JPH04123758A - Manufacture of carbon electrode - Google Patents

Manufacture of carbon electrode

Info

Publication number
JPH04123758A
JPH04123758A JP2244970A JP24497090A JPH04123758A JP H04123758 A JPH04123758 A JP H04123758A JP 2244970 A JP2244970 A JP 2244970A JP 24497090 A JP24497090 A JP 24497090A JP H04123758 A JPH04123758 A JP H04123758A
Authority
JP
Japan
Prior art keywords
carbon body
substrate
electrode
carbon
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2244970A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Tajima
善光 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2244970A priority Critical patent/JPH04123758A/en
Publication of JPH04123758A publication Critical patent/JPH04123758A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To manufacture a carbon electrode which has high strength and for which various kinds of substrates for the purposes are usable by forming a carbon body on a substrate by vapor-phase thermal decomposition, and forming a conductive material on the thermally decomposed carbon body from which the substrate is removed. CONSTITUTION:A carbon body 12 is formed on a foamed nickel 11, etc., by vapor-phase thermal decomposition of hydrocarbons such as liquid benzene, etc. Next, the substrate 11 is dissolved and removed and a conductive substrate material is formed on the carbon body 12 to give a carbon body electrode having improved strength, formability, and flexibility since the substrate 11 which is exposed to high temperature and becomes fragile is not used.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はアルカリ金属イオンを電気化学的方法で可逆的
に出し入れすることのできる炭素体電極の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a carbon electrode capable of reversibly introducing and extracting alkali metal ions by an electrochemical method.

〈従来の技術〉 特定構造の平面網状六綽環構造を有する炭素体はアルカ
リ金属イオンを電気化学的方法で可逆的に出し入れする
;ことがデきるため、非水電解液型二次電池用負極とし
て用いられる(例えば特開昭63−13282 )。
<Prior art> A carbon body having a specific planar network hexagonal ring structure can reversibly take in and out alkali metal ions using an electrochemical method; (For example, Japanese Patent Application Laid-Open No. 63-13282).

そして、よシ好ましい形態として導電性基板上へ熱分解
炭素を気相で堆積して得られる炭素体電極が上記目的で
用いられる(例えば、特開昭63−102167 )。
As a particularly preferred form, a carbon electrode obtained by depositing pyrolytic carbon on a conductive substrate in a vapor phase is used for the above purpose (for example, Japanese Patent Laid-Open No. 102167/1983).

〈発明が解決しようとする課題〉 上記従来の炭素体電極は、炭化水素類の原料ガスが供給
される反応容器中に配置した基体上に、上記炭化水素類
の気相熱分解により炭素体を堆積して製造されるので、
基体が例えば800℃というような高温にさらされるな
どして基体強度が低下したり、高温に耐える必要から基
体材質が限定されるといったような問題があった。
<Problems to be Solved by the Invention> The above-mentioned conventional carbon body electrode produces carbon bodies by gas-phase thermal decomposition of the hydrocarbons on a substrate placed in a reaction vessel to which a raw material gas of hydrocarbons is supplied. Because it is produced by depositing
There have been problems in that the strength of the base is reduced when the base is exposed to high temperatures, such as 800° C., and that the material of the base is limited due to the need to withstand high temperatures.

そこで、本発明は上記高温工程に左右されることなく、
強度に優れかつ用途に応じて種々の基体を用いることの
できる炭素体電極の製造方法を提供することを目的とす
る。
Therefore, the present invention is not influenced by the above-mentioned high temperature process,
It is an object of the present invention to provide a method for manufacturing a carbon electrode that has excellent strength and can use various substrates depending on the purpose.

