JPH04123535A - Band split type voice coding device - Google Patents

Band split type voice coding device

Info

Publication number
JPH04123535A
JPH04123535A JP2245047A JP24504790A JPH04123535A JP H04123535 A JPH04123535 A JP H04123535A JP 2245047 A JP2245047 A JP 2245047A JP 24504790 A JP24504790 A JP 24504790A JP H04123535 A JPH04123535 A JP H04123535A
Authority
JP
Japan
Prior art keywords
bit
bit allocation
allocation
allocated
bits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2245047A
Other languages
Japanese (ja)
Inventor
Kazumi Sato
一美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2245047A priority Critical patent/JPH04123535A/en
Publication of JPH04123535A publication Critical patent/JPH04123535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Abstract

PURPOSE:To realize the voice coding device in which quantization bit allocation number is not zero even when power is concentrated on low frequencies or voice signal power is in existence even at high frequencies by providing a specific high frequency bit allocation discrimination section and a bit re-assignment section respectively in the voice coding device. CONSTITUTION:A high frequency bit allocation discrimination section 2 discriminates whether or not a bit, number allocated at high frequencies of a high band is 0 as to a quantization bit number obtained and allocated by a bit allocation section 1 in terms of a coding bit rate and a bit allocation number is used as a quantity bit allocation number as it is when not 0. When 0, a bit re-allocation section 3 applies bit re-allocation at a bit rate higher than the coding bit rate in which a bit number used for quantization of one frame. Thus, when voice signal power exists even in high frequencies, the bit allocation number is not 0 in the high frequencies and in this case, one bit is allocated, for example, and remaining bits are allocated to other frequencies. Thus, even when power is concentrated on low frequencies or voice signal power is in existence in also high frequencies, the quantization bit number is not 0 and no unclear voice is caused.

Description

【発明の詳細な説明】 〔概 要〕 ビット割当部にて、音声信号の1フレームの残差信号の
量子化に使用出来るビット数を1フレームのサンプル数
で割った平均ビット割当数を求め、求めた平均ビット割
当数を、入力音声信号を複数の周波数帯域に分割した各
帯域の予測残差信号電力の大きさに応じて、各周波数帯
域毎に割当て、各周波数帯域では、割当られたビット数
で量子化をする帯域分割型音声符号化装置に関し、低域
に電力が集中していても、高域にも音声信号電力がある
場合は、量子化ビット割当数をOとしない帯域分割型音
声符号化装置の提供を目的とし、 該ビット割当部の出力側に、 該ビット割当部で、周波数の高い帯域の高域に割当たビ
ット数がOかどうかを判定し、Oでなければその儘のビ
ット割当数を量子化のビット割当数としOであれば再ビ
ット割当部にて処理させる高域ビット割当判定部と、 0であれば、符号化ビットレートより高いビットレート
で再ビット割当を行う該再ピント割当部とを設けた構成
とする。
[Detailed Description of the Invention] [Summary] In the bit allocation unit, the average number of bit allocation is calculated by dividing the number of bits that can be used for quantizing the residual signal of one frame of the audio signal by the number of samples of one frame, and The obtained average bit allocation number is allocated to each frequency band according to the magnitude of the predicted residual signal power in each band where the input audio signal is divided into multiple frequency bands, and in each frequency band, the allocated bit number is Regarding a band division type audio encoding device that performs quantization by number, even if the power is concentrated in the low frequency range, if there is audio signal power in the high frequency range, the band division type audio coding device that does not set the number of quantization bits allocated to O is used. For the purpose of providing a speech encoding device, on the output side of the bit allocation unit, it is determined whether the number of bits allocated to the high frequency band in the bit allocation unit is O, and if it is not O, the number of bits is determined to be O. A high-frequency bit allocation determination unit that uses the actual bit allocation number as the bit allocation number for quantization, and if it is O, it is processed by the bit re-allocation unit; and if it is 0, it is re-allocated at a bit rate higher than the encoding bit rate. The configuration includes a refocusing unit that performs the refocus assignment.

