JPH04122789A - Catalytic hydrocracking of heavy oil - Google Patents

Catalytic hydrocracking of heavy oil

Info

Publication number
JPH04122789A
JPH04122789A JP24418390A JP24418390A JPH04122789A JP H04122789 A JPH04122789 A JP H04122789A JP 24418390 A JP24418390 A JP 24418390A JP 24418390 A JP24418390 A JP 24418390A JP H04122789 A JPH04122789 A JP H04122789A
Authority
JP
Japan
Prior art keywords
heavy oil
reactor
catalyst
metal
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24418390A
Other languages
Japanese (ja)
Inventor
Hisaji Matsui
久次 松井
Ishiyun Kiyo
許 維春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP24418390A priority Critical patent/JPH04122789A/en
Publication of JPH04122789A publication Critical patent/JPH04122789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To efficiently convert a heavy oil into a light oil by a specified constitution wherein a heavy oil containing polycyclic aromatic hydrocarbons is hydrocracked in two steps. CONSTITUTION:In hydrocracking a heavy oil containing polycyclic aromatic hydrocarbons into a light oil through two-step reactions in an atmosphere of hydrogen, each of the reactors for the two-step reactions is filled with a catalyst different in performance from each other, and the reaction conditions are independently controlled. The reactor for the first-step reaction is filled with a hydrocracking catalyst carrying a metal and having an appropriate acidity. As the component having a catalytic activity, especially Co, Mo, Ni, W, and a combination thereof are preferably used. Examples of the catalyst carrier include Al2O3 and SiO2. The reactor for the second-step reaction is filled with zeolite carrying a metal, obtained by subjecting zeolite Y substituted by ammonium ions to ion exchange. As the metal serving as the component having a catalytic activity, Ni is especially desirable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多環芳香族炭化水素類を含有する重質油の接
触分解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for catalytic cracking of heavy oil containing polycyclic aromatic hydrocarbons.

以下、本明細書中に「%」とあるのは1重量%」を意味
する。
Hereinafter, "%" in this specification means "1% by weight".

従来の技術とその問題点 一般にコールタールは、ベンセン、ナフタレン、アルキ
ルナフタレン、フェナントレン、アントラセノ、ピレン
などの芳香族炭化水素類を含有している。
BACKGROUND OF THE INVENTION Coal tar generally contains aromatic hydrocarbons such as benzene, naphthalene, alkylnaphthalene, phenanthrene, anthraceno, and pyrene.

特に、ベンセンおよびナフタレンは、あらゆる化成品の
基幹原料として利用されており、一方アルキルナフタレ
ンは、近年注目されている耐熱性かつ高強度の樹脂原料
として利用されつつある。
In particular, benzene and naphthalene are used as basic raw materials for all kinds of chemical products, while alkylnaphthalenes are being used as heat-resistant and high-strength resin raw materials that have been attracting attention in recent years.

しかしながら、コールタール中に多量に含まれている3
環以上の多環芳香族炭化水素類については、まだ化学原
料として有効に利用されるまでに至っていないのが現状
である。例えば、フエナントレンは、ナフタレンについ
て含量が多く (5%程度)、その生産量は日本だけで
も年間13万トンにも達しているのにもかかわらず、接
触転化か困難な物質であるため主にカーボンブラックの
製造原料として用いられているに過ぎない。
However, coal tar contains a large amount of 3
At present, polycyclic aromatic hydrocarbons having more than a ring have not yet been effectively utilized as chemical raw materials. For example, phenanthrene has a high content of naphthalene (approximately 5%), and its production amount reaches 130,000 tons per year in Japan alone. It is only used as a raw material for producing black.

したがって、現在のところ利用価値が低いとされている
上記多環芳香族炭化水素類を単環あるいは2環芳香族炭
化水素に効率よく転換しうる新たな技術の開発が切望さ
れている。
Therefore, there is a strong need for the development of a new technology that can efficiently convert the polycyclic aromatic hydrocarbons, which are currently considered to have low utility value, into monocyclic or bicyclic aromatic hydrocarbons.

