JPH04122998U - infrared emitting target - Google Patents

infrared emitting target

Info

Publication number
JPH04122998U
JPH04122998U JP3270891U JP3270891U JPH04122998U JP H04122998 U JPH04122998 U JP H04122998U JP 3270891 U JP3270891 U JP 3270891U JP 3270891 U JP3270891 U JP 3270891U JP H04122998 U JPH04122998 U JP H04122998U
Authority
JP
Japan
Prior art keywords
infrared
radiator
temperature
heating element
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3270891U
Other languages
Japanese (ja)
Other versions
JP2547539Y2 (en
Inventor
野 俊 仁 大
川 富 夫 石
Original Assignee
日本飛行機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本飛行機株式会社 filed Critical 日本飛行機株式会社
Priority to JP3270891U priority Critical patent/JP2547539Y2/en
Publication of JPH04122998U publication Critical patent/JPH04122998U/en
Application granted granted Critical
Publication of JP2547539Y2 publication Critical patent/JP2547539Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J2/00Reflecting targets, e.g. radar-reflector targets; Active targets transmitting electromagnetic or acoustic waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J9/00Moving targets, i.e. moving when fired at
    • F41J9/04Seagoing targets

Abstract

(57)【要約】 【目的】 赤外線放射標的において、構造が比較的簡単
であると共に風や太陽光線の影響を少なくして赤外線放
射の温度を略均一とする。 【構成】 赤外線放射体の外表面に装着する個々の赤外
線発生パネル11を、短冊状に形成された複数枚の発熱
体14と反射板15とをその長手方向を横方向とし縦方
向に交互に配列して並べ、互いに隣接する発熱体14と
反射板15とを側面視で90度以内の角度で交わらせて連
続するジグザク状に接合し、さらにそれらの裏面側には
断熱材16を充てんし、かつ表面側には赤外線透過フィ
ルム17を張って形成したものである。
(57) [Summary] [Purpose] To provide an infrared radiation target with a relatively simple structure, reduce the influence of wind and sunlight, and make the temperature of the infrared radiation substantially uniform. [Structure] Individual infrared generating panels 11 attached to the outer surface of an infrared radiating body are arranged such that a plurality of strip-shaped heating elements 14 and reflecting plates 15 are arranged alternately in the vertical direction with the longitudinal direction being the horizontal direction. The heating elements 14 and the reflecting plates 15 that are adjacent to each other are joined in a continuous zigzag shape so that they intersect at an angle of less than 90 degrees when viewed from the side, and their back sides are further filled with a heat insulating material 16. , and an infrared transmitting film 17 is placed on the surface side.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は、赤外線追尾型の飛翔体などの爆撃訓練又は射撃訓練に使用する赤外 線放射標的に関し、特に構造が比較的簡単であると共に風や太陽光線の影響を少 なくして赤外線放射の温度を略均一とすることができ、かつ風速変動による温度 変化があっても消費電力の少ない赤外線放射標的に関する。 This invention is an infrared light beam used for bombing training or target shooting training such as infrared tracking flying objects. Regarding radiation emitting targets, they are particularly easy to construct and are less affected by wind and sunlight. By eliminating this, the temperature of infrared radiation can be made almost uniform, and the temperature due to wind speed fluctuations can be made almost uniform. This invention relates to an infrared emitting target that consumes little power even under changes.

【0002】0002

【従来の技術】[Conventional technology]

従来のこの種の赤外線放射標的としては、例えば次の二つのものが提案されて いる。まず、第一の従来例は、実開昭63-23597号公報に記載されているように、 搭載用の双胴型の船体と、この船体上に搭載されると共に表面には発熱パネルが 多数装着された赤外線放射多面体ドームとを備えて成っていた。そして、上記内 部に格納された赤外線発生装置の動作により、上記発熱パネルが所定温度に加熱 され、該赤外線放射多面体ドームから上方及び前後左右のあらゆる方向に赤外線 が放射されるようになっていた。これにより、赤外線ホーミング装置を有する飛 翔体は、例えば水上を移動する赤外線放射標的を追尾することとなり、所要の爆 撃訓練又は射撃訓練が行われる。 For example, the following two targets have been proposed as conventional infrared radiation targets of this type: There is. First, the first conventional example is as described in Japanese Utility Model Application Publication No. 63-23597, A twin-hulled hull for mounting and a heat generating panel mounted on the hull. It consisted of a large number of infrared emitting polyhedral domes attached. And within the above The heating panel is heated to a predetermined temperature by the operation of an infrared generator stored in the unit. The infrared rays are emitted from the infrared emitting polyhedral dome in all directions upward, forward, backward, left and right. was beginning to be emitted. This allows aircraft with infrared homing devices to The flying object will track an infrared emitting target moving over water, for example, and deliver the required explosive Shooting training or target practice will be conducted.

