JPH04122837A - Analyzing method of copper in superconductor - Google Patents

Analyzing method of copper in superconductor

Info

Publication number
JPH04122837A
JPH04122837A JP24573990A JP24573990A JPH04122837A JP H04122837 A JPH04122837 A JP H04122837A JP 24573990 A JP24573990 A JP 24573990A JP 24573990 A JP24573990 A JP 24573990A JP H04122837 A JPH04122837 A JP H04122837A
Authority
JP
Japan
Prior art keywords
superconductor
copper
solution
hydrochloric acid
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24573990A
Other languages
Japanese (ja)
Inventor
Hideo Hara
原 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP24573990A priority Critical patent/JPH04122837A/en
Publication of JPH04122837A publication Critical patent/JPH04122837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To improve a quality control and a process control of a superconductor by determining copper quantity in the suprconductor with high sensitivity by an ICP method and by making definite the relation between the composition and the characteristics of the copper in the superconductor. CONSTITUTION:The title method is an analyzing method of copper in a superconductor by a high-frequency inductively coupled plasma emission method. A hydrochloric acid and a nitric acid are added to the superconductor and the superconductor is decomposed by heating and then cooled down. Next, europium is added as a standard substance to a mixed solution of a filtered liquid obtained by filtering a decomposition solution thus obtained and of a washed liquid obtained by washing a precipitate by the hydrochloric acid, then the solution is made to be of a prescribed volume by the hydrochloric acid. The solution thus prepared is used as a sample solution and the intensity of emission is measured by using the high-frequency inductively coupled plasma emission method, so as to analyze the copper in the superconductor. According to this constitution, the relation between the composition and the characteristics of the copper in the superconductor is made definite and also a quality control and a process control of the superconductor are improved.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は高周波誘導結合型プラズマ発光法(以下、IC
P法という)による超電導体中の銅の分析方法に関する
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention is directed to a high frequency inductively coupled plasma luminescence method (hereinafter referred to as IC).
This invention relates to a method for analyzing copper in superconductors using the P method.

B0発明の概要 本発明は、超電導体に塩酸及び硝酸を加え、加熱により
前記超電導体を分解させた後冷却し、次にこの分解溶液
を濾過することにより得られる濾波と沈澱を塩酸で洗う
ことにより得られる洗液との混合液に標準物質としてユ
ーロピウム(以下、EUという)を加えてから塩酸で一
定容にし、これを試料溶液として高周波誘導結合型プラ
ズマ発光法を用いて発光強度を測定することにより超電
導体中の銅が高感度に定量され、これにより超電導体中
の銅の組成と特性との関係を明確にすると共に、超電導
体の品質管理及び工程管理を向上させることを可能とす
る。
B0 Summary of the Invention The present invention involves adding hydrochloric acid and nitric acid to a superconductor, decomposing the superconductor by heating, cooling it, and then washing the filtrate and precipitate obtained by filtering the decomposed solution with hydrochloric acid. Europium (hereinafter referred to as EU) is added as a standard substance to the mixture with the washing solution obtained by the method, and the volume is made up to a certain level with hydrochloric acid.The luminescence intensity is measured using the high-frequency inductively coupled plasma luminescence method as a sample solution. As a result, copper in superconductors can be quantified with high sensitivity, making it possible to clarify the relationship between the composition and properties of copper in superconductors, and to improve quality control and process control of superconductors. .

C0従来の技術 超電導材料の研究開発は近年に至り急速に進められ、希
土類を中心とした材料を用いて各所で盛んに行われ、最
近では5b−Bi−5r−Ca −Cu系セラミックも
手掛けられている。
C0 Conventional technology Research and development of superconducting materials has progressed rapidly in recent years, and is being actively carried out in various places using materials centered on rare earth elements.Recently, 5b-Bi-5r-Ca-Cu ceramics are also being worked on. ing.

この超電導体の品質を決定する最も大きな要素として原
料の組成配合がある。
The most important factor determining the quality of this superconductor is the composition of raw materials.

即ち、超電導特性は原料の組合せ、配合などにより大き
な影響を受ける。
That is, superconducting properties are greatly affected by the combination and formulation of raw materials.

従って超電導体の各原料の関係をより明確に定量的に把
握するためには、微量銅の分析方法の確立が不可欠であ
る。
Therefore, in order to more clearly and quantitatively understand the relationships among the raw materials of superconductors, it is essential to establish a method for analyzing trace amounts of copper.

D0発明が解決しようとする課題 本発明はこのような問題点に着目して創案されたもので
あって、超電導体中の銅を高感度に定量するICP法を
提供するものである。
D0 Problems to be Solved by the Invention The present invention was devised by paying attention to such problems, and provides an ICP method for quantifying copper in superconductors with high sensitivity.

