JPH0412254B2 - - Google Patents

Info

Publication number
JPH0412254B2
JPH0412254B2 JP59043091A JP4309184A JPH0412254B2 JP H0412254 B2 JPH0412254 B2 JP H0412254B2 JP 59043091 A JP59043091 A JP 59043091A JP 4309184 A JP4309184 A JP 4309184A JP H0412254 B2 JPH0412254 B2 JP H0412254B2
Authority
JP
Japan
Prior art keywords
fluoride
hydrogen fluoride
acyl
reaction
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59043091A
Other languages
Japanese (ja)
Other versions
JPS60188343A (en
Inventor
Susumu Fujama
Shunichi Matsumoto
Tatsuhiko Yanagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP59043091A priority Critical patent/JPS60188343A/en
Publication of JPS60188343A publication Critical patent/JPS60188343A/en
Publication of JPH0412254B2 publication Critical patent/JPH0412254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は芳香族炭化水素、フエノール類等の芳
香族化合物をフツ化アシルでアシル化して芳香族
ケトンを製造する方法に関する。 芳香族化合物をフツ化水素、フツ化硼素等の触
媒存在下酸フツ化物でアシル化する方法は特開昭
54−135756として知られている。こゝでは酸フツ
化物の製法としてフツ化水素の存在下オレフイン
に一酸化炭素を反応させる方法が示されている。
しかしかゝる方法により酸フツ化物を製造するに
は20〜50Kg/cm2の圧力を要する欠点がある。本発
明においてはかゝる欠点を解消し、酸無水物と芳
香族化合物から芳香族ケトンを収率良く製造する
と共にすぐれた回収率で触媒を回収しこれを循環
再使用することの出来る方法である。 即ち本発明は芳香族化合物をフツ化水素、又は
フツ化水素及びフツ化硼素の存在下、フツ化アシ
ルと反応させて芳香族ケトンを製造するに際し、
酸無水物を予じめフツ化水素と反応させてフツ化
アシルを合成し、これから単離されたフツ化アシ
ルをアシル化剤として使用する方法である。 本発明において使用する原料芳香族化合物と
は、トルエン、キシレン、トリメチルベンゼン、
エチルベンゼン、キユメン、ブチルベンゼン等の
アルキルベンゼン類、ナフタレン、メチルナフタ
レンその他のアルキルナフタレン類及びフエノー
ル、ナフトール類、さらには、アニソール、フエ
ニルエーテル等の芳香族エーテル類で芳香環置換
基のバラ位が空位の化合物が特に好適である。 一方のアシル化原料としては豊富に入手可能
な、無水酢酸、無水プロピオン酸、無水イソ酪
酸、無水安息香酸等の酸無水物が使用でき、従つ
て製造し得る芳香族ケトンとしては、4−メチル
アセトフエノン(香料、農薬)、4−イソブチル
アセトフエノン(医薬原料)、4−ヒドロキシア
セトフエノン、4−ヒドロキシプロピオフエノン
(医薬原料)、種々のベンゾフエノン類、2−アセ
チル−6−アルキルナフタレン及び2−イソブチ
リル−6−アルキルナフタレン(2,6−ナフタ
レンジカルボン酸原料)等の有用な化合物が包含
される。 本発明のアシル化剤は、先ずアシル化原料の酸
無水物を弗化水素と混合し、次式(1)の反応により
フツ化アシルを発生せしめ、同時に生成する遊離
酸と分離することにより得られる。 (RCO)2O+HF→RCOF+RCOOH …(1) (こゝでRは炭素数1〜12のアルキル基、又は
アリール基である) こゝで上記の反応は酸無水物がやゝ過剰の条件
で反応を進めることが肝要である。即ち、もしフ
ツ化水素が当量よりも過剰であるとフツ化水素と
有機酸の結合した最高共沸混合物を形成して分離
不可能となり、フツ化水素の損失につながると同
時に生成した酸がフツ素により汚染され、これを
除くために特別の処理を要することになる。酸無
水物が過剰のときは、このようなことはなく、フ
ツ化水素は定量的にフツ化アシルとして回収され
る。しかし、余り過剰である必要はなく、フツ化
水素に対する酸無水物の過剰率は5モル%以下で
よい。 フツ化アシルの発生装置はフツ化アシルと遊離
カルボン酸を蒸留するに必要な若干の段数を持つ
た通常の蒸留塔でよい。酸無水物とフツ化水素は
予じめ混合するか、または別々に蒸留塔の適当な
段に供給し、塔底は、酸の沸点迄加熱し、塔頂は
適当な還流を施す通常の蒸留操作により、塔頂か
ら純粋のフツ化アシルを、塔底からフツ素を含ま