〔産業上の利用分野] 本発明は、ビット割当部にて、音声信号の1フレームの
残差信号の量子化に使用出来るビット数を1フレームの
サンプル数で割った平均ビット割当数を求め、求めた平
均ピント割当数を、入力音声信号を複数の周波数帯域に
分割した各帯域の予測残差信号電力の大きさに応じて、
各周波数帯域毎に割当て、 各周波数帯域では、割当られたビット数で量子化をする
帯域分割型音声符号化装置の改良に関する。
[Industrial Application Field] The present invention calculates the average bit allocation number by dividing the number of bits that can be used for quantizing the residual signal of one frame of an audio signal by the number of samples of one frame in a bit allocation unit, The obtained average focus allocation number is divided into multiple frequency bands according to the magnitude of the predicted residual signal power of each band.
The present invention relates to an improvement in a band division type speech encoding device that allocates each frequency band and performs quantization using the allocated number of bits in each frequency band.

〔従来の技術] 第5図は従来例の帯域分割型音声符号化装置のブロック
図、第6図は第5図のビット割当部の8Kbpsビット
割当部の処理のフローチャート、第7図は入力音声信号
と8Kbps符号化処理した場合のスペクトル分析例を
示す図である。
[Prior Art] Fig. 5 is a block diagram of a conventional band division type speech encoding device, Fig. 6 is a flowchart of the processing of the 8 Kbps bit allocation unit of the bit allocation unit in Fig. 5, and Fig. 7 is a block diagram of a conventional band division type speech encoding device. FIG. 3 is a diagram showing an example of spectrum analysis when a signal is subjected to 8Kbps encoding processing.

第5図は音声帯域を帯域分割フィルタ20.21にて高
域、中域、低域と3分割し、高域、中域低域毎に、予測
符号器22,23.24にて予測符号化を行い、求めた
残差コードを多重化部25にて多重化して伝送コードと
して伝送するものである。
In FIG. 5, the audio band is divided into three parts, high, middle, and low, by a band division filter 20.21, and predictive encoders 22, 23, and 24 are used to generate predictive codes for each high, middle, and low band. The resulting residual code is multiplexed by a multiplexer 25 and transmitted as a transmission code.

この高域、中域、低域毎の予測符号化は、一定のフレー
ム長により行われ、又ピッチ周期を分割した部分区間に
割当られたビット数で量子化されるが、以下はピッチ周
期を4分割した部分区間数4の場合を例にとりビット割
当につき説明する。
This predictive coding for each high, middle, and low band is performed using a fixed frame length, and is quantized using the number of bits allocated to subintervals obtained by dividing the pitch period. Bit allocation will be explained by taking as an example the case where the number of partial sections divided into four is 4.

ビット割当部1の予測残差信号算出部11にて、高域、
中域、低域の予測残差信号を算出し、予測残差信号電力
算出部12に渡し、予測残差信号算出部出部12にて、
高域、中域、低域の予測残差信号の電力を算出し、8K
bpsのビット割当部13に渡す。
In the prediction residual signal calculation unit 11 of the bit allocation unit 1, high frequency,
The prediction residual signals of the middle and low bands are calculated, passed to the prediction residual signal power calculation section 12, and the prediction residual signal calculation section output section 12,
Calculate the power of the predicted residual signal for high, middle, and low frequencies, and
The data is passed to the bps bit allocation unit 13.

8Kbp sのビット割当部13では、第6図のステッ
プ1にて、伝送レート8Kbpsの場合のデータの1サ
ンプル当たりの平均ビット割当数(音声信号の1フレー
ムの残差信号の量子化に使用出来るビット数を1フレー
ムのサンプル数で割ったもの)Rcmを、高域、中域、
低域の予測残差信号電力に応じて、8Kbpsの周波数
軸上の高域、中域、低域に割当ててビット割当数とする
In the 8Kbps bit allocation unit 13, in step 1 of FIG. The number of bits divided by the number of samples in one frame) Rcm is calculated by dividing the number of bits by the number of samples in one frame.
The bit allocation number is determined by allocating to the high, middle, and low bands on the frequency axis of 8 Kbps according to the predicted residual signal power of the low band.

そして、ステップ2にて、求めた高域、中域。Then, in step 2, find the high range and mid range.

低域のビット割当数を、夫々4つの部分区間の部分区間
残差信号電力に応じて、各部分区間に割当てビット割当
数とし、割当た数が整数になるように補正数Drlにて
補正して、8Kbp sの時間軸上のビット割当数とし
、予測符号器22,23゜24の量子化器にて量子化し
ている。
The number of bits allocated to the low frequency band is set as the number of bits allocated to each subinterval according to the subinterval residual signal power of each of the four subintervals, and the number of bits allocated is corrected by the correction number Drl so that the allocated number becomes an integer. The number of bits allocated on the time axis is 8 Kbps, and quantization is performed by the quantizers of the predictive encoders 22, 23 and 24.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、高域、中域、低域の予測残差信号電力に
応じて、量子化ピント数を割当ている為に、音声信号は
一般的に低域に電力が集中するが、特に低域に電力が集
中している場合は、高域にも音声信号電力があるに関わ
らず、ビット割当数が全部分区間共0になる場合が生ず
る。
However, because the number of quantization focuses is assigned according to the predicted residual signal power of the high, middle, and low frequencies, the power of the audio signal is generally concentrated in the low range; is concentrated, the number of bits allocated may become 0 for all subintervals, regardless of the presence of audio signal power in the high frequency range.

