JPH0412308B2 - - Google Patents

Info

Publication number
JPH0412308B2
JPH0412308B2 JP57071055A JP7105582A JPH0412308B2 JP H0412308 B2 JPH0412308 B2 JP H0412308B2 JP 57071055 A JP57071055 A JP 57071055A JP 7105582 A JP7105582 A JP 7105582A JP H0412308 B2 JPH0412308 B2 JP H0412308B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
weight
lactone
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57071055A
Other languages
Japanese (ja)
Other versions
JPS58187463A (en
Inventor
Michio Hashimoto
Seiji Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP7105582A priority Critical patent/JPS58187463A/en
Publication of JPS58187463A publication Critical patent/JPS58187463A/en
Publication of JPH0412308B2 publication Critical patent/JPH0412308B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 本発明は主として金属板の塗装に用いられる変
性エポキシ樹脂を樹脂成分とする塗料用組成物に
関する。 金属板の塗装、たとえば罐詰用罐や清涼飲料用
罐の内外面に塗布される塗料としては従来エポキ
シ樹脂塗料に1%以下のリン酸等の硬化促進剤を
加え180℃で20分程度の焼付が行われていた。し
かし生産性向上のため短時間の焼付けが望まれて
いるがそのために高温での焼付を行うのは省エネ
ルギー上から好ましくない。また、これに代つて
硬化促進剤を増量することが考えられたが、ワニ
スの安定性を低下させたり硬化後の塗膜の遊離成
分を多くし、衛生上好ましくない。 一方、製罐の際には、通常ブリキ板、アルミ板
などの金属板にエポキシ樹脂塗料を塗布した後、
プレス等によつて屈曲、絞り、打抜きの加工が行
われるが、従来のエポキシ樹脂塗料の塗膜ではこ
の加工の際、塗膜に損傷が生じ易い欠点がある。 本発明は、この様な欠点のなくかつ硬化速度の
高い塗料用組成物を提供するものである。 すなわち本発明組成物は、エポキシ当量約400
〜4000のエポキシ樹脂100重量部と、 (但しnは1〜4の整数、RはH又はメチル基
を示す。)で表わされるラクトン2〜20重量部と
を反応させて得られる生成物に、硬化剤としての
レゾール型フエノール樹脂又は/及びアミノ樹脂
を配合して得られる塗料用組成物である。 本発明の主成分はエポキシ樹脂とラクトンとの
反応生成物であるが、好ましいエポキシ樹脂とし
てはエポキシ当量が約400〜4000で、多価フエノ
ールとエピハロヒドリンとを反応させて得られる
ポリグリシジルエーテルが挙げられる。 多価フエノールの例としてはレゾルシノール、
ハイドロキノンのような単核多価フエノール、ビ
ス(4−ヒドロキシフエニル)メタン、ビス(4
−ヒドロキシフエニル)スルホン、1,1,2,
2−テトラキス(4−ヒドロキシフエニル)エタ
ン、2,2−ビス(4−ヒドロキシフエニル)プ
ロパン(ビスフエノールAとして知られてい
る。)、2,2−ビス(3,5−ジブロモ−4−ヒ
ドロキシフエニル)プロパンのような多核多価フ
エノールが挙げられる。 この様なエポキシ樹脂にあつて、なかでもビス
フエノールAのジグリシジルエーテルが特に好ま
しい。 本発明のエポキシ樹脂のエポキシ当量が400未
満と、小さすぎると塗膜の耐薬品性が不足し、
4000を越えて、大きすぎると塗装の際の作業性が
低下し、塗膜性能にも悪影響を及ぼす。 ラクトンの例としては、ε−カプロラクトン以
外のもので、β−プロピオラクトン、γ−ブチロ
ラクトン、δ−バレロラクトン、ε−カプロラク
トン、β−ブチロラクトン、γ−バレロラクト
ン、δ−カプロラクトン、ε−エナントラクトン
が挙げられ、γ−ブチロラクトン、δ−バレロラ