20課題を解決するための手段及び作用即ち、本発明は
、超電導体に塩酸及び硝酸を加え、加熱により前記超電
導体を分解させた後冷却し、次にこの分解溶液を濾過す
ることにより得られる濾波と沈澱を塩酸で洗うことによ
り得られる洗液との混合液に標準物質としてEUを加え
てから塩酸で一定量にし、これを試料溶液として高周波
誘導結合型プラズマ発光法を用いて発光強度を測定する
ことを、その解決手段としている。
20 Means and Effects for Solving the Problems That is, the present invention is obtained by adding hydrochloric acid and nitric acid to a superconductor, decomposing the superconductor by heating, cooling it, and then filtering this decomposed solution. EU was added as a standard substance to a mixture of filtering and washing solution obtained by washing the precipitate with hydrochloric acid, and the amount was made up to a certain amount with hydrochloric acid. This was used as a sample solution and the luminescence intensity was measured using a high-frequency inductively coupled plasma luminescence method. The solution is to measure it.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

まず、本発明に係る方法を実施するに際し、試料となる
超電導体をよく分解する。
First, when carrying out the method according to the present invention, a superconductor as a sample is thoroughly decomposed.

この分解には塩酸及び硝酸を用いて行う。This decomposition is carried out using hydrochloric acid and nitric acid.

また塩酸及び硝酸は本発明に係る分析方法をより高精度
に行うためホールピペットでその量を計るのが好ましい
Further, in order to perform the analysis method according to the present invention with higher precision, it is preferable to measure the amounts of hydrochloric acid and nitric acid using a whole pipette.

なお、試料となる超電導体は、コニカルビーカを用い、
加熱して分解する。
The superconductor sample was prepared using a conical beaker.
Decompose by heating.

次に、上記分解物を冷却後、口紙などで口遇し、口演を
メスフラスコなどに受ける。また、口紙に残存する銅分
を得るため、沈澱物をMCIでよく洗い、得られる洗液
を同様にメスフラスコなどに受ける。更に得られる口演
と洗液とをよく混合して、これをICP法による超電導
体中の銅の定量分析方法における試料溶液とする。
Next, after cooling the above-mentioned decomposed product, it is treated with a slippery paper or the like, and the mouthpiece is placed in a volumetric flask or the like. Further, in order to obtain the copper content remaining in the opening paper, the precipitate is thoroughly washed with MCI, and the resulting washing liquid is similarly placed in a volumetric flask or the like. Further, the resulting oral solution and the washing liquid are thoroughly mixed and used as a sample solution in a method for quantitatively analyzing copper in a superconductor using the ICP method.

なお、本発明に係る方法で使用しうる超電導体としては
銅を原料の配合組成とするものであればいずれでもよく
、好ましくは5b−Bi−8r−Ca−Cu系超電導体
が挙げられる。
The superconductor that can be used in the method of the present invention may be any superconductor as long as it contains copper as a raw material, preferably a 5b-Bi-8r-Ca-Cu superconductor.

ところで、通常、内部標準物質としてイツトリウム、E
Uなどの希土類及びストロンチウムが一般に使用される
が、本発明に係る分析方法では超電体セラミック中の銅
と共にストロンチウムを定量することを目的とすること
もあり、また通常セラミック中にストロンチウムが含ま
れ、更にy−Ba−Cuセラミック中にイツトリウムが
含まれていることから内部標準物質としてEUを採用す
る。
By the way, yttrium and E are usually used as internal standard substances.
Rare earth elements such as U and strontium are generally used, but the analytical method according to the present invention may also aim to quantify strontium together with copper in superelectric ceramics, and strontium is usually contained in ceramics. Furthermore, since y-Ba-Cu ceramic contains yttrium, EU is used as an internal standard substance.

ところで、ICP法のばらつきの要因としては、測定室
の温度変化により回折格子が伸縮して、波長がずれて測
定値がばらつく原因と試料の粘度により試料吸い込み量
が変化して測定値がばらつく原因とがある。内部標準法
は後者のばらつきを補正する方法である。即ち、試料溶
液中に一定量の標準物質(本発明ではEUを採用)を添
加し、分析物質と標準物質の発光強度の比を求め、試料
吸い込み量の変化を補正したのである。
By the way, the causes of variations in the ICP method include the expansion and contraction of the diffraction grating due to temperature changes in the measurement chamber, which causes the wavelength to shift, causing variations in measured values, and the cause in which the amount of sample sucked changes due to the viscosity of the sample, causing variations in measured values. There is. The internal standard method is a method for correcting the latter variation. That is, a certain amount of a standard substance (EU is used in the present invention) is added to the sample solution, the ratio of the luminescence intensity of the analyte and the standard substance is determined, and the change in the amount of sample sucked is corrected.