このような場合には、第7図(A)に示す、入力音声信
号のスペクトルと、(B)に示す、この音声信号を8K
bp s符号化処理した場合のスペクトルとを比較する
と判る如く高域成分が欠如する為に、こもった状態の声
となる問題点がある。
In such a case, the spectrum of the input audio signal shown in FIG. 7(A) and the spectrum of this audio signal shown in FIG.
As can be seen by comparing the spectrum with the bps encoding process, there is a problem in that the voice is muffled due to the lack of high frequency components.

本発明は、低域に電力が集中していても、高域にも音声
信号電力がある場合は、量子化ビット割当数をOとしな
い帯域分割型音声符号化装置の提供を目的としている。
An object of the present invention is to provide a band division type audio encoding device in which the number of quantization bits allocated is not set to O even if the power is concentrated in the low frequency range but there is also audio signal power in the high frequency range.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理ブロック図である。 FIG. 1 is a block diagram of the principle of the present invention.

第1図に示す如く、ビット割当部1にて、音声信号の1
フレームの残差信号の量子化に使用出来るビット数を1
フレームのサンプル数で割った平均ビット割当数を求め
、求めた平均ビット割当数を、入力音声信号を複数の周
波数帯域に分割した各帯域の予測残差信号電力の大きさ
に応じて、各周波数帯域毎に割当て、 各周波数帯域では、割当られたビット数で量子化をする
帯域分割型音声符号化装置において、該ビット割当部1
の出力側に、 該ビット割当部1で周波数の高い帯域の高域に割当たビ
ット数がOかどうかを判定し、0でなければその儘のビ
ット割当数を量子化ビット割当数とし、0であれば再ビ
ット割当部3にて処理させる高域ビット割当判定部2と
、 0であれば、符号化ビットレートより高いビットレート
で再ビット割当を行う該再ビット割当部3とを設ける。
As shown in FIG. 1, in the bit allocation section 1, one
The number of bits that can be used for quantizing the residual signal of a frame is set to 1.
The average number of bit allocations is calculated by dividing the number of samples in the frame, and the calculated average number of bit allocations is divided into multiple frequency bands.The input audio signal is divided into multiple frequency bands. In a band division type audio encoding device that allocates to each frequency band and performs quantization using the allocated number of bits in each frequency band, the bit allocation unit 1
On the output side of the bit allocation unit 1, it is determined whether the number of bits allocated to the high frequency band is O, and if it is not 0, the bit allocation is set as the quantization bit allocation number, and If it is 0, there is provided a high-frequency bit allocation determination unit 2 that causes the bit re-allocation unit 3 to perform the process, and if it is 0, a bit re-allocation unit 3 that performs bit re-allocation at a bit rate higher than the encoding bit rate.

〔作 用〕[For production]

本発明によれば、ビット割当部1で、符号化ビットレー
トで求め割当だ量子化ビット数につき、高域ビット割当
判定部2にて、周波数の高い帯域の高域に割当たビット
数がOかどうかを判定し、0でなければその儘のビ・7
ト割当数を量子化ビット割当数とし、0であれば再ビッ
ト割当部3にて、1フレームの量子化に使用出来るビッ
ト数が多くなる符号化ビットレートより高いビットレー
トで再ビット割当を行うので、高域にも音声信号電力が
ある場合は、高域に対しビット割当数が0となることは
なく、この場合は例えば1ビット割当て、残りを、他の
領域に割当るようにする。
According to the present invention, for the number of quantization bits determined and allocated by the bit allocation unit 1 based on the encoding bit rate, the high-frequency bit allocation determination unit 2 determines that the number of bits allocated to the high frequency band is O. Determine whether or not, and if it is not 0, then the value of Bi-7
The number of bits to be allocated is set as the number of quantization bits to be allocated, and if it is 0, the bit re-allocation unit 3 re-allocates bits at a bit rate higher than the encoding bit rate, which increases the number of bits that can be used for quantization of one frame. Therefore, if there is audio signal power in the high frequency range as well, the number of bits allocated to the high frequency range will not be 0. In this case, for example, 1 bit will be allocated and the rest will be allocated to other areas.