クトン、γ−バレロラクトン、δ−カプロラクト
ンが好ましく、δバレロラクトン、γ−バレロラ
クトンが特に好ましい。 エポキシ樹脂がラクトンとの反応は、エポキシ
樹脂100重量部に対してラクトンを約2〜20重量
部、好ましくは5〜10重量部を用いる。ラクトン
の量が少なすぎると、目的とする速硬化性が得ら
れない。又、塗膜の可撓性が不充分であり、製罐
の際の絞り、打抜き、屈曲などの加工の際に塗膜
が損傷しやすくなる。反面、ラクトンの量が多す
ぎると、エポキシ樹脂を用いる良さが失われ塗膜
の剛性、密着性、耐薬品性が低下し好ましくな
い。 反応は、通常エポキシ樹脂の溶融下に撹拌しな
がら、ラクトンを加え、その後約160〜180℃で約
3〜6時間撹拌を続ければ充分である。反応の主
反応はエポキシ樹脂の有する水酸基にラクトンが
開環付加してグラフト状物ができているものと思
われる。反応に当つては、テトラブトオキシチタ
ネートやナトリウムフエネートのような触媒をエ
ポキシ樹脂に対して10〜100PPM程度の割合用い
ることが好ましい。 上記得られた反応生成物に配合して用いる硬化
剤としては、レゾール型フエノール樹脂又はアミ
ノ樹脂が好ましく、両者は併用して用いてもよ
い。 レゾール型フエノール樹脂としては、たとえば
アンモニアレゾール型フエノール樹脂を好ましく
例示することができる。ここでアンモニアレゾー
ル型フエノール樹脂とは、アンモニア水溶液中に
フエノール類とホルムアルデヒドとを加え、反応
させて得られるものである。レゾール型フエノー
ル樹脂のフエノール骨核に結合したメチロール基
をイソプロパノール、ブタノールの如き脂肪族ア
ルコールでエーテル化したものは安定性、相溶性
が良く、好ましく用いられ、勿論本発明で言うレ
ゾール型フエノール樹脂に包含される。レゾール
型フエノール樹脂としてフエノジユール(ヘキス
ト社商品)、ヒタノール(日立化成商品)などが
市販されており、使用することができる。 本発明のアミノ樹脂は、尿素又はメラミンとと
ホルムアルデヒドとを反応させメチロール化して
得られる極く一般的なアミノ樹脂及びこのメチロ
ール基を、イソプロパノール、ブタノールの如き
脂肪族アルコールでエーテル化したものを包含す
る。アミノ樹脂として、レザミン(ヘキスト社商
品)、ユーバン(三井東圧社商品)、メラン(日立
化成社商品)などが市販されており、使用するこ
とができる。 硬化剤の使用量は、エポキシ樹脂とラクトンと
の反応生成物100重量部に対して通常約10〜50重
量部使用する。硬化剤の使用量が多すぎても少な
すぎても塗膜が脆くなり加工適性に欠ける結果と
なる。 本発明組成物には任意成分として、硬化促進
剤、たとえばりん酸、P−トルエンスルホン酸、
マレイン酸などを反応生成物に対して0.01〜1.0
重量%程度配合してもよい。 本発明塗料用組成物の調整はたとえば次の如く
して行う。ラクトンと反応させたエポキシ樹脂を
ケトン類、セロソルブ類などの極性溶媒に溶解
し、一方硬化剤はn−ブタノールのごときアルコ
ール溶媒又はアルコール溶媒とキシレンのごとき
芳香族炭化水素溶媒との混合溶媒に溶解する。そ
の後上記変性エポキシ樹脂溶液と硬化剤溶液とを
混合する。さらにセロソルブ類、芳香族炭化水
素、ケトン類又はその混合溶媒を用い、塗装に適
した粘度に迄希釈して使用に供する。必要に応じ
て硬化促進剤の添加も可能である。 塗装はブリキ、アルミ板などの金属板にロール
コーターで連続的に塗装するのが一般的である
が、エアスプレー、刷毛塗り、流し塗りなども可
能である。 塗膜厚は通常乾燥膜厚で6〜8μとなるよう塗
装し、焼付を行う。焼付条件は180〜210゜で充分
であり、たとえば従来のエポキシ樹脂塗料で210
℃で5分間焼付けていた場合と同等の硬化が本発
明組成物を用いた場合には、210℃で3分30秒間
の焼付けで得られる。又、従来のエポキシ樹脂塗
料で硬化促進剤としてりん酸を0.5重量%を使用
した場合と同等の硬化が、本発明組成物を用いた
場合には、0.3重量%を使用して達成できる。 本発明の塗料用組成物を塗装焼付して得られた
金属板から、例えば罐を製作する際にはプレス等
によつて屈曲、絞り、打抜きの加工が行われるが
この加工時に従来屡々生起した塗膜の割れ、剥離
などの欠点が著しく改善される。 以上詳述したごとく本発明組成物を用いた塗料
は金属板、例えば食罐、清涼飲料罐、その他の金
属罐の内面、外面の主としてプライマー塗料とし
て極めてすぐれたものである。 以下実施例をもつて補足説明する。なお、比較
例中の%および部は、断わりのない限り重量基準