問題点を解決するための手段 本発明者は、上記の接触転化における問題点に鑑み鋭意
研究を重ねた結果、2段接触水素化分解プロセスによっ
て、重質油を効率よく軽質化する方法を見出した。
Means for Solving the Problems In view of the above problems in catalytic conversion, the present inventor has conducted extensive research and has discovered a method for efficiently lightening heavy oil by a two-stage catalytic hydrocracking process. Ta.

即ち、本発明は、下記の重質油の接触分解方法を提供す
るものである。
That is, the present invention provides the following method for catalytic cracking of heavy oil.

■ 水素雰囲気下で2段反応により、多環芳香族炭化水
素類を含有する重質油を接触分解して軽質化するに際し
、上記2段反応の各反応器内に互いに触媒性能の異なる
触媒を充填し、反応条件をそれぞれ独立に制御すること
を特徴とする重質油の接触水素化分解方法6 ■ 適当な酸性度をもつ水素化分解用金属担持触媒を第
1段反応の反応器内に充填する上記第1項記載の重質油
の接触水素化分解方法。
■ When heavy oil containing polycyclic aromatic hydrocarbons is catalytically cracked and lightened by a two-stage reaction in a hydrogen atmosphere, catalysts with different catalytic performance are placed in each reactor of the two-stage reaction. A method for catalytic hydrocracking of heavy oil, characterized by charging and controlling the reaction conditions independently 6 ■ A supported metal catalyst for hydrocracking with appropriate acidity is placed in the reactor for the first stage reaction. The method for catalytic hydrocracking of heavy oil according to the above item 1, which is filled.

■ アンモニウムイオン置換型Y−ゼオライトをイオン
交換に供することにより得られる金属担持ゼオライトを
第2段反応の反応器内に充填する上記第1項記載の重質
油の接触水素化分解方法。
(2) The catalytic hydrocracking method for heavy oil according to the above item (1), wherein the metal-supported zeolite obtained by subjecting ammonium ion-substituted Y-zeolite to ion exchange is charged into the reactor for the second stage reaction.

以下、本発明方法について詳細に説明する。The method of the present invention will be explained in detail below.

本発明においては、まず第1段反応器内即ち適当な酸性
度を有する金属担持水素化分解触媒上で、第2段反応器
内に充填されているゼオライト系触媒の気孔に侵入でき
る大きさになるように多環芳香族炭化水素類を部分水素
化分解することにより骨核を小さくする。ついて得られ
た材料を第2段反応器内に導入し、金属担持ゼオライト
系触媒の分子ふるい作用によって化合物の種類が揃い、
単環および2環芳香族炭化水素が得られる。
In the present invention, first, in the first stage reactor, that is, on the metal-supported hydrogenolysis catalyst with appropriate acidity, the catalyst is heated to a size that can penetrate into the pores of the zeolite catalyst packed in the second stage reactor. The bone core is made smaller by partially hydrogenolyzing polycyclic aromatic hydrocarbons. The resulting material is introduced into the second stage reactor, and the types of compounds are uniformed by the molecular sieving action of the metal-supported zeolite catalyst.
Monocyclic and bicyclic aromatic hydrocarbons are obtained.

本発明か処理の対象とする原料は、多環芳香族炭化水素
類そのものあるいは多環芳香族炭化水素を含有する重質
油(以下、特に必要でない限り、単に多環芳香族炭化水
素という)などである。
The raw materials to be treated in the present invention include polycyclic aromatic hydrocarbons themselves, heavy oil containing polycyclic aromatic hydrocarbons (hereinafter simply referred to as polycyclic aromatic hydrocarbons unless otherwise required), etc. It is.

上記原料は、コールタール、オイルサンド系タール、石
油系重質油、バイオマス系タールなどから公知の技術に
より容易に製造することができる。
The above raw materials can be easily produced from coal tar, oil sand tar, petroleum heavy oil, biomass tar, etc. using known techniques.