従って、低域に電力が集中していても、高域にも音声信
号電力がある場合は、量子化ビット割当数が0とならず
、声がこもったようにならなくなる。
Therefore, even if the power is concentrated in the low frequency range, if there is also audio signal power in the high frequency range, the number of quantization bits allocated will not be 0, and the voice will not sound muffled.

〔実施例〕〔Example〕

第2図は本発明の実施例の帯域分割型音声符号化装置の
ブロック図、第3図は第2図のビット割当部の8Kbp
sビット割当部以降の処理のフローチャート、第4図は
高域にての量子化ビット割当例を示す図である。
FIG. 2 is a block diagram of a band division type speech encoding device according to an embodiment of the present invention, and FIG. 3 is a block diagram of the 8Kbp bit allocation section of FIG.
FIG. 4 is a flowchart of the processing after the s bit allocation section, and is a diagram showing an example of quantization bit allocation in the high frequency range.

第2図で第5図の従来例と異なる点は、ビット割当部1
0として、ビット割当部1に、高域ビット割当判定部2
と再ビット割当部3を追加した点であるので、この異な
る点を中心に第3図を用い以下説明する。
The difference in FIG. 2 from the conventional example in FIG. 5 is that the bit allocation unit 1
0, the bit allocation unit 1 and the high frequency bit allocation determination unit 2
Since this is the addition of the bit re-allocation section 3, this different point will be explained below with reference to FIG.

第3図のステップ2迄は、ビット割当部1の処理を説明
した第6図のステップ2迄、と同じなので、ステップ3
から説明する。
The steps up to step 2 in FIG. 3 are the same as up to step 2 in FIG.
I will explain from.

第2図の高域ビット割当判定部2では、第3図のステッ
プ3にて、ステップ2で求めた、高域の全部分区間への
ビット割当がOかを判定し、0でなければその侭量子化
のビット割当とし、0であれば、第2図の再ビット割当
部3の16Kbp sビット割当部14に進み、第3図
のステップ4で、伝送レー) 16Kbp sの場合の
データの1サンプル当たりの平均ビット割当数RCI&
を、高域。
In step 3 of FIG. 3, the high-frequency bit allocation determination unit 2 in FIG. If the bit allocation is 0, the process proceeds to the 16 Kbps bit allocation unit 14 of the bit re-allocation unit 3 in FIG. 2, and in step 4 of FIG. Average number of bits allocated per sample RCI&
, high range.

中域、低域の残差信号電力に応じて配分し、16Kbp
sの周波数軸上の高域、中域、低域のビット割当数とし
、次にステップ5にて、求めた高域。
Distributed according to the residual signal power of the mid-range and low-range, 16Kbp
The number of bits allocated to the high, middle, and low ranges on the frequency axis of s is the number of bits allocated, and then the high range obtained in step 5.

中域、低域のビット割当数を、夫々の4つの部分区間に
、部分区間の残差信号電力に応じて配分し、割当られた
数が整数になるように補正数DrI6にて補正して、1
6Kbpsの時間軸上のピント割当数として、第2図の
高域ビット割当判定部15に進む。
The number of allocated bits for the mid-range and low-range is distributed to each of the four sub-intervals according to the residual signal power of the sub-interval, and the number of allocated bits is corrected using a correction number DrI6 so that it becomes an integer. ,1
As the focus allocation number on the time axis of 6 Kbps, the process proceeds to the high frequency bit allocation determination unit 15 in FIG.

高域ビット割当判定部15では、第3図のステップ6に
て、高域の全部分区間のビット割当が0かを判定し、0
であれば、ステップ2にて求めた、高域、中域、低域の
4つの部分区間のビット割当数をその侭ビット割当数と
し、0でなければ、第2図の高域ビット割当部16に進
み、第3図のステップ7にて、高域の各部分区間の内桟
差信号電力の大きい部分区間を抽出し、例えば部分区間
1が大きければ、第7図(A)(C)に示す如く、部分
区間1に1ビット割り当てるか又は1ピッチ周期おきに
部分区間1に1ビット割り当て、例えば部分区間1.2
が大きければ、第7図(B)に示す如く、部分区間1,
2に1ビット割り当て、第2図の中低域再ビット割当部
17Lこ進む。
In step 6 of FIG. 3, the high frequency bit allocation determining unit 15 determines whether the bit allocation for all subintervals of the high frequency band is 0.
If so, set the number of bits allocated to the four subintervals of high, middle, and low ranges obtained in step 2 as the number of bits allocated, and if it is not 0, use the high-range bit allocation section of FIG. 2. 16, and in step 7 of FIG. 3, a subsection with a large inner frame difference signal power of each subsection of the high frequency band is extracted. For example, if subsection 1 is large, the subsections shown in FIGS. 7(A) and (C) As shown in FIG.
If is large, as shown in FIG. 7(B), partial interval 1,
2, and proceeds to the middle/low frequency range bit re-allocation section 17L in FIG.

