路5の
信号cとクロツク信号bとから発光信号回路4に
よつて発光信号eが得られ、この発光信号eによ
つて信号発生回路7の信号aを発光体駆動回路3
で変調し、発光信号fが得られる。発光体2はパ
ルス変調された発光信号fによつて発光し、投射
レンズ1を通して赤外光L1が目標物Xに投射さ
れる。目標物Xからの反射光L2は受光レンズ8
と赤外線通過形フイルタ9を通して複数分割赤外
線検出器10に達する。n個に分割された複数分
割赤外線検出器10によつて検出されたn個の検
出出力はアナログスイツチ回路11とタイミング
回路12の順繰りパルスによつて順次信号gが取
出され、信号gは増幅回路13によつて増幅され
る。増幅回路13の出力信号をサンプルホールド
回路14で信号hで示す如くサンプルし、アナロ
グ・デイジタル変換回路(A/Dコンバータ)1
5に入力する。アナログ・デイジタル変換回路1
5ではアナログ量をデイジタル量に変換するがそ
のA/D出力信号iは4bit BCD(2進化10進)で
示している。ここでのbit数は距離精度に関係す
るので、必要に応じてbit数を決めることとする。
このデイジタル量を演算回路16にて、1フレー
ムパルス内で、複数分割赤外線検出器10のn個
の出力の前、後の大きさを比較して距離設定部1
7の信号jと比較して同じパルス符号となれば発
火回路18に発火信号を入力する。発火回路18
はこの発火信号をうけて伝爆部19が起爆し爆発
する充分な電気量を伝爆部に送出する。
A signal generator 7 generates a signal a, and a clock circuit 6 obtains a clock signal. A light emitting signal e is obtained by the light emitting signal circuit 4 from the signal c of the synchronizing circuit 5 and the clock signal b, and the light emitting signal e is used to generate the signal a of the signal generating circuit 7 in the light emitter drive circuit 3.
A light emission signal f is obtained. The light emitter 2 emits light in response to a pulse-modulated light emission signal f, and infrared light L1 is projected onto the target object X through the projection lens 1. Reflected light L 2 from target object X is received by light receiving lens 8
The light passes through an infrared passing filter 9 and reaches a multi-segment infrared detector 10. The n detection outputs detected by the n-divided infrared detector 10 are sequentially extracted as signals g by the sequential pulses of the analog switch circuit 11 and timing circuit 12, and the signal g is sent to the amplifier circuit. 13. The output signal of the amplifier circuit 13 is sampled by a sample hold circuit 14 as shown by a signal h, and is converted into an analog-to-digital conversion circuit (A/D converter) 1.
Enter 5. Analog-digital conversion circuit 1
5 converts an analog quantity into a digital quantity, and its A/D output signal i is shown in 4-bit BCD (binary coded decimal). The number of bits here is related to distance accuracy, so the number of bits will be determined as necessary.
This digital amount is calculated by the arithmetic circuit 16, which compares the sizes of the front and rear outputs of the n outputs of the multi-segment infrared detector 10 within one frame pulse, and sets the distance setting unit 1.
7, and if they have the same pulse sign, a firing signal is input to the firing circuit 18. Firing circuit 18
In response to this ignition signal, the detonator 19 detonates and sends a sufficient amount of electricity to the detonator to cause an explosion.

(考案の効果) 本考案の効果はECMを含む外乱光の影響を受
けにくい。従来のものはアクテイブ、パツシブの
いずれの方式を問わず反射光の検出を量的、時間
的基準をもつてしていたためCW,AM,FMを
問わず妨害を受けやすいが、本考案では常にリア
ルタイムで複数分割赤外線検出器の隣同士の比較
を基準にし、且つ、タイミングパルス、キヤリア
用パルスにより、妨害光及び外乱光の影響を受け
にくくできる。
(Effects of the invention) The effects of the invention are less susceptible to disturbance light including ECM. Conventional methods, whether active or passive, detect reflected light based on quantitative and temporal standards, so they are susceptible to interference regardless of whether it is CW, AM, or FM. By using the comparison between adjacent multi-divided infrared detectors as a reference, and by using timing pulses and carrier pulses, it is possible to reduce the influence of interference light and external disturbance light.