【0003】 次に、第二の従来例は、実開平1-74496号公報に記載されているように、搭載 用の双胴型の船体と、この船体上に搭載されると共に内部に加熱手段としての熱 風供給装置を有し表面には外板との間に空気層を介在させて赤外線透過性膜が張 られたドーム状の赤外線放射体とを備えて成っていた。そして、上記内部に設け られた熱風供給装置の動作により、発生した熱風が赤外線放射体の外板内側付近 に形成された二重構造の流路を一周することで上記外板が所定温度に加熱され、 上記ドーム状の赤外線放射体から上方及び前後左右のあらゆる方向に赤外線が放 射されるようになっていた。これにより、第一の従来例と同様に、所要の爆撃訓 練又は射撃訓練が行われる。0003 Next, the second conventional example is as described in Utility Model Application Publication No. 1-74496. A twin-hulled hull for use in the It has a wind supply device and an infrared transparent film is stretched on the surface with an air layer between it and the outer panel. It consisted of a dome-shaped infrared radiator. And installed inside the above Due to the operation of the hot air supply device, the generated hot air is distributed near the inside of the outer panel of the infrared radiator. The outer plate is heated to a predetermined temperature by going around the double-structured flow path formed in the Infrared rays are emitted from the above dome-shaped infrared radiator in all directions upward, forward, backward, left and right. It was starting to get shot. As a result, similar to the first conventional example, the required bombing training Drill or target practice will be held.

【0004】0004

【考案が解決しようとする課題】[Problem that the idea aims to solve]

しかし、上記第一の従来例の赤外線放射標的においては、赤外線放射多面体ド ームの表面に多数装着された発熱パネルがむき出しになって外気に直接触れる状 態となっているので、周囲に吹いている風が強いと、上記ドームの風上側は風で 冷されて風下側よりも温度が低くなり、その付近の発熱パネルからの赤外線放射 量が少なくなってしまう。従って、上記赤外線放射多面体ドームの全体から放射 される赤外線が不均一となるものであった。このように上記風速変動による温度 変化に対して各発熱パネルを所定温度に維持するためには、大電力を必要とする ものであった。また、逆に、太陽光線が直接入射する面は、太陽光線が当たらな い面よりも温度が高くなり、その付近の発熱パネルからの赤外線放射量が多くな ってしまう。この場合も、上記ドーム全体から放射される赤外線が不均一となる おそれがあった。 However, in the first conventional infrared emitting target mentioned above, the infrared emitting polyhedron Many heat-generating panels attached to the surface of the room are exposed and in direct contact with the outside air. Therefore, if there is a strong wind blowing in the surrounding area, the windward side of the dome will be affected by the wind. The temperature is lower than that on the leeward side, and infrared radiation from nearby heating panels The amount will decrease. Therefore, the radiation is emitted from the entire infrared emitting polyhedral dome. The infrared rays emitted were non-uniform. In this way, the temperature due to the above wind speed fluctuation A large amount of power is required to maintain each heating panel at a predetermined temperature despite changes. It was something. Conversely, the surface on which the sun's rays directly enter is the one where the sun's rays do not hit The temperature will be higher than that of the other side, and the amount of infrared radiation from the heat generating panel in the vicinity will increase. That's what happens. In this case as well, the infrared rays emitted from the entire dome become non-uniform. There was a risk.

【0005】 また、上記第二の従来例の赤外線放射標的においては、ドーム状の赤外線放射 体の表面に赤外線透過性膜が張られており、外板が外気に直接触れないようにな っているので、風による表面温度の変化は抑えられ、このとき放射される赤外線 は略均一とすることができる。しかし、太陽光線が直接入射する面と入射しない 面とでは、この場合も温度差が生じ、このとき放射される赤外線は不均一となる おそれがあった。さらに、ドーム状の赤外線放射体の内部には、加熱手段として の熱風供給装置が設けられると共に、外板の内側付近には二重構造の熱風の流路 が形成されており、全体として赤外線放射体の構造が複雑であった。従って、高 価であると共に、訓練使用後の修復作業が面倒であった。[0005] In addition, in the second conventional example of infrared radiation target mentioned above, the infrared radiation target has a dome shape. An infrared-transparent membrane is placed on the surface of the body to prevent the outer skin from coming into direct contact with the outside air. This suppresses changes in surface temperature caused by wind, and the infrared rays emitted at this time can be substantially uniform. However, the surface on which the sun's rays directly enter and the surface on which it does not enter There will also be a temperature difference between the surface and the surface, and the infrared rays emitted at this time will be non-uniform. There was a risk. Furthermore, inside the dome-shaped infrared radiator, there is a A hot air supply device is installed, and a double-walled hot air flow path is installed near the inside of the outer panel. was formed, and the overall structure of the infrared radiator was complex. Therefore, high In addition to being expensive, repair work after training use was troublesome.