く課題を解決するための手段〉 本発明の炭素体電極の製造方法は、炭化水素類を気相で
熱分解して基体上に熱分解炭素体を形成し、上記基体を
上記熱分解炭素体よシ取り除き、上記基体の取り除かれ
た熱分解炭素体上に導電性材料を形成することを特徴と
する。
Means for Solving the Problems> The method for producing a carbon electrode of the present invention comprises thermally decomposing hydrocarbons in a gas phase to form a pyrolytic carbon body on a substrate, and then attaching the substrate to the pyrolytic carbon body. The method is characterized in that a conductive material is formed on the pyrolytic carbon body from which the base body is removed.

上記炭化水素類の気相熱分解は、好ましくは、炭化水素
類の原料ガスが供給される反応容器に基体を配置し、1
500℃以下の温度で上記原料ガスを熱分解することに
より行われる。
The gas phase pyrolysis of hydrocarbons is preferably carried out by placing a substrate in a reaction vessel to which raw material gas of hydrocarbons is supplied;
This is carried out by thermally decomposing the raw material gas at a temperature of 500° C. or lower.

基体を取り除くには、蒸発、昇華、熱分解等の物理的手
段又は溶解、酸化物としたのちの昇華等の化学的手段を
用いることができる。
To remove the substrate, physical means such as evaporation, sublimation, thermal decomposition, etc., or chemical means such as dissolution, formation of an oxide, and subsequent sublimation can be used.

上記導電性材料は、無電解メツキ、蒸着、電解重合等の
方法により上記熱分解炭素体上に導電性と強度を確保す
るのに充分な量を形成する。
The conductive material is formed on the pyrolytic carbon body in an amount sufficient to ensure conductivity and strength by a method such as electroless plating, vapor deposition, or electrolytic polymerization.

〈作用〉 本発明の製造方法では、炭化水素類を気相で熱分解して
基体上に熱分解炭素体を形成することで、該熱分解炭素
体はアルカリ金属イオンを電気化学的方法で可逆的に出
し入れすることのできる構造を有するようになる。そし
て、上記基体を取り除くことで、熱履歴を経て強度の低
下した基体が除かれる。そして、基体の除かれた熱分解
炭素体よに導電性材料を形成することにより、熱分解炭
素体が機械的に補強・支持されるとともに、熱分解炭素
体各部の電気的接続状態が良好に保たれる。
<Function> In the production method of the present invention, hydrocarbons are thermally decomposed in the gas phase to form a pyrolytic carbon body on a substrate, and the pyrolytic carbon body reversibly absorbs alkali metal ions by an electrochemical method. It has a structure that allows it to be put in and taken out at any time. By removing the base, the base whose strength has decreased due to thermal history is removed. By forming a conductive material on the pyrolytic carbon body from which the base has been removed, the pyrolytic carbon body is mechanically reinforced and supported, and the electrical connection between each part of the pyrolytic carbon body is improved. It is maintained.

〈実施例〉 以下実施例により本発明を説明する。<Example> The present invention will be explained below with reference to Examples.

まず、第2図に示す反応装置を用いて炭素体を作製する
First, a carbon body is produced using the reaction apparatus shown in FIG.

一旦、脱水処理を施し、さらに真空移送による蒸留精製
操作を行なったベンゼンを収納した容器1内にArガス
供給器2よυArガスを供給し、ベンゼンのパズルを行
ない、そこで気化したベンゼン蒸気をパイレックス製ガ
ラス管3を介し、石英製反応管4へArガスと共に給送
した。この際容器1をベンゼンの蒸気による吸熱分だけ
加熱することにより温度を一定に保ち、又、ニードル弁
5.6によりベンゼン量を最適化した。
υAr gas is supplied from the Ar gas supply device 2 into the container 1 containing the benzene that has been dehydrated and further subjected to distillation purification operation by vacuum transfer, a benzene puzzle is performed, and the vaporized benzene vapor is transferred to Pyrex. It was supplied together with Ar gas to a quartz reaction tube 4 through a glass tube 3. At this time, the temperature was kept constant by heating the container 1 by the amount of heat absorbed by the benzene vapor, and the amount of benzene was optimized using the needle valve 5.6.