つぎに、本発明で用いる触媒として第1段反応器内には
適当な酸性度をもつ水素化分解用金属担持触媒を充填す
る。
Next, as a catalyst used in the present invention, a supported metal catalyst for hydrogenolysis having an appropriate acidity is filled in the first stage reactor.

上記触媒の担体としては、Al2O3、S iO2、A
 1203  S I O2、カーボンブラックなどが
挙げられる。
As the carrier for the above catalyst, Al2O3, SiO2, A
1203 S I O2, carbon black, and the like.

触媒活性成分としては、Co、Mo、Ni、W、I r
SPd、Pt、RhSRuSAg5Cu。
Catalyst active components include Co, Mo, Ni, W, I r
SPd, Pt, RhSRuSAg5Cu.

Na、におよびこれら金属の任意の組み合わせか使用さ
れる。これらの中でも特に、Co5Mo。
Na, and any combination of these metals may be used. Among these, especially Co5Mo.

N15Wおよびこれらの組み合わせが好ましい。N15W and combinations thereof are preferred.

触媒金属の担持量は、酸化物として0,5〜30%程度
とする。
The amount of catalyst metal supported is approximately 0.5 to 30% as an oxide.

一方、第2段反応の反応器内にはアンモニウムイオン置
換型Y−ゼオライトをイオン交換に供することにより調
製された、分子ふるい作用を有する金属担持ゼオライト
を充填する。
On the other hand, the reactor for the second stage reaction is filled with metal-supported zeolite having a molecular sieving action, which is prepared by subjecting ammonium ion-substituted Y-zeolite to ion exchange.

ゼオライトに担持させる触媒活性成分としての金属は、
Ni、FeSMo5La、Co、Rh。
The metal as a catalytically active component supported on zeolite is
Ni, FeSMo5La, Co, Rh.

Pt、Zn5RuSPdSTi、Ce、Cuなどが例示
できる。これらの中でも2環および単環芳香族炭化水素
への転換に優れた効果を示すNiが特に好ましい。
Examples include Pt, Zn5RuSPdSTi, Ce, and Cu. Among these, Ni is particularly preferred since it exhibits excellent conversion effects into two-ring and mono-ring aromatic hydrocarbons.

ゼオライトに対する金属担持量は、金属の種類などによ
り異なるが、通常はゼオライト重量の0.5〜10%程
度とする。また、金属源とじて使用する水溶性金属塩と
しては、硝酸塩、硫酸塩、酢酸塩、リン酸塩、炭酸塩、
塩化物などが例示できる。
The amount of metal supported on the zeolite varies depending on the type of metal, etc., but is usually about 0.5 to 10% of the weight of the zeolite. Water-soluble metal salts used as metal sources include nitrates, sulfates, acetates, phosphates, carbonates,
Examples include chlorides.

接触分解による軽質化の反応条件としては、通常水素ガ
ス雰囲気中、上記触媒をそれぞれ各反応器に充填した後
、第1反応器内は300〜700°C程度、圧力30〜
120kg/CrI程度、反応時間10分〜5時間程度
、第2段反応温度は300〜550℃程度、圧力30〜
120kg/c−程度、反応時間10分〜5時間程度で
ある。
The reaction conditions for lightening by catalytic cracking are usually in a hydrogen gas atmosphere, after each reactor is filled with the above catalysts, the inside of the first reactor is about 300-700°C, and the pressure is 30-30°C.
Approximately 120 kg/CrI, reaction time approximately 10 minutes to 5 hours, second stage reaction temperature approximately 300 to 550°C, pressure 30 to
The weight is about 120 kg/c-, and the reaction time is about 10 minutes to 5 hours.