【0006】 そこで、本考案は、このような問題点に対処し、構造が比較的簡単であると共 に風や太陽光線の影響を少なくして赤外線放射の温度を略均一とすることができ 、かつ風速変動による温度変化があっても消費電力の少ない赤外線放射標的を提 供することを目的とする。[0006] Therefore, the present invention addresses these problems and has a relatively simple structure. The temperature of infrared radiation can be made almost uniform by reducing the influence of wind and sunlight. , and provides an infrared radiation target that consumes less power even when temperature changes due to wind speed fluctuations. The purpose is to provide

【0007】[0007]

【課題を解決するための手段】 上記目的を達成するために、本考案による赤外線放射標的は、搭載用の基台と 、この基台上に搭載されると共に外表面の全部又は一部には個々に赤外線を放出 する赤外線発生パネルが多数装着された立体形状物から成る赤外線放射体と、こ の赤外線放射体の赤外線発生パネルを作動させるための電力を供給する電源装置 と、上記赤外線放射体の温度を制御する温度制御手段とを有する赤外線放射標的 において、上記個々の赤外線発生パネルは、短冊状に形成された複数枚の発熱体 と反射板とをその長手方向を横方向とし縦方向に交互に配列して並べ、互いに隣 接する発熱体と反射板とを側面視で90度以内の角度で交わらせて連続するジグザ グ状に接合し、さらにそれらの裏面側には断熱材を介在させ、かつ表面側には赤 外線透過フィルムを張って形成したものである。[Means to solve the problem] In order to achieve the above purpose, the infrared radiation target according to the present invention has a mounting base and , is mounted on this base, and all or part of the outer surface individually emits infrared rays. This is an infrared radiator consisting of a three-dimensional object equipped with a large number of infrared ray generating panels. A power supply device that provides power to operate the infrared generating panel of the infrared emitter of and temperature control means for controlling the temperature of the infrared radiator. In the above, each infrared generating panel has a plurality of heating elements formed in a rectangular shape. and reflectors are arranged alternately in the vertical direction with their longitudinal direction as the horizontal direction, and are arranged next to each other. A continuous zigza where the heating element and the reflecting plate intersect at an angle of less than 90 degrees when viewed from the side. Insulating material is interposed on the back side, and red on the front side. It is made of a film that transmits external radiation.

【0008】 また、上記赤外線放射体の外側面にて垂直状に装着される赤外線発生パネルは 、互いに隣接する発熱体と反射板とにおいて発熱体を上方で斜め下向きに、反射 板を下方で斜め上向きに配置すると効果的である。[0008] In addition, the infrared generation panel installed vertically on the outer surface of the above infrared radiator is , the heating element is reflected upward and diagonally downward between the heating element and the reflecting plate that are adjacent to each other. It is effective to place the board diagonally upward at the bottom.

【0009】[0009]

【作用】[Effect]

このように構成された赤外線放射標的は、赤外線放射体の外表面に多数装着さ れ、互いに隣接する発熱体と反射板とを側面視で90度以内の角度で交わらせて連 続するジグザク状に接合し、さらにそれらの裏面側には断熱材を介在させ、かつ 表面側には赤外線透過フィルムを張って形成した赤外線発生パネルを作動させる ことにより、周囲に赤外線を放出する。これにより、上記赤外線放射体の構造を 比較的簡単とすると共に、風や太陽光線の影響を少なくして赤外線放射の温度を 略均一とすることができる。 A large number of infrared radiation targets configured in this way are attached to the outer surface of the infrared radiator. The heating element and the reflecting plate that are adjacent to each other are connected so that they intersect at an angle of less than 90 degrees when viewed from the side. They are joined in a zigzag shape, and a heat insulating material is interposed on the back side. Activates an infrared generation panel formed by pasting an infrared transmission film on the front side. As a result, it emits infrared rays to the surrounding area. This changes the structure of the infrared emitter above. In addition to being relatively simple, it is possible to reduce the temperature of infrared radiation by reducing the influence of wind and sunlight. It can be made substantially uniform.

【0010】0010

【実施例】【Example】

以下、本考案の実施例を添付図面に基づいて詳細に説明する。 図1は本考案による赤外線放射標的の実施例を示す側面図であり、図2はその 平面図であり、図3はその正面図である。この赤外線放射標的は、赤外線追尾型 の飛翔体などの爆撃訓練又は射撃訓練に使用するもので、例えば水上を自走式に 移動する標的であり、図1〜図3に示すように、双胴型の船体1と、赤外線放射 体2と、電源装置3と、温度制御装置4とを有して成る。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Figure 1 is a side view showing an embodiment of the infrared radiation target according to the present invention, and Figure 2 is a side view of the infrared radiation target according to the present invention. FIG. 3 is a plan view, and FIG. 3 is a front view thereof. This infrared emitting target is an infrared tracking type It is used for bombing training or shooting training such as flying objects, such as self-propelled on water. It is a moving target, and as shown in Figures 1 to 3, it has a twin-hulled hull 1 and an infrared radiation The device includes a body 2, a power supply device 3, and a temperature control device 4.