反応管4には発泡状ニッケル11からなる直径15■φ
、厚さ1.5″の三次元構造体(基体)の載置されたホ
ルダー7が設置されており、反応管4の外周囲には加熱
炉8が周設されている。この加熱炉8によシホルダー7
及び基体を約1000℃に維持し、パイレックス製ガラ
ス管3より供給されるベンゼンを熱分解し、約60分か
けて三次元構造体に炭素体12を堆積させた。熱分解反
応後に反応管4内に残留するガスは排気設備9,10を
通して系外に除去した。
The reaction tube 4 has a diameter of 15mm made of foamed nickel 11.
, a holder 7 on which a three-dimensional structure (substrate) with a thickness of 1.5'' is placed is installed, and a heating furnace 8 is installed around the outer periphery of the reaction tube 4. Yoshi holder 7
The substrate was maintained at about 1000° C., benzene supplied from the Pyrex glass tube 3 was thermally decomposed, and the carbon body 12 was deposited on the three-dimensional structure over about 60 minutes. The gas remaining in the reaction tube 4 after the thermal decomposition reaction was removed from the system through exhaust equipment 9 and 10.

ここまでの過程で得られる炭素体電極は、従来方法であ
る、例えば、特開昭63−13282 、特開昭63−
102167等と同様の方法で得ることができる炭素体
電極であり、電極基板となるニッケル三次元構造体は約
1000℃、1hと言う熱履歴を経ている。
The carbon electrode obtained through the steps up to this point can be obtained using conventional methods, for example, JP-A-63-13282, JP-A-63-
It is a carbon electrode that can be obtained by the same method as No. 102167, etc., and the nickel three-dimensional structure serving as the electrode substrate has undergone a thermal history of about 1000° C. for 1 hour.

炭素体120作製方法として液体ベンゼンを出発原料と
して用いたが、本発明により提供される炭素体材料はこ
れに限定されるものではない。その他の方法としてはプ
ロパン等のガスを出発原料とする方法、沸点近い温度、
昇華点以上の温度に原料を保持し、自然蒸発物を出発原
料とする方法等が有効である。
Although liquid benzene was used as a starting material in the method for producing the carbon body 120, the carbon body material provided by the present invention is not limited thereto. Other methods include using a gas such as propane as a starting material, using a temperature close to the boiling point,
Effective methods include maintaining the raw material at a temperature above the sublimation point and using naturally evaporated material as the starting material.

次に、基体である発泡状ニッケル11を溶解除去する。Next, the foamed nickel 11 serving as the base is dissolved and removed.

この溶解には、0.1MHcI!水溶液を用い、発泡状
ニッケル11の溶解除去後に溶解せずに残った炭素体1
2を塩酸酸性水溶液から取り出し、充分水洗し、塩酸根
を除去する。
For this lysis, 0.1 MHcI! Using an aqueous solution, the carbon body 1 that remained undissolved after dissolving and removing the foamed nickel 11
2 from the hydrochloric acid acidic aqueous solution and thoroughly washed with water to remove the hydrochloric acid radicals.

そして、塩化アンモニウム、ホウ酸を含んだ塩化ニッケ
ル水溶液中に上記炭素体12を浸没して陰極とし、ニー
ツケル板の陽極を用いてこの炭素体12上に電解ニッケ
ルメッキを施し、ニッケル膜13を形成する。
Then, the carbon body 12 is immersed in a nickel chloride aqueous solution containing ammonium chloride and boric acid to serve as a cathode, and electrolytic nickel plating is applied to the carbon body 12 using a Nietzkel plate anode to form a nickel film 13. do.

こうして本発明による炭素体電極が得られる。In this way, a carbon electrode according to the present invention is obtained.

得られた炭素体電極は充分に水洗し、乾燥器を用いて乾
燥して、メツキ溶液残根及び水分を取り除いてLi二次
電池用負極として用いた。
The obtained carbon electrode was thoroughly washed with water and dried using a drier to remove the plating solution residue and water, and used as a negative electrode for a Li secondary battery.