例えば、外乱光の強弱(夜と昼の差、妨害光)
があつても複数分割赤外線検出器の全体的な出力
レベルが変化するだけであり、分割内のレベル差
を出すには至らない。又、妨害光でレベル差を出
すに至るには、赤外線通過形フイルタの通過帯域
の赤外光で、複数分割赤外線検出器上に合焦さ
せ、更にキヤリア用パルスと同一の変調周波数を
もたなくてはならない。これでレベル差を出して
も設定部で設定した高度の合焦点でないと妨害に
はなり得ない。
For example, the strength of disturbance light (difference between night and day, interfering light)
Even if this happens, the overall output level of the multi-segmented infrared detector only changes, and it does not lead to a level difference within the splits. In addition, in order to create a level difference with interfering light, infrared light in the passband of an infrared passing filter is focused on a multi-segment infrared detector, and the modulation frequency is the same as that of the carrier pulse. Must-have. Even if you create a level difference with this, it will not cause interference unless the focus point is at the altitude set in the settings section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の信号系の実施例を示すブロツ
ク図、第2図は本考案の光学系の実施例を示す
図、第3図は本考案の動作を説明するためのタイ
ムチヤート図である。 1……投射レンズ、2……発光体、3……発光
体駆動回路、4……発光信号回路、5……同期回
路、6……クロツク回路、7……信号発生器、8
……受光レンズ、9……赤外線通過形フイルタ、
10……複数分割赤外線検出器、11……アナロ
グスイツチ回路、12……タイミング回路、13
……増幅回路、14……サンプルホールド回路、
15……アナログ・デイジタル変換回路、16…
…演算回路、17……距離設定部、18……発火
回路、19……伝爆部、20……電源回路、X…
…目標物、L1……赤外光、L2……反射光。
Fig. 1 is a block diagram showing an embodiment of the signal system of the invention, Fig. 2 is a diagram showing an embodiment of the optical system of the invention, and Fig. 3 is a time chart for explaining the operation of the invention. be. DESCRIPTION OF SYMBOLS 1...Projection lens, 2...Light emitter, 3...Light emitter drive circuit, 4...Light emission signal circuit, 5...Synchronization circuit, 6...Clock circuit, 7...Signal generator, 8
...Receiving lens, 9...Infrared passing filter,
10...Multi-divided infrared detector, 11...Analog switch circuit, 12...Timing circuit, 13
...Amplification circuit, 14...Sample and hold circuit,
15...Analog-digital conversion circuit, 16...
... Arithmetic circuit, 17 ... Distance setting section, 18 ... Ignition circuit, 19 ... Explosion section, 20 ... Power supply circuit, X ...
...Target, L 1 ... Infrared light, L 2 ... Reflected light.

Claims (1)