発明の効果 本発明によれば、従来までは充分に利用されていなかっ
た3環以上の多環芳香族炭化水素類から多様な用途をも
つ単環あるいは2環芳香族炭化水素を高転化率で得られ
るので、天然資源を有効に活用することができ、省エネ
ルギー化、製品の低コスト化などに非常に有利である。
Effects of the Invention According to the present invention, it is possible to convert polycyclic aromatic hydrocarbons having three or more rings, which have not been sufficiently utilized in the past, to monocyclic or bicyclic aromatic hydrocarbons, which have a variety of uses, at a high conversion rate. As a result, natural resources can be used effectively, which is extremely advantageous in terms of energy conservation and product cost reduction.

実施例 以下、実施例および比較例を示し、本発明の特徴とする
ところをより一層明瞭にする。
EXAMPLES Below, Examples and Comparative Examples will be shown to further clarify the features of the present invention.

第1表には、以下の実施例および比較例で使用した触媒
の金属担持量(酸化物として)および比表面積をあわせ
て示す。
Table 1 also shows the amount of metal supported (as an oxide) and specific surface area of the catalysts used in the following Examples and Comparative Examples.

尚、市販の水素化分解用金属担持触媒AおよびBについ
ては、あらかじめ予備硫化を行なった。
Note that the commercially available metal-supported catalysts A and B for hydrocracking were pre-sulfided.

実施例1 第1反応器内に触媒A、第2反応器内に触媒Cをそれぞ
れ充填して、フェナントレンを原料として、下記の条件
下で軽質化処理を行なった。
Example 1 A first reactor was filled with catalyst A, and a second reactor was filled with catalyst C, and a lightening treatment was performed under the following conditions using phenanthrene as a raw material.

第1段  雰囲気ガス     水素 圧力        70kg/cJ 温度        400℃ 反応時間      40分 第2段  雰囲気ガス     水素 圧力         70kg/cj温度     
   350℃ 反応時間      20分 軽質化処理した後、得られた生成物とその全体に対する
収量(%)を第2表に示し、析出炭素および転化率を第
3表に示す。
1st stage Atmosphere gas Hydrogen pressure 70kg/cJ Temperature 400℃ Reaction time 40 minutes 2nd stage Atmosphere gas Hydrogen pressure 70kg/cJ Temperature
After lightening treatment at 350° C. for 20 minutes, the resulting products and their yields (%) relative to the total are shown in Table 2, and the precipitated carbon and conversion rate are shown in Table 3.

実施例2 第1段反応器内に触媒B、第2段反応器内に触媒Cをそ
れぞれ充填して、フェナントレンを原料として、実施例
1と同様の条件下で軽質化処理を行なった。
Example 2 Catalyst B was filled in the first stage reactor, and catalyst C was filled in the second stage reactor, and a lightening treatment was performed under the same conditions as in Example 1 using phenanthrene as a raw material.

軽質化処理した後、得られた生成物とその全体に対する
収量(%)を第2表に示し、析出炭素および転化率を第
3表に示す。
After the lightening treatment, the products obtained and their yields (%) relative to the total are shown in Table 2, and the precipitated carbon and conversion rates are shown in Table 3.

比較例1 フェナントレンを原料とし、市販の水素化分解用金属担
持触媒を用いて1段の軽質化処理を行なった。反応条件
は、反応時間が1時間である以外は実施例1の第1段の
反応条件と同様である。
Comparative Example 1 Using phenanthrene as a raw material, one stage of lightening treatment was performed using a commercially available metal-supported catalyst for hydrocracking. The reaction conditions are the same as those in the first stage of Example 1, except that the reaction time is 1 hour.

軽質化処理した後、得られた生成物とその全体に対する
収量(%)を第2表に示し、析出炭素および転化率を第
3表に示す。
After the lightening treatment, the products obtained and their yields (%) relative to the total are shown in Table 2, and the precipitated carbon and conversion rates are shown in Table 3.

比較例2 フェナントレンを原料とし、金属担持ゼオライト系触媒
を用いて1段の軽質化処理を行なった。
Comparative Example 2 Using phenanthrene as a raw material, one stage of lightening treatment was performed using a metal-supported zeolite catalyst.

反応条件は、反応時間が1時間である以外は実施例1の
第1段の反応条件と同様である。
The reaction conditions are the same as those in the first stage of Example 1, except that the reaction time is 1 hour.