ない酸を回収することが出来る。 この反応は反応速度が速いので殆んど滞留時間
を要しない。圧力は常圧以下で操作出来、流通操
作でも回分操作でもよい。生成したフツ化アシル
と酸の沸点差は極めて大きく、両者は容易に分離
出来る。 生成したフツ化アシルはアシル化剤としてアシ
ル化反応に供せられる。原料芳香族化合物に対す
るフツ化アシルのモル比は1以下であり、特に
0.9〜0.5が好ましい。 フツ化アシルを過剰にすると、反応の終了時点
で、フツ化アシルが残存し、触媒回収操作時に好
ましくない。又フツ化アシルが多く存在すると、
全体の反応速度(アシル化生成物の空時収量)を
低下させる。 触媒はフツ化水素単独でも良いが、更にフツ化
硼素を併用すると反応は促進され、高沸物の生成
等の副反応は減少する。フツ化水素単独の場合は
充分な反応速度を得る為にはアシル化剤に対する
フツ化水素の割合を5モル倍以上、好ましくは10
〜20モル倍の範囲で使用する。20モル倍以上のフ
ツ化水素を用いても効果が少なく、プロセス経済
上得策でない。 触媒としてフツ化硼素を併用する場合には、フ
ツ化硼素をアシル化剤に対し当量かまたはわずか
に過剰に用いるのが良く、余り過剰率が高いと反
応の選択性に好ましくない。フツ化硼素を併用す
る場合にはフツ化水素の使用量はアシル化剤に対
して3モル倍以上、好ましくは5〜15モル倍の範
囲で用いる。 アシル化反応の温度はフツ化水素単独触媒の場
合は0〜50℃、好ましくは20〜40℃であり、フツ
化硼素を併用する場合は−20〜+30℃、好ましく
は0〜20℃である。いずれの場合にも、温度を上
げれば反応速度は増すが、副反応速度も増加す
る。また、原料の融点等も考慮して反応温度を決
定することが必要である。 反応圧力は、通常の条件下で、常圧から2Kg/
cm2G迄の間の若干の加圧であるが、これは使用す
る触媒のモル比と温度によつて定まる。 反応は均一液相か場合によつては原料芳香族化
合物相と触媒相の2液相で進行するため、激しい
撹拌を要しない。 反応液は、アシル化反応生成物である芳香族ケ
トンまたはそのフツ化硼素錯体のフツ化水素溶液
であり、これを加熱することによりケトンとフツ
化水素、又はフツ化水素、フツ化硼素との結合が
分解され、フツ化水素又はフツ化水素−フツ化硼
素として気化分離することができる。 この触媒回収操作は出来るだけ迅速に進めて、
生成物の加熱変質を避ける必要がある。そのため
には、多段の気液接触装置(蒸留塔)を使用した
流通操作で実施するのが良い。触媒の回収のため
にはフツ化水素については40〜100℃、フツ化硼
素については100〜180℃の温度への加熱が必要で
ある。触媒回収操作の圧力は常圧ないしは加圧で
実施するのがプロセス上有利である。錯体の熱分
解を順調に進める為にフツ化水素、フツ化硼素に
対し不活性な分解助剤、たとえばベンゼン、トル
エン、クロロベンゼン等の芳香族炭化水素、ハロ
ゲン化芳香族炭化水素の還流下に加熱分解するの
は好ましい方法である。 本発明によれば単純な操作、低い反応圧力下で
芳香族化合物をアシル化することが出来ると共
に、触媒として使用するフツ化水素、フツ化硼素
を完全に回収し、循環使用することが出来、工業
的に極めて有利である。 実施例 1 (フツ化アシルの製造) 外部から電熱ヒーターで加熱出来るステンレス
製オートクレーブに、内径30m/m、長さ100
m/mで塔頂に冷却器を設けたステンレス製蒸留
塔(3m/mデイクソンパツキン充填)を組合わ
せてフツ化アシル発生器として使用した。 先ずオートクレーブ内に無水酢酸1430g(14.0
モル)を仕込み、続いて無水フツ化水素267g
(13.4モル)を仕込んだ。フツ化水素の仕込みと
同時に内液の温度は常温から約40℃に上昇した。
続いて蒸留塔々頂冷却器に冷却水を通じ、少量の
還流を与えるよう調節しながら、オートクレーブ
のガスを蒸留塔を通して解放し、塔頂部からフツ
化アセチルのガスを抜きながらゆつくりオートク
レーブの加熱を開始した。塔頂から連続して発生
するフツ化アセチルは氷水を通した別の冷却器で
凝縮せしめステンレス容器中に捕集した。 内液の温度が酢酸の沸点である118℃になる迄
加熱を続け、フツ化アセチルの発生操作を終え
た。フツ化アセチル発生中の塔頂凝縮部の温度は
20℃であつた。 採取したフツ化アセチルの収量は831gr(13.4モ
ル)であり、使用したフツ化水素に対し定量的で
あり、オートクレーブ中の酢酸は実質的にフツ素
不含であつた。 その他のフツ化アシルの発生につき同様の操作
で実施し、その結果を第1表にまとめた。
The present invention relates to a method for producing aromatic ketones by acylating aromatic compounds such as aromatic hydrocarbons and phenols with acyl fluoride. A method of acylating aromatic compounds with an acid fluoride in the presence of a catalyst such as hydrogen fluoride or boron fluoride is described in JP-A-Sho.