中低域再ビット割当部17では、ステップ8にて、高域
に割り当てたビットを差し引いた残りより、中域、低域
の8Kbps時間軸上のピント割当を求め、ビット割当
数として予測符号器22゜23に割り当てる。
In step 8, the mid-low band re-allocation unit 17 calculates the focus allocation on the 8 Kbps time axis for the mid-range and low band from the remainder after subtracting the bits allocated to the high band, and calculates the focus allocation on the 8Kbps time axis as the number of bit allocation. Assigned to 22°23.

このようにすれば、音声電力が低域に集中していても、
高域に音声信号電力がある場合には、高域へのビット割
当数が0となることはないので、声がこもったようにな
ることはなくなる。
In this way, even if the audio power is concentrated in the low range,
If there is audio signal power in the high frequency range, the number of bits allocated to the high frequency range will never become 0, so the voice will not sound muffled.

(発明の効果〕 以上詳細に説明せる如く本発明によれば、音声電力が低
域に集中していても、高域に音声信号電力がある場合に
は、高域へのビット割当数がOとなることはないので、
声がこもったようになることはなくなる効果がある。
(Effects of the Invention) As explained in detail above, according to the present invention, even if audio power is concentrated in the low frequency range, if there is audio signal power in the high frequency range, the number of bits allocated to the high frequency range is O. Since it will not be
This has the effect of preventing your voice from sounding muffled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理ブロック図、 第2図は本発明の実施例の帯域分割型音声符号化装置の
ブロック図、 第3図は第2図のビット割当部の8Kbpsビット割当
部以降の処理のフローチャート、第4図は高域にての量
子化ビット割当例を示す図、第5図は従来例の帯域分割
型音声符号化装置のブロック図、 第6図は第5図のビット割当部の8Kbpsビット割当
部の処理のフローチャート、 第7図は入力音声信号と8Kbps符号化処理した場合
のスペクトル分析例を示す図である。 図において、 1.10はビット割当部、 2.15は高域ビット割当判定部、 3は再ビット割当部、 11は予測残差信号算出部、 12は予測残差信号電力算出部、 13は8Kbp sビット割当部、 14は16Kbpsビット割当部、 16は高域ビット割当部、 20.21は帯域分割フィルタ、 22.23.24は予測符号器、 25は多重化部を示す。 =O 本発明の犀f!ブロソフ図 箪 1 図 部分区間番号 部分区間1号 本城j二での量子化ご1,1−11当例臣示す閉第升図
FIG. 1 is a block diagram of the principle of the present invention. FIG. 2 is a block diagram of a band division type speech encoding device according to an embodiment of the present invention. FIG. Processing flowchart, Figure 4 is a diagram showing an example of quantization bit allocation in the high frequency range, Figure 5 is a block diagram of a conventional band division type audio encoding device, and Figure 6 is the bit allocation shown in Figure 5. FIG. 7 is a diagram showing an example of spectrum analysis when an input audio signal is subjected to 8Kbps encoding processing. In the figure, 1.10 is a bit allocation unit, 2.15 is a high-frequency bit allocation determination unit, 3 is a bit re-allocation unit, 11 is a predicted residual signal calculation unit, 12 is a predicted residual signal power calculation unit, and 13 is a predicted residual signal power calculation unit. 8 Kbps bit allocation section; 14 is a 16 Kbps bit allocation section; 16 is a high-frequency bit allocation section; 20.21 is a band division filter; 22.23.24 is a predictive encoder; 25 is a multiplexing section. =O Rhinoceros f! of the present invention! Brosoff's diagram 1 Diagram Part Section Number Part Section 1 Quantization in Honjo J2 1, 1-11 Closed square diagram showing the relevant minister

Claims (1)