第1図は炭素体電極の構造を説明する図であり、同図(
a)は上記実施例によシ得られた本発明による炭素体電
極の部分断面図、同図(b)は発泡ニッケル上に炭素体
を形成しただけの炭素体電極の部分断面図である。発泡
ニッケル11上に炭素体12を形成した状態(同図(b
))では、長時間高温に晒されて発泡ニッケル11がも
ろくなっており、また発泡ニッケル11の表面が剥離し
かけてこの上に炭素体12が形成されているために、炭
素体12には発泡ニッケル11本体から浮き上がった部
分が存在している。これに対し、ニッケル膜13を炭素
体12にメツキにより形成すると、炭素体12はニッケ
ル膜13で完全に覆われ(同図(a) ) 、また柔軟
性を有するニッケル膜13が形成される。
FIG. 1 is a diagram explaining the structure of a carbon electrode.
Figure a) is a partial cross-sectional view of a carbon body electrode according to the present invention obtained in the above example, and figure (b) is a partial cross-sectional view of a carbon body electrode in which a carbon body is simply formed on foamed nickel. The state in which the carbon body 12 is formed on the foamed nickel 11 (same figure (b)
)), the foamed nickel 11 has become brittle due to being exposed to high temperatures for a long time, and the surface of the foamed nickel 11 is about to peel off and the carbon body 12 is formed on top of it. There is a part that stands out from the Nickel 11 body. On the other hand, when the nickel film 13 is formed on the carbon body 12 by plating, the carbon body 12 is completely covered with the nickel film 13 (FIG. 2(a)), and the nickel film 13 having flexibility is formed.

以上の例では、熱分解炭素体上への導電性材料の形成に
電解ニッケルメッキを用いたが、蒸着装置を用いて蒸着
によりニッケル膜を形成する方法や、電解酸化重合によ
りポリアニリン膜を形成する方法等導電性材料の形成に
は種々の材料と方法を用いることができる。
In the above example, electrolytic nickel plating was used to form the conductive material on the pyrolytic carbon body, but there are other methods such as forming a nickel film by vapor deposition using a vapor deposition device, or forming a polyaniline film by electrolytic oxidative polymerization. Various materials and methods can be used to form the conductive material.

〈発明の効果〉 本発明の炭素体電極の製造方法によれば、基体上に熱分
解炭素体を形成してこれを電極としてそのまま利用する
ものと比べ、電極の強度が向上し電極の成形性能、フレ
キシビリティ−が向上するまた、熱分解炭素体各部の集
電状態が良好となり十分に熱分解炭素体自体の性能を引
き出すことが出来て電極の電気的特性が向上する。さら
に、電極基体としての限定が解除されるため、有機導電
性材料等の軽量材料を電極基板として採用できるように
なるため、電極の軽量化を図ることができる0 そして、本発明方法により得られる炭素体電極を用いて
電池を作製することで、電極の破損等による電池の特性
劣化を防ぐことができ、電池の長寿命化が可能となる。
<Effects of the Invention> According to the method for producing a carbon body electrode of the present invention, the strength of the electrode is improved and the molding performance of the electrode is improved, compared to the method of forming a pyrolytic carbon body on a substrate and using this as an electrode as it is. In addition, the current collection state of each part of the pyrolytic carbon body is improved, and the performance of the pyrolytic carbon body itself can be fully brought out, and the electrical characteristics of the electrode are improved. Furthermore, since the limitation on the electrode substrate is lifted, lightweight materials such as organic conductive materials can be used as the electrode substrate, and the weight of the electrode can be reduced. By producing a battery using carbon electrodes, it is possible to prevent deterioration of battery characteristics due to damage to the electrodes, etc., and it is possible to extend the life of the battery.