【0011】 上記双胴型の船体1は、赤外線放射体2を搭載する基台となるもので、図2に 示すように、全長約20mの二つの胴体1a,1bを有し、これらの胴体1a,1 bを平行に並べ所定の間隔をあけて甲板5で連結し、全幅約10mに形成されてい る。そして、上記胴体1a,1bの内部は、図1に示すように、複数個の隔壁6 ,6,…で水密的に仕切られており、それらの区画内にはそれぞれ電源装置3、 温度制御装置4、指令受信機7、電気制御盤8、エンジン9、メインタンク10 などを備えている。[0011] The above-mentioned twin-hulled hull 1 serves as a base on which an infrared radiator 2 is mounted, and is shown in Figure 2. As shown, it has two bodies 1a and 1b with a total length of about 20m. b are arranged in parallel and connected at a predetermined interval on deck 5, forming a total width of about 10 m. Ru. As shown in FIG. 1, the interior of the bodies 1a and 1b includes a plurality of partition walls 6 , 6, ... are watertightly partitioned, and power supplies 3, 3, and 3 are installed in these sections, respectively. Temperature control device 4, command receiver 7, electric control panel 8, engine 9, main tank 10 It is equipped with such things as

【0012】 上記船体1の甲板5の上面には、赤外線放射体2が設けられている。この赤外 線放射体2は、赤外線追尾型の飛翔体などの爆撃訓練又は射撃訓練に使用する標 的において周囲に赤外線を放射するもので、その全体形状は例えば直径約9m、 高さ約6mの円筒状体に形成され、その外周側面には個々に赤外線を放出する電 気パネルヒータなどの赤外線発生パネル11,11,…が多数装着されている。 上記赤外線放射体2の具体的な構造は、図4に示すように、H形鋼12及びT形 鋼13を用いてやぐらを組み、全体として円筒状の骨組を構成し、その外周側の 隣接するT形鋼13,13の間に、図3に示すように、1枚ずつ赤外線発生パネ ル11,11,…を嵌め込んで取付金具等により固定してある。このとき、図5 に示すように、上記円筒状の骨組の周囲を例えば24分割し、この24分割の位置に 赤外線発生パネル11を1枚ずつ当てはめて行けばよい。そして、図3に示すよ うに、上記赤外線放射体2の高さ方向において例えば5段に積み重ねることによ り、全体では24枚×5=120枚の赤外線発生パネル11が装着されている。0012 An infrared radiator 2 is provided on the upper surface of the deck 5 of the hull 1. this infrared The radiation emitter 2 is a target used for bombing training or shooting training such as an infrared tracking type flying object. It emits infrared rays to the surrounding area, and its overall shape is, for example, about 9 meters in diameter. It is formed into a cylindrical body with a height of about 6 m, and on its outer circumferential side there are individual electric currents that emit infrared rays. A large number of infrared generating panels 11, 11, . . . such as air panel heaters are installed. The specific structure of the infrared radiator 2 is as shown in FIG. The tower is constructed using Steel 13, forming a cylindrical frame as a whole, and the outer circumference of the tower is As shown in Fig. 3, one infrared generating panel is placed between adjacent T-beams 13, The screws 11, 11, . . . are fitted and fixed with mounting brackets or the like. At this time, Figure 5 As shown in the figure, divide the circumference of the cylindrical frame into 24 parts, and place the parts at the positions of the 24 parts. It is sufficient to apply the infrared ray generating panels 11 one by one. And as shown in Figure 3 By stacking the infrared radiators 2 in, for example, five stages in the height direction, In total, 24 x 5 = 120 infrared generating panels 11 are installed.

【0013】 上記船体1の胴体1a,1bの内部に設けられた電源装置3は、上記赤外線放 射体2の外周側面に装着された赤外線発生パネル11,11,…を作動させるた めの電力を供給するもので、例えば発動発電機から成る。また、同じく上記胴体 1a,1bの内部に設けられた温度制御装置4は、上記赤外線放射体2の温度を 制御するもので、後述の赤外線発生パネル11に設けられた温度センサ20から の検出信号を入力して所定温度に制御するようになっている。[0013] The power supply device 3 provided inside the bodies 1a and 1b of the hull 1 is configured to emit infrared rays. In order to operate the infrared generation panels 11, 11, ... attached to the outer peripheral side of the projectile 2. A device that supplies electrical power to the engine, such as a motor generator. Also, the above body A temperature control device 4 provided inside 1a and 1b controls the temperature of the infrared radiator 2. from a temperature sensor 20 provided on the infrared generation panel 11, which will be described later. The temperature is controlled to a predetermined temperature by inputting a detection signal.