【特許請求の範囲】 ビット割当部(1)にて、 音声信号の1フレームの残差信号の量子化に使用出来る
ビット数を1フレームのサンプル数で割った平均ビット
割当数を求め、求めた平均ビット割当数を、入力音声信
号を複数の周波数帯域に分割した各帯域の予測残差信号
電力の大きさに応じて、各周波数帯域毎に割当て、 各周波数帯域では、割当られたビット数で量子化をする
帯域分割型音声符号化装置において、該ビット割当部(
1)の出力側に、 該ビット割当部(1)で、周波数の高い帯域の高域に割
当たビット数が0かどうかを判定し、0でなければその
儘のビット割当数を量子化のビット割当数とし0であれ
ば再ビット割当部(3)にて処理させる高域ビット割当
判定部(2)と、0であれば、符号化ビットレートより
高いビットレートで再ビット割当を行う該再ビット割当
部(3)とを設けたことを特徴とする帯域分割型音声符
号化装置。
[Claims] In the bit allocation unit (1), the average number of bits allocated is calculated by dividing the number of bits that can be used for quantizing the residual signal of one frame of the audio signal by the number of samples of one frame. The average number of bits is allocated to each frequency band according to the magnitude of the predicted residual signal power in each band where the input audio signal is divided into multiple frequency bands. In a band division type speech encoding device that performs quantization, the bit allocation unit (
On the output side of 1), the bit allocation unit (1) determines whether the number of bits allocated to the high frequency band is 0 or not, and if it is not 0, the bit allocation part (1) determines whether the number of bits allocated to the high frequency band is 0 or not. If the bit allocation number is 0, the high-frequency bit allocation determination unit (2) causes the bit re-allocation unit (3) to process the bit allocation, and if it is 0, the bit allocation is performed at a higher bit rate than the encoding bit rate. What is claimed is: 1. A band division type speech encoding device comprising: a bit re-allocation section (3).
JP2245047A 1990-09-13 1990-09-13 Band split type voice coding device Pending JPH04123535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2245047A JPH04123535A (en) 1990-09-13 1990-09-13 Band split type voice coding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2245047A JPH04123535A (en) 1990-09-13 1990-09-13 Band split type voice coding device

Publications (1)

Publication Number Publication Date
JPH04123535A true JPH04123535A (en) 1992-04-23

Family

ID=17127796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2245047A Pending JPH04123535A (en) 1990-09-13 1990-09-13 Band split type voice coding device

Country Status (1)

Country Link
JP (1) JPH04123535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021490A1 (en) * 1994-02-05 1995-08-10 Sony Corporation Method and device for encoding information and method and device for decoding information

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021490A1 (en) * 1994-02-05 1995-08-10 Sony Corporation Method and device for encoding information and method and device for decoding information

Similar Documents

Publication Publication Date Title
KR100242864B1 (en) Digital signal coder and the method
FI84538C (en) FOERFARANDE FOER TRANSMISSION AV DIGITALISKA AUDIOSIGNALER.
US7613603B2 (en) Audio coding device with fast algorithm for determining quantization step sizes based on psycho-acoustic model
JPH0591061A (en) Audio signal processing meth0d
CA2314451C (en) Subband encoding and decoding system
JP2001094433A (en) Sub-band coding and decoding medium
KR100472442B1 (en) Method for compressing audio signal using wavelet packet transform and apparatus thereof
US7613609B2 (en) Apparatus and method for encoding a multi-channel signal and a program pertaining thereto
JP2003150198A (en) Voice encoding device and voice decoding device
KR0167769B1 (en) Digital signal processing
JP2000151413A (en) Method for allocating adaptive dynamic variable bit in audio encoding
JPH04123535A (en) Band split type voice coding device
EP0709981B1 (en) Subband coding with pitchband predictive coding in each subband
JPH08179794A (en) Sub-band coding method and device
KR970006827B1 (en) Audio signal encoding apparatus
JP2906477B2 (en) Digital signal encoding method
JPH0750589A (en) Sub-band coding device
JP2993324B2 (en) Highly efficient speech coding system
KR0152016B1 (en) Encoding and decoding system using variable bit allocation
JP3060229B2 (en) Signal processing device and signal processing method
JPH0918348A (en) Acoustic signal encoding device and acoustic signal decoding device
KR100590340B1 (en) Digital audio encoding method and device thereof
KR20070037771A (en) Audio coding system
JP3011447B2 (en) Band division coding device
KR0174911B1 (en) Audio signal encoding device