また、導電性材料として有機導電性材料等の軽量材料を
用いることで、軽量でエネルギー密度の高い電池の提供
が可能となる。
Furthermore, by using a lightweight material such as an organic conductive material as the conductive material, it is possible to provide a battery that is lightweight and has high energy density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭素体電極の構造を説明する図、第2図は実施
例で用いた反応装置を示す図である。 11・パ発泡ニッケル、12・・・炭素体、13・・・
ニッケル膜
FIG. 1 is a diagram illustrating the structure of a carbon electrode, and FIG. 2 is a diagram showing a reaction apparatus used in Examples. 11. Nickel foam, 12. Carbon body, 13.
nickel film

Claims (1)

【特許請求の範囲】[Claims] 1、炭化水素類を気相で熱分解して基体上に熱分解炭素
体を形成し、上記基体を上記熱分解炭素体より取り除き
、上記基体の取り除かれた熱分解炭素体上に導電性材料
を形成することを特徴とする炭素体電極の製造方法。
1. Pyrolytic carbon is formed on a substrate by thermally decomposing hydrocarbons in the gas phase, the substrate is removed from the pyrolytic carbon, and a conductive material is placed on the pyrolytic carbon from which the substrate has been removed. 1. A method for manufacturing a carbon electrode, the method comprising: forming a carbon electrode;
JP2244970A 1990-09-13 1990-09-13 Manufacture of carbon electrode Pending JPH04123758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2244970A JPH04123758A (en) 1990-09-13 1990-09-13 Manufacture of carbon electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2244970A JPH04123758A (en) 1990-09-13 1990-09-13 Manufacture of carbon electrode

Publications (1)

Publication Number Publication Date
JPH04123758A true JPH04123758A (en) 1992-04-23

Family

ID=17126662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2244970A Pending JPH04123758A (en) 1990-09-13 1990-09-13 Manufacture of carbon electrode

Country Status (1)

Country Link
JP (1) JPH04123758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0777288A1 (en) * 1995-11-30 1997-06-04 Asahi Glass Company Ltd. Non-aqueous electrolyte type secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0777288A1 (en) * 1995-11-30 1997-06-04 Asahi Glass Company Ltd. Non-aqueous electrolyte type secondary battery

Similar Documents

Publication Publication Date Title
US9691612B2 (en) Process for preparing graphene on a SiC substrate based on metal film-assisted annealing
WO2018120601A1 (en) Preparation method for self-supporting thin film of graphene-enhanced three-dimensional porous carbon
AU2021225124A1 (en) Graphene synthesis
CN108660430B (en) Process method for quasi-direct growth of large-area graphene on oxide insulating substrate
US5618615A (en) Graphite layer material
CN108285139B (en) Preparation method and application of nitrogen-doped graphene carbon material
CN110423017A (en) Graphene coats light hollow bead particles and preparation method completely
CN106082178B (en) A method of preparing graphene film on insulating body
JPH04123758A (en) Manufacture of carbon electrode
CN103359713A (en) Preparation method of graphene
CN113106417A (en) Preparation method of hexagonal boron nitride film and hexagonal boron nitride film
JPS63124363A (en) Manufacture of carbon electrode
JPH0665028B2 (en) Method for manufacturing battery electrode
JPH01307157A (en) Manufacture of electrode for battery
CN102017262A (en) Inorganic ion conductive membrane, fuel cell containing the same and manufacturing method thereof
CN103108998A (en) Method for producing aluminum structure, and aluminum structure
JP4302822B2 (en) Carbon-based composite structure and manufacturing method thereof
CN111591984A (en) Parylene-based graphene transfer method
JPS61119716A (en) Carbon fiber having large surface area, production thereof, and catalyst carrier made of said carbon fiber
JPS63213258A (en) Electrode
CN217895149U (en) Quartz crucible and graphene manufacturing device
JPH01157056A (en) Electrode for nonaqueous battery and its manufacture
JP2584753B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
KR100511163B1 (en) Method for preparing carbon nano materials electrode for use in producing a flow through capacitor by chemical vapor deposition
JPS59207820A (en) Highly electrically conductive carbon based heat-treated material