【0014】 ここで、本考案においては、上記赤外線放射体2の個々の赤外線発生パネル1 1は、図6及び図7に示すように形成されている。すなわち、図6に示すように 、それぞれ同一の所定幅で短冊状に形成され赤外線を放出する電気パネルヒータ などの複数枚の発熱体14と、この発熱体14と同一幅で短冊状に形成され上記 発熱体14から放出される赤外線を反射するアルミ板などの複数枚の反射板15 とを有し、これらの板材の長手方向を赤外線発生パネル11の横方向に合わせる と共に、縦方向に交互に配列して並べてある。そして、図7(a)に示すように 、互いに隣接する発熱体14と反射板15とを側面視で90度以内の角度で交わら せて連続するジグザク状に接合してある。さらに、上記各発熱体14及び反射板 15の裏面側には、該発熱体14から後方へ熱伝導したり又は対流によって熱を 損失するのを防止するため発泡スチロールなどの断熱材16が充てん等により介 在されており、かつ各発熱体14及び反射板15の表面側には、該発熱体14が 直接外気に触れるのを防ぎ、相対風によって上記発熱体14の温度が変動したり 又は対流によって熱損失が増加するのを抑えるためポリエチレンなどの赤外線透 過フィルム17が張られている。なお、図6及び図7において、符号18は上記 発熱体14及び反射板15並びに断熱材16を保持するための後面板を示し、符 号19は上記赤外線透過フィルム17の四辺をとめる側端板を示しており、符号 20は発熱体14の温度を測定する温度センサを示している。[0014] Here, in the present invention, each infrared generating panel 1 of the infrared radiator 2 is 1 is formed as shown in FIGS. 6 and 7. That is, as shown in Figure 6 , an electric panel heater that is formed into strips with the same predetermined width and emits infrared rays. A plurality of heating elements 14 such as A plurality of reflective plates 15 such as aluminum plates that reflect infrared rays emitted from the heating element 14 and the longitudinal direction of these plates is aligned with the lateral direction of the infrared generating panel 11. They are also arranged alternately in the vertical direction. Then, as shown in Figure 7(a) , the heating element 14 and the reflecting plate 15 that are adjacent to each other intersect at an angle of less than 90 degrees when viewed from the side. They are joined in a continuous zigzag pattern. Furthermore, each of the heating elements 14 and a reflecting plate On the back side of 15, heat is transferred backward from the heating element 14 or heat is transferred by convection. Insulating material 16 such as styrofoam is interposed by filling etc. to prevent loss. The heating element 14 is located on the surface side of each heating element 14 and the reflecting plate 15. It prevents direct contact with the outside air and prevents the temperature of the heating element 14 from fluctuating due to relative wind. Or, to suppress the increase in heat loss due to convection, use infrared transparent materials such as polyethylene. A film 17 is applied. In addition, in FIGS. 6 and 7, the reference numeral 18 is the same as above. The rear plate for holding the heating element 14, the reflecting plate 15, and the heat insulating material 16 is shown. No. 19 indicates a side end plate that fastens the four sides of the above-mentioned infrared transmitting film 17. 20 indicates a temperature sensor that measures the temperature of the heating element 14.

【0015】 このような赤外線発生パネル11の構造により、該赤外線発生パネル11から 放出される赤外線は、図7(a)において矢印Bで示すように発熱体14から直 接伝播するものと、矢印Cで示すように上記発熱体14で発生したものが反射板 15に当って前方に反射してくるものとが合成された形となり、パネル前方へ放 出される赤外線21の指向性が高くなる。また、上記発熱体14と反射板15と をジグザグ状に接合することにより、発熱体14の面積を小さくすることができ るので、経済的であると共に、熱損失を抑えることができる。[0015] Due to the structure of the infrared ray generating panel 11, the infrared ray generating panel 11 The emitted infrared rays are directed directly from the heating element 14 as shown by arrow B in FIG. 7(a). The tangentially propagating one and the one generated by the heating element 14 as shown by arrow C are reflected on the reflector plate. 15 and is reflected forward, and is emitted to the front of the panel. The directivity of the emitted infrared rays 21 becomes high. Further, the heating element 14 and the reflecting plate 15 By joining them in a zigzag shape, the area of the heating element 14 can be reduced. Therefore, it is economical and can suppress heat loss.

【0016】 また、上記赤外線発生パネル11の構造において、特に前記円筒状の赤外線放 射体2の外周側面にて垂直状に装着されるものにおいては、図7(a)に示すよ うに、発熱体14を上方で斜め下向きに位置させると共に、反射板15をその下 方で斜め上向きに位置させて、交互にジグザク状に接合してある。このような構 造とすることにより、例えば矢印Eのように斜め上方から入射してくる太陽光線 があるとすると、この太陽光線は、上方に位置する発熱体14の板面には入射せ ず、下方に位置する反射板15のみに入射して、反射の法則に従った角度で例え ば矢印F方向に反射する。従って、上記太陽光線は一切発熱体14に入射吸収さ れることなく、該発熱体14の温度上昇が防止され、赤外線放射体2の温度変動 を防止することができる。[0016] Furthermore, in the structure of the infrared ray generating panel 11, the cylindrical infrared ray For those mounted vertically on the outer peripheral side of the projectile 2, as shown in Fig. 7(a). The heating element 14 is positioned above and diagonally downward, and the reflective plate 15 is positioned below it. They are placed diagonally upward on both sides and joined alternately in a zigzag pattern. This kind of structure For example, by making the structure If there is, this solar ray will not be able to enter the plate surface of the heating element 14 located above. For example, if the light is incident only on the reflecting plate 15 located below, the angle follows the law of reflection. It is reflected in the direction of arrow F. Therefore, the above sunlight is not absorbed at all by the heating element 14. The temperature of the heating element 14 is prevented from rising, and the temperature fluctuation of the infrared radiating element 2 is prevented. can be prevented.