である。 実施例 1 (1) エポキシ樹脂とラクトンとの反応 撹拌装置、温度計、滴加びん、還流冷却器を備
えた反応器にエポキシ当量1940、ガードナーホル
ツ粘度Y−Z(40%ブチルカルビトール溶液)の
エポキシ樹脂(三井石油化学、エポキシ
EPOMIKR−307)90部を加え、160℃で溶融す
る。滴加びんから、エポキシ樹脂の10PPMに相
当するテトラブトオキシチタネートを溶解したδ
−カプロラクトン10部を、撹拌しながら添加し、
5時間反応させた。得られた反応生成物はエポキ
シ当量2700ガードナーホルツ粘度Y+であつた。 (2) 塗料の調整 上記得られた反応生成物70部とレゾール型フエ
ノール樹脂(ヘキスト社PR−217)30部(固形
分)とをキシレン/セロソルブアセテート/ジア
セトンアルコールの重量比1/2/1の混合溶媒
に溶かし、固形分濃度50%の塗料を調整した。 尚、ここで固形分とは、160℃で1時間加熱し
た後に不揮発分として残るものの意である。 (3) ゲル化時間の測定 180℃に制御したゲルタイムテスター(日新科
学社製)の熱板上のくぼみ(径20mm、深さ2mm)
に、上記調整した塗料0.5gを注ぎ、径6mmのガ
ラス棒でかき回した。反応が進んで、もはや液状
を示さなくなる迄のゲル化時間を測定し、硬化速
度の目安とした。結果を第1表に示した。 (4) 塗膜の衝撃屈曲性試験 上記調整した塗料にキシレン/セロソルブアセ
テートを重量比で1/1に混合した混合溶媒を加
え、固形分濃度30%に迄さらに希釈し、これをブ
リキ板(150×50×0.24mm、JIS−G−3303)にバ
ーコーターで乾燥膜厚が6〜8μとなるよう塗布
した。焼付硬化は180℃、200℃、210℃の各温度
で30〜5分間行つた。塗布焼付されたブリキ板
は、2mm径の棒を軸として180゜に折り曲げ、曲げ
た間に1mm厚のスペーサーをはさみ込み、デユポ
ン衝撃器の平台の上に置く。さらにこの上に50mm
φ、厚さ10mmの平板を置く。平板の中心には衝撃
を平板に平均的に伝える撃ついが連接されてあ
り、この撃つい上に重さ1Kgのハンマーを50cmの
高さから落し、折り曲げたブリキ板に衝撃を与え
る。この衝撃条件で屈曲面の塗膜の損傷程度を評
価し、可撓性の目安とした。◎は塗膜の損傷がな
い場合、〇は屈曲面数点の損傷、△は屈曲面の10
%未満が損傷した場合、×は屈曲面の10%〜50%
が損傷した場合である。結果を第1表に示した。 比較例 1 エポキシ当量1940、ガードナーホルツ粘度Y−
Zのエポキシ樹脂(三井石油化学エポキシ(株)製、
EPOMIK R−307)70部と、レゾール型フエノ
ール樹脂PR−−217の固形分30部を、キシレン/
セロソルブアセテート/ジアセトンアルコルの重
量比1/2/1の混合溶媒に溶かし、固形分濃度
50%の塗料とした。この塗料のゲル化時間および
塗膜の衝撃屈曲性を実施例1と同様に測定しその
結果を第1表に示した。 実施例 2 実施例1で用いたδ−カプロラクトンの代りに
γ−バレロラクトンを用い、170℃で反応する以
外は実施例1と同様に行い、エポキシ当量2450、
ガードナーホルツ粘度Zの樹脂を得た。 実施例1と同様に、塗料を調整し、ゲル化時
間、および衝撃屈曲性を測定し、結果を第1表に
示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coating composition containing a modified epoxy resin as a resin component, which is mainly used for coating metal plates. Conventional paints for metal plates, such as those applied to the inside and outside surfaces of cans for cans and soft drink cans, are made by adding 1% or less of a curing accelerator such as phosphoric acid to epoxy resin paint at 180°C for about 20 minutes. Burning was taking place. However, although short-time baking is desired to improve productivity, baking at high temperatures is not preferred