以上の試薬を含む試料溶液に塩酸を加え一定容とし、分
析供試料とする。
Add hydrochloric acid to the sample solution containing the above reagents to make a constant volume, and use it as an analysis sample.

なお、使用水はイオン交換水を更に2回蒸留した精製水
を用いるのが好ましい。
Note that it is preferable to use purified water obtained by further distilling ion-exchanged water twice.

F、実施例 以下、本発明に係るICP法による超電導体中の銅の定
量分析方法の詳細な説明を実施例に基づいて説明する。
F. Examples Hereinafter, a detailed explanation of the method for quantitatively analyzing copper in a superconductor by the ICP method according to the present invention will be explained based on examples.

1、分析装置及び試薬 1.1 分析装置および測定条件 ICP発光分光装置は島津製ICAP−1000■型を
用いた。測定条件を表1に示す。
1. Analyzer and Reagents 1.1 Analyzer and Measurement Conditions The ICP emission spectrometer used was a Shimadzu model ICAP-1000. The measurement conditions are shown in Table 1.

表1 測定条件 1.2 試薬 Sb、Bi、Sr、Ca、Cu及びEU原液はそれぞれ
和光純薬工業製の原子吸光測定用11000pp溶液を
用いた。また、HCI、HNO,は同様に和光純薬工業
製有害金属分析用を用いた。
Table 1 Measurement Conditions 1.2 Reagents Sb, Bi, Sr, Ca, Cu, and EU stock solutions were 11000 pp solutions for atomic absorption measurement manufactured by Wako Pure Chemical Industries, Ltd., respectively. Moreover, HCI and HNO used for toxic metal analysis manufactured by Wako Pure Chemical Industries, Ltd. were similarly used.

2、試料の分解及び調製方法 まず、5b−Bi−5r−Ca−Cu系超電導セラミッ
クスをコニカルビーカーに0.2g採取し、塩酸(1+
1)30ml及び硝酸(1+1)lQmA’を加えて加
熱分解した。
2. Sample decomposition and preparation method First, 0.2g of 5b-Bi-5r-Ca-Cu based superconducting ceramics was collected in a conical beaker and diluted with hydrochloric acid (1+
1) 30ml and nitric acid (1+1)lQmA' were added and thermally decomposed.

次に冷却後No、5Cの濾紙を用いて濾過し、得られた
濾波を100rl!’メスフラスコで受けた。
Next, after cooling, it was filtered using No. 5C filter paper, and the obtained filtered wave was filtered at 100 ml! 'Received in volumetric flask.

更に濾紙をHCI(1+5)で良く洗い、得られた洗液
と濾波とを混合しHCJ(1+5)で一定にした。
Furthermore, the filter paper was thoroughly washed with HCI (1+5), and the obtained washing liquid and filtered water were mixed and made constant with HCJ (1+5).

この溶液から10mA’分取して、MCI(1十1)を
20mA!及びEUを1.0m9加えて水で100mA
’一定にし、これを分析供試料とする。
Take 10 mA' from this solution and give 20 mA of MCI (111)! Add 1.0m9 of EU and 100mA with water.
'Keep it constant and use this as the sample for analysis.

使用水はイオン交換水を更に2回蒸留した精製水を用い
た。なお、HCI  (1+5)で容量を一定にするの
は共存物質であるsb析出を防止するためである。
The water used was purified water obtained by distilling ion-exchanged water twice. Note that the reason for keeping the capacity constant with HCI (1+5) is to prevent precipitation of sb, which is a coexisting substance.

3、実験及び結果 3.1  分析線の選定 銅の分析に最も適した波長を選定するため、超電導体を
構成する各元素の単独溶液及び試薬を用いて分析線の選
定を定性的に行った。その結果を第1図〜第3図に示す
3. Experiments and results 3.1 Selection of analysis line In order to select the most suitable wavelength for copper analysis, analysis lines were qualitatively selected using individual solutions and reagents of each element that makes up the superconductor. . The results are shown in FIGS. 1 to 3.

即ち、上記2で調製した供試液中の各元素の濃度として
Caが40ppm、Sbが200ppm。
That is, the concentration of each element in the test solution prepared in 2 above was 40 ppm for Ca and 200 ppm for Sb.

Biが70p p m、 S rが5Qppm、Cuが
60ppmSEUが5ppm溶液を用いて、銅の代表的
な発光線、324.754,327.396゜224.
700nmのプロファイルを測定した。
Typical emission lines of copper, 324.754, 327.396° 224.
A profile at 700 nm was measured.