【0017】 なお、図1〜図3において、符号22はこの赤外線放射標的を外部から無線通 信によりコントロールするための指令送受信用アンテナを示し、符号23は爆撃 又は射撃訓練の航空機がこの赤外線放射標的をレーダで発見するためのレーダ反 射装置を示している。[0017] In addition, in FIGS. 1 to 3, reference numeral 22 indicates a wireless communication target for this infrared radiation target from the outside. 23 indicates an antenna for transmitting and receiving commands for control by radio communication. or radar countermeasures for target training aircraft to detect this infrared emitting target with radar. This shows the irradiation device.

【0018】 図8は以上のように構成された赤外線放射標的の赤外線放射体2の温度制御を 行う制御系を示すブロック図である。この制御系は、図に示すように、指令送受 信用アンテナ22と、指令受信機7と、電気制御盤8と、電源装置3と、温度制 御装置4と、赤外線放射体2と、温度センサ20とから成り、上記の各機器は、 図1に示す船体1内で隔壁6,6,…により仕切られた各区画内にそれぞれ設け られている。そして、指令送受信用アンテナ22で例えば訓練参加の航空機から の指令電波を受信し、これを指令受信機7に入力し指令信号を取り出すと共に増 幅して電気制御盤8へ送り、例えばCPU(中央処理装置)から成る電気制御盤 8は指令を解読して電源装置3及び温度制御装置4に制御信号を送出する。[0018] Figure 8 shows the temperature control of the infrared emitter 2 of the infrared radiation target configured as described above. FIG. This control system sends and receives commands as shown in the figure. The reliable antenna 22, the command receiver 7, the electric control panel 8, the power supply device 3, and the temperature control It consists of a control device 4, an infrared radiator 2, and a temperature sensor 20, and each of the above devices includes: Installed in each compartment partitioned by bulkheads 6, 6, ... in the hull 1 shown in Figure 1. It is being Then, for example, from an aircraft participating in training, the command transmission/reception antenna 22 Receives the command radio wave, inputs it to the command receiver 7, takes out the command signal, and increases the number of command signals. It is sent to an electric control panel 8, for example, an electric control panel consisting of a CPU (central processing unit). 8 decodes the command and sends a control signal to the power supply device 3 and temperature control device 4.

【0019】 すると、電源装置3が動作して赤外線放射体2の赤外線発生パネル11へ電力 を供給すると共に、温度制御装置4が動作する。上記の電力の供給により、赤外 線発生パネル11の発熱体14が加熱されると共に赤外線を放出し、このときの 上記発熱体14の温度が温度センサ20で検出され、その検出信号が上記温度制 御装置4へ送られる。この温度制御装置4には、目標温度が設定してあり、上記 検出温度と比較して誤差を取り出し、この誤差が無くなるようにフィードバック 制御する。これにより、上記赤外線放射体2の温度は略一定に制御される。この 結果、図1に示す赤外線放射体2からは略均一の赤外線が放射され、飛翔体側の 赤外線感知装置によってより正確に感知され、赤外線放射標的により飛翔体の所 望する爆撃訓練又は射撃訓練が行われる。[0019] Then, the power supply device 3 operates and supplies power to the infrared generation panel 11 of the infrared radiator 2. At the same time, the temperature control device 4 operates. With the above power supply, infrared The heating element 14 of the ray generating panel 11 is heated and emits infrared rays. The temperature of the heating element 14 is detected by the temperature sensor 20, and the detection signal is sent to the temperature controller 20. The data is sent to the control device 4. A target temperature is set in this temperature control device 4, and the above-mentioned Compare the detected temperature to extract the error and provide feedback to eliminate this error. Control. Thereby, the temperature of the infrared radiator 2 is controlled to be substantially constant. this As a result, substantially uniform infrared rays are emitted from the infrared radiator 2 shown in FIG. The infrared sensing device detects the projectile more accurately and the infrared emitting target locates the projectile. The desired bombing or shooting training will take place.

