JPH0412309Y2 - - Google Patents

Info

Publication number
JPH0412309Y2
JPH0412309Y2 JP1983094641U JP9464183U JPH0412309Y2 JP H0412309 Y2 JPH0412309 Y2 JP H0412309Y2 JP 1983094641 U JP1983094641 U JP 1983094641U JP 9464183 U JP9464183 U JP 9464183U JP H0412309 Y2 JPH0412309 Y2 JP H0412309Y2
Authority
JP
Japan
Prior art keywords
tritium
inner cylinder
gas
outer cylinder
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983094641U
Other languages
Japanese (ja)
Other versions
JPS602099U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9464183U priority Critical patent/JPS602099U/en
Publication of JPS602099U publication Critical patent/JPS602099U/en
Application granted granted Critical
Publication of JPH0412309Y2 publication Critical patent/JPH0412309Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【考案の詳細な説明】 この考案は、金属に対する透過係数が大きく、
かつ有毒な三重水素(トリチウム)を反応除去す
るに当つて安全に取扱うことのできるトリチウム
反応容器に関するものである。
[Detailed explanation of the invention] This invention has a large permeability coefficient for metals,
The present invention also relates to a tritium reaction vessel that can be safely handled in the reaction and removal of toxic tritium.

周知のように、トリチウムは金属に対する透過
係数の大きいことで知られている。そのためトリ
チウムを取扱う容器に使用する金属材料として、
当然のことながらトリチウムの透過係数の小さい
材料を選択しなければならない。
As is well known, tritium is known to have a high permeability coefficient to metals. Therefore, as a metal material used for containers that handle tritium,
Naturally, a material with a small tritium permeability coefficient must be selected.

ところで、トリチウムの透過係数の小さな金属
材料としてはタングステン鋼などを挙げることが
できる。しかしながらタングステン鋼は高価であ
り、このタングステン鋼を材料とすると反応容器
が高価格になつてしまう問題があつた。また、ト
リチウムの透過係数が比較的小さくかつ比較的安
価な金属としてステンレス鋼が挙げられるが、ス
テンレス鋼においてはトリチウムの密閉性が不充
分であり、大気解放しては危険な放射性物質であ
るトリチウムを取扱う容器の材料としては好まし
くない。特にトリチウムを反応によつて除去する
に当つては高温となり更に危険は増大する。これ
に対し、比較的安価でトリチウムの透過係数の小
さい金属としてアルミニウムを挙げることができ
るが、このアルミニウムは耐熱性、耐圧性に劣る
欠点がある。しかも、周知のように、金属のガス
透過係数は、温度およびガス圧の上昇とともに増
加するものである。
By the way, tungsten steel and the like can be mentioned as a metal material having a small permeability coefficient for tritium. However, tungsten steel is expensive, and using this tungsten steel as a material poses a problem in that the reaction vessel becomes expensive. In addition, stainless steel is a metal that has a relatively small permeability coefficient for tritium and is relatively inexpensive, but stainless steel does not have sufficient sealing properties for tritium, and tritium is a radioactive substance that is dangerous if released into the atmosphere. It is not recommended as a material for containers in which it is handled. In particular, when tritium is removed by reaction, the temperature is high, further increasing the danger. On the other hand, aluminum can be cited as a metal that is relatively inexpensive and has a small tritium permeability coefficient, but this aluminum has the disadvantage of being inferior in heat resistance and pressure resistance. Furthermore, as is well known, the gas permeability coefficient of metals increases with increasing temperature and gas pressure.

このようなことから、ガス透過性が高く、しか
も有害なトリチウムを取扱う反応容器において
は、ガス密閉性の向上と、製造コストの低減化と
は相反する関係にあり、その両特性を同時に満た
すことを目的に研究が進められているのが現状で
ある。
For this reason, in reaction vessels that handle tritium, which has high gas permeability and is harmful, there is a contradictory relationship between improving gas sealing and reducing manufacturing costs, and it is important to satisfy both characteristics at the same time. Currently, research is being carried out with the aim of

この考案は上記事情に鑑みてなされたもので、
その目的は高温高圧下でも充分なガス密閉性を発
揮し、しかも低コストで製造できるトリチウム反
応容器を提供することにあり、容器を多重構造と
し、内筒部分を耐熱耐圧性の高い材料から構成
し、さらに各筒間に断熱層を形成して内筒部分の
熱が外筒部分に伝わらないようにして、ガス密閉
性の向上と耐熱、耐圧性の向上をコスト高を招く
ことなく両立させたものである。
This idea was made in view of the above circumstances,
The purpose is to provide a tritium reaction vessel that exhibits sufficient gas-tightness even under high temperature and high pressure conditions and can be manufactured at low cost. Furthermore, a heat insulating layer is formed between each cylinder to prevent heat from the inner cylinder from being transferred to the outer cylinder, achieving both improved gas sealing and improved heat and pressure resistance without increasing costs. It is something that

以下、この考案を図面を参照して説明する。第
1図はこの考案の一実施例を示すもので、この実
施例における容器は、内筒1と外筒2とから構成
されている。
This invention will be explained below with reference to the drawings. FIG. 1 shows an embodiment of this invention, and the container in this embodiment is composed of an inner cylinder 1 and an outer cylinder 2.