from the standpoint of energy conservation. In addition, increasing the amount of the curing accelerator has been considered as an alternative, but this would reduce the stability of the varnish and increase the amount of free components in the cured coating, which is undesirable from a sanitary standpoint. On the other hand, when making cans, usually after applying epoxy resin paint to metal plates such as tin plates and aluminum plates,
Bending, drawing, and punching are performed using a press or the like, but conventional epoxy resin paint films have the disadvantage that they are easily damaged during this process. The present invention provides a coating composition that is free from such drawbacks and has a high curing rate. That is, the composition of the present invention has an epoxy equivalent of about 400
~4000 epoxy resin 100 parts by weight; (However, n is an integer of 1 to 4, R is H or a methyl group.) A product obtained by reacting 2 to 20 parts by weight of a lactone represented by and a coating composition obtained by blending an amino resin. The main component of the present invention is a reaction product of an epoxy resin and a lactone, and preferred epoxy resins include polyglycidyl ethers having an epoxy equivalent of about 400 to 4,000 and obtained by reacting polyhydric phenols with epihalohydrin. It will be done. Examples of polyhydric phenols include resorcinol,
Mononuclear polyphenols such as hydroquinone, bis(4-hydroxyphenyl)methane, bis(4-hydroxyphenyl)methane,
-hydroxyphenyl)sulfone, 1,1,2,
2-tetrakis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)propane (known as bisphenol A), 2,2-bis(3,5-dibromo-4 Polynuclear polyhydric phenols such as -hydroxyphenyl)propane can be mentioned. Among such epoxy resins, diglycidyl ether of bisphenol A is particularly preferred. If the epoxy equivalent of the epoxy resin of the present invention is too small, such as less than 400, the chemical resistance of the coating film will be insufficient.