その結果をそれぞれ第1図、第2図、第3図に示す。こ
の結果からこの3本の波長とも共存物質のスペクトルは
全てベースライン上を通っており、銅に対する妨害がな
いことが予測され、従っていずれの波長の分析線として
使える。ここでは検出感度の最も高い波長324.75
4nmを分析線として採用した。
The results are shown in FIGS. 1, 2, and 3, respectively. From this result, the spectra of the coexisting substances at all three wavelengths all pass on the baseline, and it is predicted that there is no interference with copper, and therefore, any wavelength can be used as an analysis line. Here, the wavelength with the highest detection sensitivity is 324.75.
4 nm was adopted as the analytical line.

3.2  感度(HV)の選定 感度(HV)とはホトマルに印加する高電圧のことで、
濃度により最適なHVが存在する。このため銅濃度60
ppm溶液を用いてEVの選定を行った。その結果を第
4図〜第6図に示す。第6図からHV40は発光強度が
飽和(100)しているので、ここではHVとして30
を採用した。
3.2 Sensitivity (HV) selection Sensitivity (HV) refers to the high voltage applied to the photomultiplier.
There is an optimal HV depending on the concentration. Therefore, the copper concentration is 60
EV selection was performed using a ppm solution. The results are shown in FIGS. 4 to 6. From Figure 6, the emission intensity of HV40 is saturated (100), so here we use 30 as HV.
It was adopted.

3.3  内部標準物質とその波長の選定内部標準物質
としてEU、Yなどの希土類及びSrが一般に使用され
ている。しかしSrは本セラミックス中に成分として含
まれているため、内部標準物質として使えない。また、
EU、Yは内部標準物質として使用できるが、YはY−
Ba−Cuセラミックス中に成分として含まれているた
め、Y−Ba−Cuセラミックスには使用できない。
3.3 Selection of internal standard substance and its wavelength Rare earths such as EU and Y, and Sr are generally used as internal standard substances. However, since Sr is included as a component in this ceramic, it cannot be used as an internal standard substance. Also,
EU and Y can be used as internal standard substances, but Y-
Since it is included as a component in Ba-Cu ceramics, it cannot be used in Y-Ba-Cu ceramics.

更に、分析の容易さから、内部標準物質を統一した方が
好ましい。そこで、Y−Ba−Cu。
Furthermore, from the viewpoint of ease of analysis, it is preferable to unify internal standard substances. Therefore, Y-Ba-Cu.

5b−B i−3r−Ca−Cuセラミックス中に含ま
れていないEUを内部標準物質として選定した。 EU
の分析線を選定するため、EUの代表的な3本の波長(
381,996,412,974゜420.505nm
)のプロファイルを測定して定性的に行った。その結果
を第7図〜第9図に示す。これらの図から3本の波長と
もEUのスペクトルのみで共存物質は全てベースライン
上にあり、EUに対する妨害は観察されない。
EU, which is not contained in 5b-B i-3r-Ca-Cu ceramics, was selected as an internal standard substance. EU
In order to select the analytical line of
381,996,412,974°420.505nm
) profile was measured qualitatively. The results are shown in FIGS. 7 to 9. These figures show that all three wavelengths have only EU spectra, and all coexisting substances are on the baseline, and no interference with EU is observed.

従って分析線としていずれの波長も使用可能であるが、
ここでは検出感度の高い波長381.966nmを分析
線として採用した。
Therefore, any wavelength can be used as an analytical line, but
Here, a wavelength of 381.966 nm with high detection sensitivity was employed as the analysis line.

3.4  検量線の精度 上記2で示した方法により分解調製した供試液中の銅の
濃度は約30ppmとなる。このため銅濃度0〜60p
pmの範囲で検量線の精度を確かめた。その結果を第1
0図に示す。この図から、検量線はほぼ原点を通り、相
関係数は0.999’標準偏差は0.14ppm と非
常に良い精度を示すことがわかる。
3.4 Accuracy of calibration curve The concentration of copper in the test solution prepared by decomposition by the method shown in 2 above is approximately 30 ppm. Therefore, the copper concentration is 0 to 60p.
The accuracy of the calibration curve was confirmed in the pm range. The result is the first
Shown in Figure 0. From this figure, it can be seen that the calibration curve almost passes through the origin, and the correlation coefficient is 0.999' and the standard deviation is 0.14 ppm, indicating very good accuracy.

3.5  塩酸及び硝酸の影響 銅濃度40ppm溶液に塩酸及び硝酸を段階的に加えて
その影響を定量的に調べた。その結果を第11図に示す
。硝酸は破線で示した許容範囲内で影響がなかった。こ
れに対し、塩酸の添加量が増すと銅の測定値は低下した
。このことは塩酸の共存により、試料溶液の粘度が上昇
し、試料吸い込み量が低下して発光強度が低下したため
である。
3.5 Effects of Hydrochloric Acid and Nitric Acid Hydrochloric acid and nitric acid were added stepwise to a solution with a copper concentration of 40 ppm, and their effects were quantitatively investigated. The results are shown in FIG. Nitric acid had no effect within the allowable range shown by the broken line. On the other hand, as the amount of hydrochloric acid added increased, the measured value of copper decreased. This is because the coexistence of hydrochloric acid increased the viscosity of the sample solution, decreased the amount of sample sucked in, and decreased the luminescence intensity.