上記内筒1は、この反応容器の使用条件に対応
し、その条件に耐え得ることを第1に考慮し、ガ
ス透過係数の大小については副次的に考えて、構
成材料を決定し、それによつて形成する。例え
ば、反応を伴うような高温下で使用する時は、耐
熱のよさを第1に考慮し、高圧下で使用する時は
耐圧性の高さを第1に考慮し、両特性を必要とす
る時は、ステンレス鋼などの耐熱、耐圧性の高い
材料を採用し、これによつて内筒1を形成する。
For the inner cylinder 1, the constituent materials are determined by first considering that it corresponds to the usage conditions of this reaction vessel and can withstand the conditions, and secondarily considering the magnitude of the gas permeability coefficient. Twist and form. For example, when using a product under high temperatures that involve reactions, first consider heat resistance, and when using under high pressure, first consider high pressure resistance; both characteristics are required. In some cases, a material with high heat resistance and pressure resistance, such as stainless steel, is used to form the inner cylinder 1.

この実施例における内筒1は、円筒状の内筒本
体1aと、この内筒本体1aと同材料で構成さ
れ、この内筒本体1aの両開口部に各々フランジ
を介して一体的に連結されている入口連結管1b
および出口連結管1cとから構成されている。
The inner cylinder 1 in this embodiment is composed of a cylindrical inner cylinder main body 1a and the same material as the inner cylinder main body 1a, and is integrally connected to both openings of the inner cylinder main body 1a through flanges. Inlet connecting pipe 1b
and an outlet connecting pipe 1c.

一方、上記外筒2は、耐熱性など対使用条件特
性に考慮を払わず、ガス透過性のよい材料にて形
成する。低価格でガス透過性の小さい材料として
アルミニウムがあり、これを採用することができ
る。
On the other hand, the outer cylinder 2 is formed of a material with good gas permeability without consideration to the usage condition characteristics such as heat resistance. Aluminum is a low-cost material with low gas permeability, and can be used.

この実施例における外筒2は、円筒状の外筒本
体2aと、この外筒本体2aと同材料で構成さ
れ、この外筒本体3の両開口部を塞ぐ蓋体4およ
び5を貫通するとともに、この蓋体4および5に
一体的に連結され、かつ前記入口連結管1bおよ
び出口連結管1cにそれぞれ一体的に連結されて
いる入口配管6aおよび出口配管6bとから構成
されている。また、上記外筒本体3の側部に突管
3a,3bが一体に連結されている。これらの突
管3a,3bは真空ポンプ(図示せず)に連結さ
れ、この真空ポンプによつて上記内筒1と外筒2
との間が真空引きされて真空断熱層7となつてい
る。なお、上記構成において、入口連結管1bお
よび入口配管6aはガス入口8aを構成し、出口
連結管1cおよび出口配管6bはガス出口8bを
構成している。
The outer cylinder 2 in this embodiment is composed of a cylindrical outer cylinder main body 2a and the same material as the outer cylinder main body 2a, and passes through lids 4 and 5 that close both openings of the outer cylinder main body 3. , an inlet pipe 6a and an outlet pipe 6b integrally connected to the lids 4 and 5, and integrally connected to the inlet connecting pipe 1b and the outlet connecting pipe 1c, respectively. Furthermore, projecting pipes 3a and 3b are integrally connected to the side portions of the outer cylinder main body 3. These projecting pipes 3a and 3b are connected to a vacuum pump (not shown), and the inner cylinder 1 and the outer cylinder 2 are connected to each other by this vacuum pump.
The space between them is evacuated to form a vacuum insulation layer 7. In the above configuration, the inlet connecting pipe 1b and the inlet pipe 6a constitute a gas inlet 8a, and the outlet connecting pipe 1c and the outlet pipe 6b constitute a gas outlet 8b.

次に上記構成の多重壁を有するトリチウム反応
容器の作用を、内筒1をステンレス鋼で構成し、
外筒2をアルミニウムで構成し、内筒1内のトリ
チウムを500℃で反応除去する場合を例にとつて
説明する。
Next, the function of the multi-walled tritium reaction vessel having the above configuration is explained by constructing the inner cylinder 1 from stainless steel,
An example will be explained in which the outer cylinder 2 is made of aluminum and the tritium in the inner cylinder 1 is removed by reaction at 500°C.