If it exceeds 4000 and is too large, the workability during painting will decrease and the coating film performance will also be adversely affected. Examples of lactones other than ε-caprolactone include β-propiolactone, γ-butyrolactone, δ-valerolactone, ε-caprolactone, β-butyrolactone, γ-valerolactone, δ-caprolactone, and ε-enantholactone. γ-butyrolactone, δ-valerolactone, γ-valerolactone, and δ-caprolactone are preferred, and δ-valerolactone and γ-valerolactone are particularly preferred. For the reaction of epoxy resin with lactone, about 2 to 20 parts by weight, preferably 5 to 10 parts by weight of lactone is used for 100 parts by weight of epoxy resin. If the amount of lactone is too small, the desired rapid curing property cannot be obtained. Further, the flexibility of the coating film is insufficient, and the coating film is easily damaged during processing such as drawing, punching, and bending during can manufacturing. On the other hand, if the amount of lactone is too large, the benefits of using the epoxy resin will be lost and the rigidity, adhesion, and chemical resistance of the coating will decrease, which is not preferable. The reaction usually suffices if the lactone is added while stirring while the epoxy resin is melted, and then stirring is continued at about 160 to 180°C for about 3 to 6 hours. The main reaction seems to be the ring-opening addition of lactone to the hydroxyl group of the epoxy resin to form a graft-like product. In the reaction, it is preferable to use a catalyst such as tetrabutoxytitanate or sodium phenate in a proportion of about 10 to 100 PPM based on the epoxy resin. The curing agent used in the reaction product obtained above is preferably a resol type phenolic resin or an amino resin, and both may be used in combination. A preferred example of the resol type phenolic resin is an ammonia resol type phenolic resin. Here, the ammonia resol type phenolic resin is obtained by adding phenols and formaldehyde to an ammonia aqueous solution and reacting them. Resole-type phenolic resins in which the methylol groups bonded to the phenol bone core are etherified with aliphatic alcohols such as isopropanol and butanol have good stability and compatibility, and are preferably used, and of course, they are suitable for resol-type phenolic resins as referred to in the present invention. Included. As resol-type phenolic resins, Phenodyl (product of Hoechst), Hytanol (product of Hitachi Chemical), etc. are commercially available and can be used. The amino resin of the present invention includes a very general amino resin obtained by reacting urea or melamine with formaldehyde and converting it into methylol, and those obtained by etherifying the methylol group with an aliphatic alcohol such as isopropanol or butanol. do. As amino resins, Rezamin (product of Hoechst), Euban (product of Mitsui Toatsu), Melan (product of Hitachi Chemical), etc. are commercially available and can be used. The amount of curing agent used is usually about 10 to 50 parts by weight per 100 parts by weight of the reaction product of the epoxy resin and lactone. If the amount of curing agent used is too large or too small, the coating film will become brittle and will lack processability. The composition of the present invention may optionally contain curing accelerators such as phosphoric acid, P-toluenesulfonic acid,
0.01 to 1.0 of maleic acid etc. to the reaction product
It may be added in an amount of about % by weight. The coating composition of the present invention is prepared, for example, as follows. The epoxy resin reacted with lactone is dissolved in a polar solvent such as ketones or cellosolves, while the curing agent is dissolved in an alcohol solvent such as n-butanol or a mixed solvent of an alcohol solvent and an aromatic hydrocarbon solvent such as xylene. do. Thereafter, the modified epoxy resin solution and the curing agent solution are mixed. Furthermore, it is diluted with cellosolves, aromatic hydrocarbons, ketones, or a mixed solvent thereof to a viscosity suitable for coating, and then used. It is also possible to add a curing accelerator if necessary. Painting is generally done continuously using a roll coater on metal plates such as tin or aluminum plates, but air spraying, brush painting, flow painting, etc. are also possible. The coating is usually applied to a dry film thickness of 6 to 8 microns, and then baked. Baking conditions of 180 to 210° are sufficient; for example, with conventional epoxy resin paint, 210°
When using the composition of the present invention, the same hardening as when baking at 210°C for 5 minutes can be obtained by baking at 210°C for 3 minutes and 30 seconds. Further, when using the composition of the present invention, curing equivalent to that achieved when using 0.5% by weight of phosphoric acid as a curing accelerator in conventional epoxy resin paints can be achieved using 0.3% by weight. When manufacturing cans, for example, from a metal plate obtained by painting and baking the coating composition of the present invention, bending, drawing, and punching processes are performed using a press, etc., but conventionally, these processes often occur during this process. Defects such as cracking and peeling of the paint film are significantly improved. As detailed above, the paint using the composition of the present invention is extremely excellent as a primer paint for the inner and outer surfaces of metal plates, such as food cans, soft drink cans, and other metal cans. A supplementary explanation will be given below using examples. Note that % and parts in Comparative Examples are based on weight unless otherwise specified. Example 1 (1) Reaction of epoxy resin and lactone A reactor equipped with a stirrer, a thermometer, a dropping bottle, and a reflux condenser was prepared with an epoxy equivalent of 1940 and a Gardner-Holtz viscosity of Y-Z (40% butyl carbitol solution). epoxy resin (Mitsui Petrochemical, epoxy
Add 90 parts of EPOMIKR-307) and melt at 160℃. From a dropper bottle, dissolve δ of tetrabutoxytitanate equivalent to 10 PPM of epoxy resin.