【0020】 なお、図1〜図3においては、赤外線放射体2は、円筒状に形成すると共に赤 外線発生パネル11,11,…を外周側面だけに装着したものとして示したが、 本考案はこれに限らず、上記円筒状の赤外線放射体2の屋根上面に赤外線発生パ ネル11を平面状に並べて装着してもよい。また、上記赤外線放射体2の形状は 、円筒状のものに限らず、上部が半球形に形成されたドーム状としてもよいし、 全体を球状に形成してもよい。さらに、上記赤外線放射体2を搭載する基台は、 水上に浮かべる船体1に限らず、陸上に置く台車であってもよい。また、その基 台は、自走式のものでもよいし、定置式のものでもよい。[0020] In addition, in FIGS. 1 to 3, the infrared radiator 2 is formed in a cylindrical shape and has a red Although the external line generating panels 11, 11, ... are shown as being attached only to the outer peripheral side, The present invention is not limited to this, and the infrared ray generating pad is placed on the roof top surface of the cylindrical infrared radiator 2. The flannel 11 may be arranged and attached in a plane. Furthermore, the shape of the infrared radiator 2 is , it is not limited to a cylindrical shape, it may be a dome shape with a hemispherical upper part, The whole may be formed into a spherical shape. Furthermore, the base on which the infrared radiator 2 is mounted is The hull 1 is not limited to floating on water, but may be a cart placed on land. Also, its basis The stand may be a self-propelled type or a stationary type.

【0021】[0021]

【考案の効果】[Effect of the idea]

本考案は以上のように構成されたので、赤外線放射体2の外表面に多数装着さ れ、互いに隣接する発熱体14と反射板15とを側面視で90度以内の角度で交わ らせて連続するジグザグ状に接合し、さらにそれらの裏面側には断熱材16を介 在させ、かつ表面側には赤外線透過フィルム17を張って形成した赤外線発生パ ネル11を作動させることにより、周囲に赤外線を放出することができる。これ により、第一及び第二の従来例に比し上記赤外線放射体2の構造を簡単とすると 共に、風や太陽光線の影響を少なくして赤外線放射の温度を略均一とすることが でき、かつ風速変動による温度変化があっても消費電力を少なくできる。そして 、上記赤外線放射体2から放射される赤外線を略均一とすることができ、該赤外 線放射体2により飛翔体の所望する爆撃訓練又は射撃訓練が行われる。また、上 記のように構造が比較的簡単であるから、コスト低下を図ることができると共に 、訓練使用後の修復作業を簡単とすることができる。 Since the present invention is configured as described above, a large number of infrared rays can be attached to the outer surface of the infrared radiator 2. The heating element 14 and the reflecting plate 15 that are adjacent to each other intersect at an angle of less than 90 degrees when viewed from the side. They are joined in a continuous zigzag shape, and a heat insulating material 16 is interposed between them on the back side. The infrared ray generating pattern is formed by placing an infrared ray transmitting film 17 on the surface of By operating the channel 11, infrared rays can be emitted to the surroundings. this Therefore, if the structure of the infrared radiator 2 is simplified compared to the first and second conventional examples, In addition, it is possible to reduce the influence of wind and sunlight and make the temperature of infrared radiation almost uniform. power consumption can be reduced even when there are temperature changes due to wind speed fluctuations. and , the infrared rays emitted from the infrared radiator 2 can be made substantially uniform; The radiation emitter 2 performs desired bombing training or shooting training for the flying object. Also, above As the structure is relatively simple as shown above, it is possible to reduce costs and , the repair work after training and use can be done easily.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】 本考案による赤外線放射標的の実施例を示す
側面図、
FIG. 1 is a side view showing an embodiment of an infrared radiation target according to the present invention;

【図2】 上記赤外線放射標的を示す平面図、[Fig. 2] A plan view showing the infrared radiation target,

【図3】 上記赤外線放射標的を示す正面図、[Fig. 3] A front view showing the infrared radiation target,

【図4】 赤外線放射体の骨組を示す中央断面図、[Fig. 4] Central sectional view showing the framework of the infrared radiator,

【図5】 赤外線放射体の構造を示す平面図、[Fig. 5] A plan view showing the structure of the infrared radiator,

【図6】 赤外線発生パネルの構造を示す拡大正面図、[Figure 6] Enlarged front view showing the structure of the infrared generation panel,

【図7】 上記赤外線発生パネルの構造を示す図6のA
−A線断面図及び右側面図、
[FIG. 7] A in FIG. 6 showing the structure of the above infrared generating panel
- A sectional view and right side view,

【図8】 赤外線放射体の温度制御を行う制御系を示す
ブロック図。
FIG. 8 is a block diagram showing a control system that controls the temperature of the infrared radiator.