軽質化処理した後、得られた生成物とその全体に対する
収量(%)を第2表に示し、析出炭素および転化率を第
3表に示す。
After the lightening treatment, the products obtained and their yields (%) relative to the total are shown in Table 2, and the precipitated carbon and conversion rates are shown in Table 3.

尚、第2表および第3表中のa)〜d)は下記の事項を
示す。
Note that a) to d) in Tables 2 and 3 indicate the following items.

a)RSR’ 、R2は、アルキル基または水素原子で
ある。
a) RSR', R2 is an alkyl group or a hydrogen atom.

b)シクロへキシルフェニレンおよびシクロヘキシルベ
ンゼンである。
b) cyclohexylphenylene and cyclohexylbenzene.

C)分子量182 (GC−MSによる)の未確認化合
物を含む。
C) Contains an unidentified compound with a molecular weight of 182 (by GC-MS).

d) 触媒上に析出した生成物全体に対する炭素量(%) (燃焼法により測定) である。d) Carbon content (%) based on the total product deposited on the catalyst (Measured by combustion method) It is.

第 表 以上の結果より、本発明の2段接触水素化接触分解によ
れば、第1段反応の反応器内に市販の水素化分解用金属
担持触媒N i Mo/A I 203あルイはCoM
○/Al□o3、第2段反応の反応器内に分子ふるい作
用をもつ金属担持ゼオライト系触媒を充填した場合には
、フェナントレンの転化率か高(なるだけでなく、有用
な単環および2環芳香族炭化水素の生成が非常に多くな
ることがわかる。
From the results in Table 1 and above, according to the two-stage catalytic hydrogenation catalytic cracking of the present invention, the commercially available metal-supported catalyst for hydrogenation N i Mo/A I 203 is CoM in the reactor of the first stage reaction.
○ /Al It can be seen that the generation of ring aromatic hydrocarbons increases significantly.

(以 上)(that's all)

Claims (3)

【特許請求の範囲】[Claims] (1)水素雰囲気下で2段反応により、多環芳香族炭化
水素類を含有する重質油を接触分解して軽質化するに際
し、上記2段反応の各反応器内に互いに触媒性能の異な
る触媒を充填し、反応条件をそれぞれ独立に制御するこ
とを特徴とする重質油の接触水素化分解方法。
(1) When heavy oil containing polycyclic aromatic hydrocarbons is catalytically cracked and lightened by a two-stage reaction in a hydrogen atmosphere, each reactor in the two-stage reaction has different catalyst performance. A method for catalytic hydrocracking of heavy oil characterized by loading a catalyst and controlling each reaction condition independently.
(2)適当な酸性度をもつ水素化分解用金属担持触媒を
第1段反応の反応器内に充填する特許請求の範囲第1項
記載の重質油の接触水素化分解方法。
(2) The method for catalytic hydrocracking of heavy oil according to claim 1, wherein a supported metal catalyst for hydrocracking having an appropriate acidity is packed into a reactor for the first stage reaction.
(3)アンモニウムイオン置換型Y−ゼオライトをイオ
ン交換に供することにより得られる金属担持ゼオライト
を第2段反応の反応器内に充填する特許請求の範囲第1
項記載の重質油の接触水素化分解方法。
(3) Claim 1, in which a metal-supported zeolite obtained by subjecting ammonium ion-substituted Y-zeolite to ion exchange is filled into a reactor for the second stage reaction.
A method for catalytic hydrocracking of heavy oil as described in .
JP24418390A 1990-09-14 1990-09-14 Catalytic hydrocracking of heavy oil Pending JPH04122789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24418390A JPH04122789A (en) 1990-09-14 1990-09-14 Catalytic hydrocracking of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24418390A JPH04122789A (en) 1990-09-14 1990-09-14 Catalytic hydrocracking of heavy oil

Publications (1)

Publication Number Publication Date
JPH04122789A true JPH04122789A (en) 1992-04-23