It is known as 54−135756. Here, as a method for producing acid fluoride, a method is shown in which olefin is reacted with carbon monoxide in the presence of hydrogen fluoride.
However, the production of acid fluorides by such a method has the drawback of requiring a pressure of 20 to 50 kg/cm 2 . The present invention eliminates these drawbacks and provides a method that can produce aromatic ketones from acid anhydrides and aromatic compounds in high yields, recover catalysts with excellent recovery rates, and recycle and reuse them. be. That is, in the present invention, when producing an aromatic ketone by reacting an aromatic compound with an acyl fluoride in the presence of hydrogen fluoride, or hydrogen fluoride and boron fluoride,
In this method, an acyl fluoride is synthesized by reacting an acid anhydride with hydrogen fluoride in advance, and the acyl fluoride isolated from the synthesized acyl fluoride is used as an acylating agent. The raw material aromatic compounds used in the present invention include toluene, xylene, trimethylbenzene,
Alkylbenzenes such as ethylbenzene, kyumene, and butylbenzene, naphthalene, methylnaphthalene, and other alkylnaphthalenes, phenols, naphthols, and aromatic ethers such as anisole and phenyl ether in which the rose position of the aromatic ring substituent is vacant. Particularly preferred are the compounds of On the other hand, as raw materials for acylation, acid anhydrides such as acetic anhydride, propionic anhydride, isobutyric anhydride, and benzoic anhydride, which are abundantly available, can be used. Therefore, the aromatic ketone that can be produced is 4-methyl Acetophenone (fragrance, pesticide), 4-isobutylacetophenone (pharmaceutical raw material), 4-hydroxyacetophenone, 4-hydroxypropiophenone (pharmaceutical raw material), various benzophenones, 2-acetyl-6-alkyl Useful compounds such as naphthalene and 2-isobutyryl-6-alkylnaphthalene (2,6-naphthalene dicarboxylic acid raw material) are included. The acylating agent of the present invention can be obtained by first mixing an acid anhydride as an acylation raw material with hydrogen fluoride, generating acyl fluoride by the reaction of the following formula (1), and separating it from the free acid generated at the same time. It will be done. (RCO) 2 O+HF→RCOF+RCOOH...(1) (Here, R is an alkyl group having 1 to 12 carbon atoms or an aryl group) The above reaction is carried out under conditions where the acid anhydride is slightly excess. It is essential to move forward with this. That is, if hydrogen fluoride is in excess of the equivalent amount, the highest azeotropic mixture of hydrogen fluoride and organic acid is formed and cannot be separated, leading to loss of hydrogen fluoride and at the same time, the generated acid is This means that special treatment is required to remove this contamination. When the acid anhydride is in excess, this does not occur and hydrogen fluoride is quantitatively recovered as acyl fluoride. However, it does not need to be in excess, and the excess ratio of acid anhydride to hydrogen fluoride may be 5 mol % or less. The acyl fluoride generator may be a conventional distillation column having the number of plates necessary to distill the acyl fluoride and free carboxylic acid. The acid anhydride and hydrogen fluoride are either mixed in advance or fed separately to appropriate stages of the distillation column, and the bottom of the column is heated to the boiling point of the acid, and the top of the column is subjected to appropriate reflux. The operation allows recovery of pure acyl fluoride from the top of the column and fluorine-free acid from the bottom of the column. This reaction has a fast reaction rate and requires almost no residence time. The pressure can be operated at normal pressure or lower, and either flow operation or batch operation may be used. The difference in boiling point between the produced acyl fluoride and the acid is extremely large, and the two can be easily separated. The produced acyl fluoride is used as an acylating agent in an acylation reaction. The molar ratio of acyl fluoride to the raw material aromatic compound is 1 or less, especially
0.9-0.5 is preferred. If the acyl fluoride is used in excess, the acyl fluoride will remain at the end of the reaction, which is not preferable during the catalyst recovery operation. Also, if there is a large amount of acyl fluoride,
Decrease the overall reaction rate (space-time yield of acylated product). Hydrogen fluoride alone may be used as the catalyst, but when boron fluoride is used in combination, the reaction is accelerated and side reactions such as the formation of high-boiling substances are reduced. In the case of using hydrogen fluoride alone, in order to obtain a sufficient reaction rate, the ratio of hydrogen fluoride to the acylating agent should be at least 5 times the mole, preferably 10 times.