【符号の説明】[Explanation of symbols]

1…船体、 1a,1b…胴体、 2…赤外線放射体、
3…電源装置、4…温度制御装置、 5…甲板、 1
1…赤外線発生パネル、 14…発熱体、15…反射
板、 16…断熱材、 17…赤外線透過フィルム、
20…温度センサ。
1... Hull, 1a, 1b... Fuselage, 2... Infrared emitter,
3...Power supply device, 4...Temperature control device, 5...Deck, 1
1... Infrared generating panel, 14... Heating element, 15... Reflector, 16... Heat insulating material, 17... Infrared transmitting film,
20...Temperature sensor.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 搭載用の基台と、この基台上に搭載され
ると共に外表面の全部又は一部には個々に赤外線を放出
する赤外線発生パネルが多数装着された立体形状物から
成る赤外線放射体と、この赤外線放射体の赤外線発生パ
ネルを作動させるための電力を供給する電源装置と、上
記赤外線放射体の温度を制御する温度制御手段とを有す
る赤外線放射標的において、上記個々の赤外線発生パネ
ルは、短冊状に形成された複数枚の発熱体と反射板とを
その長手方向を横方向とし縦方向に交互に配列して並
べ、互いに隣接する発熱体と反射板とを側面視で90度以
内の角度で交わらせて連続するジグザグ状に接合し、さ
らにそれらの裏面側には断熱材を介在させ、かつ表面側
には赤外線透過フィルムを張って形成したことを特徴と
する赤外線放射標的。
Claim 1: An infrared ray device consisting of a mounting base and a three-dimensional object that is mounted on the base and has a large number of infrared generating panels that individually emit infrared rays on all or part of its outer surface. In an infrared emitting target comprising a radiator, a power supply supplying power for operating an infrared generating panel of the infrared radiator, and temperature control means for controlling the temperature of the infrared radiator, each of the infrared rays The panel consists of a plurality of rectangular heating elements and reflective plates arranged alternately in the vertical direction with their longitudinal direction being the horizontal direction. An infrared radiation target characterized by being formed by joining in a continuous zigzag shape so that they intersect at an angle of less than 100 degrees, with a heat insulating material interposed on the back side, and an infrared transmitting film stretched on the front side. .
【請求項2】 上記赤外線放射体の外側面にて垂直状に
装着される赤外線発生パネルは、互いに隣接する発熱体
と反射板とにおいて発熱体を上方で斜め下向きに、反射
板を下方で斜め上向きに配置したことを特徴とする請求
項1記載の赤外線放射標的。
2. The infrared generating panel mounted vertically on the outer surface of the infrared radiator has a heating element and a reflecting plate adjacent to each other, with the heating element facing upward diagonally downward and the reflecting plate diagonally downward. The infrared emitting target according to claim 1, characterized in that it is arranged upward.
JP3270891U 1991-04-12 1991-04-12 Infrared radiation target Expired - Lifetime JP2547539Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3270891U JP2547539Y2 (en) 1991-04-12 1991-04-12 Infrared radiation target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3270891U JP2547539Y2 (en) 1991-04-12 1991-04-12 Infrared radiation target

Publications (2)

Publication Number Publication Date
JPH04122998U true JPH04122998U (en) 1992-11-05
JP2547539Y2 JP2547539Y2 (en) 1997-09-10

Family

ID=31915600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270891U Expired - Lifetime JP2547539Y2 (en) 1991-04-12 1991-04-12 Infrared radiation target

Country Status (1)

Country Link
JP (1) JP2547539Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107719592A (en) * 2017-10-19 2018-02-23 南京长峰航天电子科技有限公司 A kind of aluminium alloy assemble type binary high speed target vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107719592A (en) * 2017-10-19 2018-02-23 南京长峰航天电子科技有限公司 A kind of aluminium alloy assemble type binary high speed target vessel

Also Published As

Publication number Publication date
JP2547539Y2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
JP5496538B2 (en) Antenna system for micro airplanes
US20140354064A1 (en) System and method for safe, wireless energy transmission
US3938151A (en) Passive radar decoy having a large cross section
US20080106482A1 (en) Electronically scanned hemispheric antenna
US9573702B1 (en) Deployed radar panel for space situational awareness
JP7102132B2 (en) Thermal management system for controlling the temperature of the reflective surface with the solar concentrator array
CN108445469A (en) A kind of rotating mirror scanning device and method of multi-line laser radar
JP2018002133A (en) Airship equipped with compact solar generator using local light concentration and bifacial solar cell
US8144067B2 (en) Combination planar and parabolic reflector antenna to access satellite
US10008978B2 (en) Solar radiation redirection device
JP2011171803A (en) Antenna device
JPH04122998U (en) infrared emitting target
US20240103535A1 (en) Drone coordinated satellite communications, energy harvesting, and camouflage
US4207867A (en) Solar energy collector and method
JP2003191899A (en) Method for obtaining light/heat source by focusing/ concentrating sunlight by using one or n reflecting mirrors launched on satellite orbit
US4116220A (en) Solar energy collector
JP2001111090A (en) Optical position sensor, optical tracking system and optical tracking type power generation system
JPH0523996Y2 (en)
CN115605007B (en) Satellite remote sensing data transmission processing equipment
USH694H (en) Movable thermal and radar vehicular decoy
JPH0523994Y2 (en)
JP2002022399A (en) Flying body loaded by reflector for radar reflection
USH679H (en) Foldable towable thermal and radar vehicular decoy
CN101558324A (en) Transducer array arrangement and operation for sodar applications
JP2697389B2 (en) Dome for flying objects