従って供試液と検量線作成用溶液中の酸濃度を同一にし
てその影響を抑えることにした。
Therefore, it was decided to suppress the effect by making the acid concentration in the test solution and the solution for creating the calibration curve the same.

3.6 共存元素の影響 銅濃度40ppmにSb、Bi、Sr、Ca及びEUを
各々段階的に加えてそれらの共存元素の影響を定量的に
調べた。
3.6 Effects of Coexisting Elements Sb, Bi, Sr, Ca, and EU were each added stepwise to a copper concentration of 40 ppm, and the effects of these coexisting elements were quantitatively investigated.

その結果を第12図〜第16図に示す。これらの影響の
有無の判定は銅の回収率の±2%以内とし、図中に許容
範囲として破線で表示した。このことから、いずれの元
素も破線で示した許容範囲内で影響のないことが判明し
た。
The results are shown in FIGS. 12 to 16. The presence or absence of these effects was determined within ±2% of the copper recovery rate, and the allowable range is indicated by a broken line in the figure. From this, it was found that none of the elements had any effect within the allowable range shown by the broken line.

3.7  内部標準物質EUに対する分解試薬の影響 EU濃度10ppm溶液に塩酸及び硝酸を段階的に加え
てその影響を定量的に調べた。その結果を第17図に示
す。硝酸は破線で示した許容範囲内で影響はなかった。
3.7 Effect of decomposition reagent on internal standard EU Hydrochloric acid and nitric acid were added stepwise to an EU solution with a concentration of 10 ppm, and the effect was quantitatively investigated. The results are shown in FIG. Nitric acid had no effect within the allowable range shown by the broken line.

これに対し、塩酸は添加量が増すとEUの測定値は低下
した。これは、塩酸の共存により、供試料の粘度が上昇
して試料吸い込み量が低下し、発光強度が低下したため
である。
On the other hand, as the amount of hydrochloric acid added increased, the measured value of EU decreased. This is because the coexistence of hydrochloric acid increased the viscosity of the sample, resulting in a decrease in the amount of sample sucked in and a decrease in the luminescence intensity.

従って、供試液と検量線作成用標準溶液中の酸濃度を同
一にして影響を抑えた。
Therefore, the acid concentration in the test solution and the standard solution for creating the calibration curve were made the same to suppress the influence.

3.8  内部標準物質EUに対する共存元素の影響 EUに対する共存元素の影響を定量的に調べるため、E
U濃度10ppm溶液にSb、Bi。
3.8 Effect of coexisting elements on internal standard EU In order to quantitatively investigate the effect of coexisting elements on EU,
Sb and Bi in a solution with a U concentration of 10 ppm.

Sr、Ca及びCuを各々段階的に加えてそれぞれの元
素のEUに対する影響を定量的に調べた。
Sr, Ca, and Cu were each added stepwise, and the influence of each element on EU was quantitatively investigated.

その結果を第18図〜第22図に示す。いずれの元素も
破線で示した許容範囲内にあり、EUに対する影響はな
かった。
The results are shown in FIGS. 18 to 22. All elements were within the allowable range indicated by the broken line, and had no effect on EU.

3.9  合成溶液による分析精度の検証上記検討した
条件での分析精度を検証するため、合成溶液を6個調製
した。その結果、ストロンチウムの回収率は102.0
%、変動係数は0.60%及び測定値X=30.6pp
mと実用上、十分満足出来る精度が得られた。
3.9 Verification of analytical accuracy using synthetic solutions In order to verify the analytical accuracy under the conditions studied above, six synthetic solutions were prepared. As a result, the recovery rate of strontium was 102.0
%, coefficient of variation is 0.60% and measured value X = 30.6pp
For practical purposes, a sufficiently satisfactory accuracy was obtained.

合成溶液の組成を表2、 測定結果を表3に示す。Table 2 shows the composition of the synthetic solution. The measurement results are shown in Table 3.

1)合成溶液の組成 表2 合成溶液の組成 合成溶液の測定結果 合成溶液の測定結果を表3に示す。1) Composition of synthetic solution Table 2 Composition of synthetic solution Measurement results of synthetic solution Table 3 shows the measurement results of the synthetic solution.