- add 10 parts of caprolactone with stirring;
The reaction was allowed to proceed for 5 hours. The resulting reaction product had an epoxy equivalent of 2700 and a Gardner-Holtz viscosity of Y + . (2) Preparation of paint 70 parts of the reaction product obtained above and 30 parts (solid content) of resol type phenolic resin (Hoechst PR-217) were mixed in a weight ratio of xylene/cellosolve acetate/diacetone alcohol 1/2/ 1 was dissolved in a mixed solvent to prepare a paint with a solid content concentration of 50%. Note that the solid content here refers to what remains as non-volatile content after heating at 160° C. for 1 hour. (3) Measurement of gelation time A depression (diameter 20mm, depth 2mm) on the hot plate of a gel time tester (manufactured by Nisshin Kagakusha) controlled at 180℃
0.5 g of the paint prepared above was poured into the solution and stirred with a glass rod having a diameter of 6 mm. The gelation time until the reaction progressed and the gel no longer exhibited a liquid state was measured, and this was used as a guideline for the curing speed. The results are shown in Table 1. (4) Impact flexibility test of paint film A mixed solvent containing xylene/cellosolve acetate mixed at a weight ratio of 1/1 was added to the paint prepared above, further diluted to a solid content concentration of 30%, and this was applied to a tin plate ( 150 x 50 x 0.24 mm (JIS-G-3303) using a bar coater to give a dry film thickness of 6 to 8 μm. Bake hardening was performed at temperatures of 180°C, 200°C, and 210°C for 30 to 5 minutes. The coated and baked tin plate is bent at 180 degrees around a 2 mm diameter rod, a 1 mm thick spacer is inserted between the bends, and the plate is placed on the flat base of a DuPont impactor. Furthermore, 50mm above this
Place a flat plate with a thickness of φ and 10 mm. A bullet is connected to the center of the flat plate to evenly transmit the impact to the flat plate, and a hammer weighing 1 kg is dropped from a height of 50 cm onto this bullet, impacting the bent tin plate. The degree of damage to the coating film on the curved surface was evaluated under these impact conditions and used as a measure of flexibility. ◎ indicates no damage to the paint film, 〇 indicates damage to several bent surfaces, △ indicates damage to 10 bent surfaces.
If less than % is damaged, × is 10% to 50% of the bending surface
is damaged. The results are shown in Table 1. Comparative example 1 Epoxy equivalent: 1940, Gardner-Holtz viscosity: Y-
Z epoxy resin (manufactured by Mitsui Petrochemical Epoxy Co., Ltd.,
xylene/
Dissolved in a mixed solvent of cellosolve acetate/diacetone alcohol at a weight ratio of 1/2/1, and the solid content concentration
50% paint. The gelation time of this paint and the impact flexibility of the paint film were measured in the same manner as in Example 1, and the results are shown in Table 1. Example 2 The same procedure as in Example 1 was carried out except that γ-valerolactone was used instead of δ-caprolactone used in Example 1 and the reaction was carried out at 170°C, and the epoxy equivalent was 2450,
A resin having a Gardner-Holtz viscosity Z was obtained. In the same manner as in Example 1, the paint was prepared and the gel time and impact flexibility were measured, and the results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 エポキシ当量約400〜4000のエポキシ樹脂100
重量部と、【式】 (但しnは1〜4の整数、RはH又はメチル基
を示す。)で表わされるラクトン(ただし、ε−
カプロラクトンを除く。)2〜20重量部とをエポ
キシ樹脂の有する水酸基にラクトンを開環付加、
グラフト反応させて得られる生成物に、硬化剤と
してのレゾール型フエノール樹脂又は/及びアミ
ノ樹脂を配合して得られる塗料用組成物。 2 金属板のコーテイングに用いられる特許請求
の範囲第1項記載の塗料用組成物。 3 エポキシ樹脂がビスフエノールAのポリグリ
シジルエーテルである特許請求の範囲第1又は2
項記載の塗料用組成物。
[Claims] 1. Epoxy resin 100 having an epoxy equivalent of about 400 to 4000
parts by weight, lactone represented by the formula (where n is an integer of 1 to 4, and R represents H or a methyl group)
Excludes caprolactone. ) 2 to 20 parts by weight of lactone to the hydroxyl group of the epoxy resin,
A coating composition obtained by blending a resol type phenolic resin and/or an amino resin as a curing agent with a product obtained by a graft reaction. 2. The coating composition according to claim 1, which is used for coating metal plates. 3 Claim 1 or 2 in which the epoxy resin is polyglycidyl ether of bisphenol A
The coating composition described in .