まず、容器のガス入口8aからトリチウムが内筒
1内に入り、500℃程度で反応し、トリチウムを
除去した後、ガス出口8bより排出される。そし
て内筒1はステンレス鋼で構成されており、この
ステンレス鋼(例えば、18−8ステンレス鋼)は
1000℃近くの温度まで長時間使用にも耐えるもの
なので、温度による劣化を受けることがない。一
方、500℃にもおけるステンレス鋼のトリチウム
透過率は、第2図に示すように、約10-2Ci/day
First, tritium enters the inner cylinder 1 from the gas inlet 8a of the container, reacts at about 500°C, removes tritium, and then is discharged from the gas outlet 8b. The inner cylinder 1 is made of stainless steel (for example, 18-8 stainless steel).
It can withstand long-term use at temperatures close to 1000 degrees Celsius, so it will not deteriorate due to temperature. On the other hand, the tritium permeability of stainless steel at 500℃ is approximately 10 -2 Ci/ day , as shown in Figure 2.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 耐圧、耐熱性の高い材料よりなる1重または多
重にされた内筒を、断熱層を介して、ガス透過性
の小さい材料よりなる1重または多重にされた外
筒で気密に囲繞してなるとともに、該外筒を気密
に貫通して前記内筒に連通するガス入口配管及び
ガス出口配管を配設せしめてなることを特徴とす
る多重壁を有するトリチウム反応容器。
A single or multiple layered inner cylinder made of a material with high pressure and heat resistance is airtightly surrounded by a single layer or multiple layered outer tube made of a material with low gas permeability via a heat insulating layer. A tritium reaction vessel having multiple walls, further comprising a gas inlet pipe and a gas outlet pipe that airtightly penetrate the outer cylinder and communicate with the inner cylinder.
JP9464183U 1983-06-20 1983-06-20 Tritium reactor with multiple walls Granted JPS602099U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9464183U JPS602099U (en) 1983-06-20 1983-06-20 Tritium reactor with multiple walls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9464183U JPS602099U (en) 1983-06-20 1983-06-20 Tritium reactor with multiple walls

Publications (2)

Publication Number Publication Date
JPS602099U JPS602099U (en) 1985-01-09
JPH0412309Y2 true JPH0412309Y2 (en) 1992-03-25

Family

ID=30226441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9464183U Granted JPS602099U (en) 1983-06-20 1983-06-20 Tritium reactor with multiple walls

Country Status (1)

Country Link
JP (1) JPS602099U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691170B2 (en) * 1989-06-14 1997-12-17 東陶機器株式会社 Transport system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653198U (en) * 1979-10-01 1981-05-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653198U (en) * 1979-10-01 1981-05-11

Also Published As

Publication number Publication date
JPS602099U (en) 1985-01-09

Similar Documents

Publication Publication Date Title
CA1132066A (en) Thermal insulation of vessels and method of fabrication
US4692363A (en) Thermal insulation
JPH031559B2 (en)
JPS5987037A (en) Sensor element used in chemical vapor deposition process performed in radiant absorbing type heater system
US5200015A (en) Joining process for vacuum heat insulating elements
CA2010115A1 (en) Water heater and method of fabricating same
JPH086168B2 (en) Immobilization of carbon steel using encapsulated oxygen
US2961116A (en) Thermally insulated wall structure
KR950030950A (en) Thermos and its manufacturing method
JPS62501643A (en) insulation
KR20010024854A (en) Self-evacuating vacuum insulation panels
JPH0412309Y2 (en)
US4272259A (en) Gas gettering system
GB705217A (en) Vacuum insulated containers and process for evacuating same
US4732177A (en) Hot gas container with insulation formed of overlapping ceramic bodies
KR890002991B1 (en) Method for fabrication fiberglass insulated mobile crygenic tankage
GB2089950A (en) Thermally insulated containers
EP0293203B1 (en) Freeze resistant pipe
CN108645232B (en) Modular high-level radioactive waste liquid evaporation-calcining furnace
US3381842A (en) Sealed evacuated tank
JPS61206900A (en) Method of housing adsorbent into insulating space of vacuum insulated double wall vessel for storing low boiling-point liquefied gas and adsorbent vessel
JPS61180887A (en) Heat pipe
US3327884A (en) High pressure and high temperature vessels
US3240479A (en) Apparatus useful in the production of low-permeability, high-density, carbon and graphite bodies
SU1532770A1 (en) Cryogenic tank