表3 合成溶液の測定結果 3.10 実試料による分析精度の検証合成条件を変え
た5試料中の銅濃度を測定した結果、添加量とよく一致
した結果が得られた。表4に測定結果を示す。
Table 3 Measurement Results of Synthetic Solutions 3.10 Verification of Analytical Accuracy Using Actual Samples As a result of measuring the copper concentration in five samples with different synthesis conditions, results were obtained that were in good agreement with the amount added. Table 4 shows the measurement results.

表4 測定結果 4、考察 以上の結果から、本発明に係るICP法による5b−B
 i−S r−Ca−Cu系超電導セラミックスの定量
分析方法を検討した結果、次の知見が得られた。
Table 4 Measurement Result 4, Discussion From the above results, 5b-B by ICP method according to the present invention
As a result of studying quantitative analysis methods for i-S r-Ca-Cu based superconducting ceramics, the following findings were obtained.

(1)試料の分解 塩酸(1+1)30mJ、硝酸(1+1)10mlの混
酸で0.2gの試料が容易に溶けた。
(1) Decomposition of sample 0.2 g of sample was easily dissolved in a mixed acid of 30 mJ of hydrochloric acid (1+1) and 10 ml of nitric acid (1+1).

(2)分解試薬の影響 硝酸(1+1)2mlは±2%の許容範囲内で影響はな
かったが、塩酸(1+1)は負の干渉を示した。このこ
とは塩酸の共存により供試液の粘性が上昇し、試料吸い
込み量が低下し、発光強度が減少したためである。従っ
て供試液と検量線作成用標準溶液中の酸濃度を同一にし
て影響を抑えた。
(2) Effect of decomposition reagent 2 ml of nitric acid (1+1) had no effect within the tolerance range of ±2%, but hydrochloric acid (1+1) showed negative interference. This is because the coexistence of hydrochloric acid increased the viscosity of the sample solution, decreased the amount of sample sucked in, and decreased the luminescence intensity. Therefore, the acid concentration in the test solution and the standard solution for creating the calibration curve were made the same to suppress the influence.

(3)共存元素の影響 Bi、Sr、Sb、Cu、EU (内部標準物質)は±
2%の許容範囲内で影響はなかった。
(3) Influence of coexisting elements Bi, Sr, Sb, Cu, EU (internal standard substance) is ±
There was no effect within the tolerance range of 2%.

(4)内部標準法の採用と内部標準物質ICAP−10
00II型は分光室の変動は制御できるが発光部の制御
(試料吸い込み量の変動、発光のふがみ等)は出来ない
機能となっている。
(4) Adoption of internal standard method and internal standard material ICAP-10
The 00II type has a function that allows control of fluctuations in the spectroscopic chamber, but does not allow control of the light emitting section (fluctuations in the amount of sample sucked in, modification of light emission, etc.).

このため発光部の変動による影響を少なくするため測定
方法に内部標準法を採用した。なお、内部標準物質はE
Uとした。このことは使用原料中に余り含まれていない
元素であり、またY−Ba−Cu系超電導セラミックス
にも使用できるためである。
Therefore, an internal standard method was adopted as the measurement method to reduce the influence of fluctuations in the light emitting part. The internal standard substance is E.
It was set as U. This is because it is an element that is not often contained in the raw materials used and can also be used in Y-Ba-Cu based superconducting ceramics.

(5)測定方法は精度の確保に主眼を置き次の方法とし
た。即ち、波長較正−波長セット(内標準物質の波長セ
ット)−検量線作成−測定(10試料、以下最後に標準
試料1個人れる)。
(5) The following measurement method was used with a focus on ensuring accuracy. That is, wavelength calibration - wavelength set (wavelength set of internal standard substance) - calibration curve creation - measurement (10 samples, one standard sample at the end).

(6)分析精度 合成溶液6個の測定結果から、変動係数Cvが0.60
%、回収率は102.0%で実用上十分満足できる精度
である。
(6) Analysis accuracy From the measurement results of 6 synthetic solutions, the coefficient of variation Cv is 0.60
%, and the recovery rate was 102.0%, which is an accuracy that is sufficiently satisfactory for practical use.

(7)検量線溶液 共存元素の影響がなかったため、Sb、Bi。(7) Calibration curve solution Sb and Bi because there was no influence of coexisting elements.

Sr、Ca、Cuの混合検量線溶液とした。A mixed calibration curve solution of Sr, Ca, and Cu was prepared.