【実用新案登録請求の範囲】 (1) 投射レンズ、発光体よりなる発光部と受光レ
ンズ、複数分割赤外線検出器よりなる受光部と
を所定の光軸角度および間隔で配置し、前記複
数分割赤外線検出器の合焦状態により目標物と
前記発光部、受光部とが所定の位置関係に達し
たのを検出した際に発火動作を行うことを特徴
とした赤外線測距方式近接信管。 (2) クロツク回路のクロツク信号と同期回路の同
期信号とを発光信号回路に入力し、該発光信号
回路の出力信号により信号発生器の信号を発光
体駆動回路においてパルス変調し、該パルス変
調された発光信号により発光体を駆動し、前記
発光体が発光する赤外光を投射レンズを通して
目標物に投射する信号系および光学系を備え、
前記目標物からの反射光を受光レンズで受光
し、赤外線通過形フイルタを介して、発光体と
所定距離離した3以上n個(nは整数)に分割
された複数分割赤外線検出器で検出し、該検出
信号とタイミング回路のタイミング信号とをア
ナログスイツチ回路を介して得た信号を増幅回
路で増幅したのち、サンプルホールド回路によ
りサンプル化し、該サンプル信号をアナログ・
デイジタル変換回路によつてデイジタル信号と
し、該デイジタル信号と距離設定部信号とを演
算回路で処理し、前記デイジタル信号と距離設
定部信号とが合致したとき発火回路に発火信号
を送出することにより、伝爆部を伝爆させる光
学系および信号系とを備えてなる実用新案登録
請求の範囲第1項記載の赤外線測距方式近接信
管。
[Claims for Utility Model Registration] (1) A light emitting section consisting of a projection lens and a light emitter, a light receiving lens and a light receiving section consisting of a multi-segmented infrared detector are arranged at a predetermined optical axis angle and at a predetermined interval, and the multi-segmented infrared An infrared distance measuring proximity fuze, characterized in that a firing operation is performed when it is detected that a target object, the light emitting section, and the light receiving section have reached a predetermined positional relationship based on a focused state of a detector. (2) The clock signal of the clock circuit and the synchronization signal of the synchronous circuit are input to the light emission signal circuit, and the output signal of the light emission signal circuit pulse-modulates the signal of the signal generator in the light emitter drive circuit. a signal system and an optical system that drive a light emitter with a light emission signal and project infrared light emitted by the light emitter onto a target through a projection lens;
The reflected light from the target object is received by a light receiving lens, and detected by a multi-segmented infrared detector divided into 3 or more n pieces (n is an integer) separated from the light emitter by a predetermined distance via an infrared passing filter. , the detection signal and the timing signal of the timing circuit are obtained through an analog switch circuit, which is amplified by an amplifier circuit, then sampled by a sample hold circuit, and the sampled signal is converted into an analog signal.
By converting the digital signal into a digital signal by a digital conversion circuit, processing the digital signal and the distance setting part signal in an arithmetic circuit, and sending the ignition signal to the ignition circuit when the digital signal and the distance setting part signal match, An infrared distance measuring proximity fuse according to claim 1, which comprises an optical system and a signal system for detonating a detonating part.
JP7213686U 1986-05-13 1986-05-13 Expired JPH0412399Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7213686U JPH0412399Y2 (en) 1986-05-13 1986-05-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7213686U JPH0412399Y2 (en) 1986-05-13 1986-05-13

Publications (2)

Publication Number Publication Date
JPS62185400U JPS62185400U (en) 1987-11-25
JPH0412399Y2 true JPH0412399Y2 (en) 1992-03-25

Family

ID=30915322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7213686U Expired JPH0412399Y2 (en) 1986-05-13 1986-05-13

Country Status (1)

Country Link
JP (1) JPH0412399Y2 (en)

Also Published As

Publication number Publication date
JPS62185400U (en) 1987-11-25

Similar Documents

Publication Publication Date Title
US3781111A (en) Short range laser obstacle detector
US4419012A (en) Position measuring system
US4129780A (en) Active imaging system using time programmed dwell
GB1380649A (en) Apparatus for distance measurement
GB1379079A (en) Method and apparatus for indicating the passing of a projectile through an area in space
US4954861A (en) Method of driving multiple flash rangefinder
US4151415A (en) Active imaging system using variable gate width time programmed dwell
JPS5449147A (en) Recorder
US4027837A (en) Optical tracking link utilizing pulse burst modulation for solid state missile beacons
US4068124A (en) Wire obstacle warning system
US3741111A (en) Optical target sensor
EP0525822B1 (en) A receiver
US4590375A (en) Apparatus for detection of an enemy's infrared camera
JPH0412399Y2 (en)
GB1339955A (en) Apparatus for detecting an object by reflection of radiation
US20120069321A1 (en) Imaging device and circuit for same
US4072861A (en) Optical tracking system
US4432511A (en) Beam-rider guidance using two overlapping reticle discs
US4258360A (en) Optical smoke detector
US3293980A (en) Device for detecting the angular position of a luminous source
US4156816A (en) Optical fire-detector
US3217592A (en) Checking device for optical altimeters and similar devices
JPH07167954A (en) Distance measuring device
GB1497214A (en) Visibility measuring means
JPH01277724A (en) Target detector