JP7105582A 1982-04-27 1982-04-27 Composition for coating compound Granted JPS58187463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7105582A JPS58187463A (en) 1982-04-27 1982-04-27 Composition for coating compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7105582A JPS58187463A (en) 1982-04-27 1982-04-27 Composition for coating compound

Publications (2)

Publication Number Publication Date
JPS58187463A JPS58187463A (en) 1983-11-01
JPH0412308B2 true JPH0412308B2 (en) 1992-03-04

Family

ID=13449447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7105582A Granted JPS58187463A (en) 1982-04-27 1982-04-27 Composition for coating compound

Country Status (1)

Country Link
JP (1) JPS58187463A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3412095A1 (en) * 1984-03-31 1985-10-17 Hoechst Ag, 6230 Frankfurt MIXTURE FOR THE PRODUCTION OF ACID-RESISTANT SEALS AND IMPREGNATIONS, METHOD FOR THE PRODUCTION AND THEIR USE
JPS6144915A (en) * 1984-08-10 1986-03-04 Daicel Chem Ind Ltd Epoxy resin composition
JPH0613667B2 (en) * 1986-05-22 1994-02-23 関西ペイント株式会社 Metal coating composition
JPH0613668B2 (en) * 1986-10-29 1994-02-23 旭電化工業株式会社 Resin composition for paint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742724A (en) * 1980-08-29 1982-03-10 Toagosei Chem Ind Co Ltd Curable composition
JPS57164116A (en) * 1981-04-03 1982-10-08 Daicel Chem Ind Ltd Modified epoxy resin
JPS5849724A (en) * 1981-09-18 1983-03-24 Toagosei Chem Ind Co Ltd Curing composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742724A (en) * 1980-08-29 1982-03-10 Toagosei Chem Ind Co Ltd Curable composition
JPS57164116A (en) * 1981-04-03 1982-10-08 Daicel Chem Ind Ltd Modified epoxy resin
JPS5849724A (en) * 1981-09-18 1983-03-24 Toagosei Chem Ind Co Ltd Curing composition

Also Published As

Publication number Publication date
JPS58187463A (en) 1983-11-01

Similar Documents

Publication Publication Date Title
JP2002194274A (en) Coating composition
PL75254B1 (en) Water-soluble coating compositions[us3658795a]
US5763507A (en) Aqueous paint
JPH0372578A (en) Double-layered coating film for can internal surface
JPH0412308B2 (en)
RU2520481C1 (en) Organosilicate composition
JPH06322069A (en) Water-base epoxy resin dispersion
JP2799401B2 (en) Epoxy resin composition for paint
JP2619463B2 (en) Method for producing modified epoxy resin
JPH0125488B2 (en)
JP2525610B2 (en) Method for producing cationic coating composition
JP2000336304A (en) Metacresol resin composition for coating material
JP2002097409A (en) Coating composition
JPH0312113B2 (en)
KR20000048881A (en) Stable, one package coating compositions and process for coating
JP2001072922A (en) Coating composition
JP2002275229A (en) Phenolic resin for coating
JPH02242865A (en) Coating composition for inner surface of can
JPH0450951B2 (en)
EP0261715B1 (en) Process for cationic coating compositions
JPH09169949A (en) Coating material for manufacturing can
JP2002249532A (en) Cresol novolak resin for coating material
JP4013703B2 (en) Epoxy resin composition and epoxy resin emulsion
JPH021773A (en) Coating composition
JPH04110369A (en) Thermosetting coating composition