G0発明の効果 本発明に係るICP法によれば、超電導体中の銅が高感
度に定量され、これ1こより超電導体中の銅の組成と特
性との関係を明確にすると共に、超電導体の品質管理及
び工程管理を向上させることを可能とする。
Effects of the G0 Invention According to the ICP method according to the present invention, copper in a superconductor can be quantified with high sensitivity, which not only clarifies the relationship between the composition and properties of copper in a superconductor but also It makes it possible to improve quality control and process control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は銅の発光スペクトルを示すグラフ、第
4図〜第6図は感度(HV)の選定を示すグラフ、第7
図〜第9図はEUとの共存物質のプロファイルを示すグ
ラフ、第10図は銅の検量線を示すグラフ、第11図は
塩酸(HC7)及び硝酸(HN Os)の影響を示すグ
ラフ、第12図〜第16図は各共存物質中の銅の定性分
析の結果を示すグラフ、第17図は内部標準物質EUに
対する分解試薬の影響を示すグラフ、第18図〜第22
図は内部標準物質EUに対する共存元素の影響を示すグ
ラフである。 外1名 第1図 波長324.754nmのプロファイル第2図 波長327.396nmのプロファイルu 0.5mg:■ /Loo重量 Eu−o、5mg:す /100m1 第3図 波長224.700nmのプロファイルu →波長(nm> /100m1 第4図 HV:20 第5図 HV二30 試料名:Cu−6mg/100+J 試料名:Cu  6mg/100mJ 第6図 HV:40 →波長(nm) 試料名:Cu−6mg/100m! 第7図 Eu ; 381.966nmのスペクトル第8図 Eu :412.974nmのスペクトル/100m1 7100m1 第9図 Eu ;420.505nmのスペクトルu →波長(nm) 第10図 Cuの検量線 元素:Cu 波長: 324.754nm   検量線
:1次式1次式:(含有量) −AIX (強度) +
A。 A1=0.12096301 Ao=−0,00923607 →含有量(mg/100m1) 第11図 分解試薬の影響 第12図 Biの影響 Bi (ppm> 第13図 Srの影響 第14図 Caの影響 第15図 sbの影響 第16図 Euの影響 第17図 分解試薬の影響 HCI+1+−1) 30 (ml) 第18図 sbの影響 Sb (ppm> 第19図 B1の影響 第20図 Srの影響 Sr (ppm)
Figures 1 to 3 are graphs showing the emission spectrum of copper, Figures 4 to 6 are graphs showing sensitivity (HV) selection, and Figure 7 is a graph showing the selection of sensitivity (HV).
Figures 9 to 9 are graphs showing the profile of coexisting substances with EU, Figure 10 is a graph showing the copper calibration curve, Figure 11 is a graph showing the influence of hydrochloric acid (HC7) and nitric acid (HNOs), and Figure 9 is a graph showing the profile of coexisting substances with EU. Figures 12 to 16 are graphs showing the results of qualitative analysis of copper in each coexisting substance, Figure 17 is a graph showing the influence of the decomposition reagent on the internal standard EU, and Figures 18 to 22.
The figure is a graph showing the influence of coexisting elements on the internal standard EU. Figure 1 Profile of wavelength 324.754 nm Figure 2 Profile u of wavelength 327.396 nm 0.5 mg: ■ /Loo Weight Eu-o, 5 mg: Su/100 m1 Figure 3 Profile u of wavelength 224.700 nm → Wavelength (nm> /100m1 Figure 4 HV: 20 Figure 5 HV230 Sample name: Cu-6mg/100+J Sample name: Cu 6mg/100mJ Figure 6 HV: 40 → Wavelength (nm) Sample name: Cu-6mg /100m! Fig. 7 Eu ; Spectrum of 381.966 nm Fig. 8 Eu : Spectrum of 412.974 nm / 100 m1 7100 m1 Fig. 9 Eu ; Spectrum of 420.505 nm u → Wavelength (nm) Fig. 10 Calibration curve of Cu Elements :Cu Wavelength: 324.754nm Calibration curve: Linear equation Linear equation: (Content) -AIX (Intensity) +
A. A1=0.12096301 Ao=-0,00923607 →Content (mg/100m1) Fig. 11 Influence of decomposition reagent Fig. 12 Influence of Bi Bi (ppm> Fig. 13 Influence of Sr Fig. 14 Influence of Ca No. 15 Fig. 16 Influence of Eu Fig. 17 Influence of decomposition reagent HCI+1+-1) 30 (ml) Fig. 18 Influence of sb Sb (ppm> Fig. 19 Influence of B1 Fig. 20 Influence of Sr Sr (ppm )

Claims (1)

【特許請求の範囲】[Claims] (1)超電導体に塩酸及び硝酸を加え、加熱により前記
超電導体を分解させた後冷却し、次にこの分解溶液を濾
過することにより得られる濾波と沈澱を塩酸で洗うこと
により得られる洗液との混合液に標準物質としてユーロ
ピウムを加えてから塩酸で一定容にし、これを試料溶液
として高周波誘導結合型プラズマ発光法を用いて発光強
度を測定することを特徴とする超電導体中の銅の分析方
法。
(1) Washing liquid obtained by adding hydrochloric acid and nitric acid to a superconductor, decomposing the superconductor by heating, cooling it, then filtering the decomposed solution and washing the precipitate with hydrochloric acid. This method is characterized by adding europium as a standard substance to a mixed solution of copper, making it to a certain volume with hydrochloric acid, and using this as a sample solution to measure the emission intensity using a high-frequency inductively coupled plasma emission method. Analysis method.
JP24573990A 1990-09-14 1990-09-14 Analyzing method of copper in superconductor Pending JPH04122837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24573990A JPH04122837A (en) 1990-09-14 1990-09-14 Analyzing method of copper in superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24573990A JPH04122837A (en) 1990-09-14 1990-09-14 Analyzing method of copper in superconductor