Family

ID=17115004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24418390A Pending JPH04122789A (en) 1990-09-14 1990-09-14 Catalytic hydrocracking of heavy oil

Country Status (1)

Country Link
JP (1) JPH04122789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348702C (en) * 2005-10-28 2007-11-14 中国石油化工集团公司 Process for producing fuel oil
CN106582456A (en) * 2015-10-14 2017-04-26 中国石油化工股份有限公司 Composite hydrogenation catalyst bed
CN110538676A (en) * 2018-05-29 2019-12-06 中国石油化工股份有限公司 Catalyst for hydrogenation refining of cracked tar
CN110538659A (en) * 2018-05-29 2019-12-06 中国石油化工股份有限公司 Catalyst for refining cracked tar

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348702C (en) * 2005-10-28 2007-11-14 中国石油化工集团公司 Process for producing fuel oil
CN106582456A (en) * 2015-10-14 2017-04-26 中国石油化工股份有限公司 Composite hydrogenation catalyst bed
CN110538676A (en) * 2018-05-29 2019-12-06 中国石油化工股份有限公司 Catalyst for hydrogenation refining of cracked tar
CN110538659A (en) * 2018-05-29 2019-12-06 中国石油化工股份有限公司 Catalyst for refining cracked tar
CN110538659B (en) * 2018-05-29 2021-12-28 中国石油化工股份有限公司 Catalyst for refining cracked tar
CN110538676B (en) * 2018-05-29 2021-12-28 中国石油化工股份有限公司 Catalyst for hydrogenation refining of cracked tar

Similar Documents

Publication Publication Date Title
KR101743293B1 (en) Hydrocracking catalyst for preparing valuable light aromatic hydrocarbons from polycyclic aromatic hydrocarbons
CN101172250B (en) Light hydrocarbon aromatization catalyst and its preparing process
US4797195A (en) Three zone hydrocracking process
JPS61133290A (en) One-stage hydrotreating method
KR20160110711A (en) Method of the convrsion of polycyclic aromatic hydrocarbons into btx-rich monocyclic aromatic hydrocarbons
Chen et al. High value utilization of inferior diesel for BTX production: Mechanisms, catalysts, conditions and challenges
JPH11156198A (en) Hydrogenation cracking catalyst for medium duty distilled oil production
CN101367048A (en) Preparation method and uses of condensate oil aromatization catalyst
CN101322945B (en) Method for preparing sulphur-containing condensate oil modifying catalyst and use
JPH04122789A (en) Catalytic hydrocracking of heavy oil
CN100395314C (en) Aromatization catalyst, preparation method, and application
CN102626635B (en) Coal tar denitrification catalyst and its preparation method and use
CN111530493A (en) Catalyst for converting alkane into aromatic hydrocarbon, preparation method and use method
CN101518738A (en) Dolomite catalyst for preparing hydrogen-rich gas from coke oven gas and method for preparing same
US4971680A (en) Hydrocracking process
Urzhuntsev et al. Prospects for using Mo-and W-containing catalysts in hydroisomerization. a patent review. Part 1: Catalysts based on molybdenum and tungsten phosphides
CN109465022A (en) Low-carbon hydrocarbon aromatization catalyst and preparation and application suitable for Fischer-Tropsch synthesis oil
CN106675645B (en) A kind of catalytic diesel oil hydroconversion process grading method of catalyst
JP5457808B2 (en) Method for producing monocyclic aromatic hydrocarbons
CN114931971A (en) Nickel nanocluster supported intercrystalline mesoporous zeolite catalyst and preparation method and application thereof
JPS581973B2 (en) Alumino Keisan Ensuite Tenkanshiyokubaino Seihou
CN106147859A (en) A kind of residuum hydrodesulfurization RFCC group technology of sour crude
JPH04122790A (en) Catalytic hydrocracking of heavy oil
JPS62246993A (en) Manufacture of lower paraffinic hydrocarbon
JP2022522835A (en) Methods and systems for producing light olefins from low quality oils