Publications (1)

Publication Number Publication Date
JPH04122837A true JPH04122837A (en) 1992-04-23

Family

ID=17138084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24573990A Pending JPH04122837A (en) 1990-09-14 1990-09-14 Analyzing method of copper in superconductor

Country Status (1)

Country Link
JP (1) JPH04122837A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543140A (en) * 2013-09-12 2014-01-29 云南钛业股份有限公司 Method for measuring contents of silicon, manganese, magnesium, tin and iron in titanium sponge by using plasma emission spectrum
CN103543141A (en) * 2013-09-25 2014-01-29 中国科学院上海光学精密机械研究所 Analytical method of trace impurity elements Fe and Cu in tin oxide electrode
CN105067790A (en) * 2015-08-05 2015-11-18 西部超导材料科技股份有限公司 On-line test device and test method of superconductive wire rod Cu/Sc

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543140A (en) * 2013-09-12 2014-01-29 云南钛业股份有限公司 Method for measuring contents of silicon, manganese, magnesium, tin and iron in titanium sponge by using plasma emission spectrum
CN103543141A (en) * 2013-09-25 2014-01-29 中国科学院上海光学精密机械研究所 Analytical method of trace impurity elements Fe and Cu in tin oxide electrode
CN103543141B (en) * 2013-09-25 2015-09-16 中国科学院上海光学精密机械研究所 The analytical approach of tin oxide electrode micro impurity element Fe and Cu
CN105067790A (en) * 2015-08-05 2015-11-18 西部超导材料科技股份有限公司 On-line test device and test method of superconductive wire rod Cu/Sc

Similar Documents

Publication Publication Date Title
Sturgeon et al. Determination of iron, manganese, and zinc in seawater by graphite furnace atomic absorption spectrometry
Radziuk et al. Chemical modification and spectral interferences in selenium determination using Zeeman-effect electrothermal atomic absorption spectrometry
Dean et al. Flame photometric study of boron
Misra et al. Total reflection X-ray fluorescence: a technique for trace element analysis in materials
Vieira et al. Multi-energy calibration for the determination of non-metals by high-resolution continuum source molecular absorption spectrometry
Burylin et al. Development of electrothermal atomic absorption spectrometry in 2005–2016
Bergdahl et al. Automated determination of inorganic mercury in blood after sulfuric acid treatment using cold vapour atomic absorption spectrometry and an inductively heated gold trap
US4561777A (en) Apparatus and method for quantitative determination of materials contained in fluids
Ariel et al. The determination of thallium in urine
JPH04122837A (en) Analyzing method of copper in superconductor
Kang et al. Determination of trace chlorine dioxide based on the plasmon resonance scattering of silver nanoparticles
Coleman Comparison of analytical techniques for inorganic pollutants
JP2009115758A (en) Method of measuring dissolved inorganic nitrogen in seawater
Wah Fong et al. Multi-elements (aluminium, copper, magnesium, manganese, selenium and zinc) determination in serum by dynamic reaction cell-inductively coupled plasma-mass spectrometry
JPH05142149A (en) Quantitative analysis of vanadium contained in current-limiting element
JP2812063B2 (en) Analysis method of reaction solution in nickel purification reaction tank
JP2815454B2 (en) Quantitative analysis method for metal elements in sulfur
McConnell et al. Evaluation of cigarette filter efficiency by photofluorometry
Rahaman et al. Determination of adrenaline and noradrenaline by resonance Raman spectrometry
JPH05157696A (en) Quantitative analysis of copper for sliver
RU2263899C1 (en) Method of quantitatively determining iron in phosphoric acids obtained via sulfuric acid-assisted decomposition of phosphate feedstock followed by tributyl phosphate-assisted purification thereof
JPH04120446A (en) Quantitative analysis of copper
Cook et al. Utilisation of emission in the ultraviolet region for the determination of phosphate in geochemical samples by inductively coupled plasma optical emission spectrometry
Craven et al. Systematic atomic number effects in complexes exhibiting ligand luminescence: Part 2. Salicylidene-o-aminophenolates
Cupples Infrared Analysis of Rotenone-Dihydrorotenone Mixtures