Use in a range of ~20 moles. Even if 20 moles or more of hydrogen fluoride is used, the effect is small and it is not a good idea in terms of process economics. When boron fluoride is used in combination as a catalyst, it is preferable to use boron fluoride in an equivalent amount or slightly in excess of the acylating agent; if the excess is too high, it is not favorable for the selectivity of the reaction. When boron fluoride is used in combination, the amount of hydrogen fluoride used is 3 times or more, preferably 5 to 15 times, by mole relative to the acylating agent. The temperature of the acylation reaction is 0 to 50°C, preferably 20 to 40°C when hydrogen fluoride is used as a single catalyst, and -20 to +30°C, preferably 0 to 20°C when boron fluoride is used in combination. . In either case, increasing the temperature increases the reaction rate, but also increases the rate of side reactions. Furthermore, it is necessary to determine the reaction temperature by taking into consideration the melting point of the raw materials and the like. The reaction pressure is 2Kg/2Kg from normal pressure under normal conditions.
The pressure is slightly increased up to cm 2 G, which is determined by the molar ratio of the catalyst used and the temperature. Since the reaction proceeds in a homogeneous liquid phase or in some cases in two liquid phases of a raw material aromatic compound phase and a catalyst phase, vigorous stirring is not required. The reaction solution is a hydrogen fluoride solution of an aromatic ketone or its boron fluoride complex, which is an acylation reaction product, and by heating it, the reaction mixture between the ketone and hydrogen fluoride, or between hydrogen fluoride and boron fluoride. The bond is decomposed and hydrogen fluoride or hydrogen fluoride-boron fluoride can be vaporized and separated. This catalyst recovery operation should proceed as quickly as possible.
It is necessary to avoid heat alteration of the product. For this purpose, it is preferable to perform a flow operation using a multi-stage gas-liquid contact device (distillation column). For recovery of the catalyst, heating to a temperature of 40-100°C for hydrogen fluoride and 100-180°C for boron fluoride is required. It is advantageous for the process to carry out the catalyst recovery operation at normal pressure or increased pressure. In order to smoothly proceed with thermal decomposition of the complex, heat under reflux a decomposition aid inert to hydrogen fluoride and boron fluoride, such as aromatic hydrocarbons and halogenated aromatic hydrocarbons such as benzene, toluene, and chlorobenzene. Decomposition is the preferred method. According to the present invention, aromatic compounds can be acylated with simple operations and under low reaction pressure, and hydrogen fluoride and boron fluoride used as catalysts can be completely recovered and recycled, It is extremely advantageous industrially. Example 1 (Production of acyl fluoride) A stainless steel autoclave that can be heated from the outside with an electric heater has an inner diameter of 30 m/m and a length of 100 m.
A stainless steel distillation column (packed with 3 m/m Dixon packing) equipped with a condenser at the top of the column was used as an acyl fluoride generator. First, add 1430 g of acetic anhydride (14.0
mol), followed by 267g of anhydrous hydrogen fluoride.
(13.4 mol) was charged. At the same time as hydrogen fluoride was charged, the temperature of the internal solution rose from room temperature to approximately 40°C.
Next, cooling water was passed through the distillation tower overhead cooler, and while adjusting to give a small amount of reflux, the gas in the autoclave was released through the distillation tower, and the autoclave was slowly heated while removing the acetyl fluoride gas from the top of the tower. It started. The acetyl fluoride continuously generated from the top of the column was condensed in a separate cooler passing ice water and collected in a stainless steel container. Heating was continued until the temperature of the internal solution reached 118°C, which is the boiling point of acetic acid, and the operation for generating acetyl fluoride was completed. The temperature of the top condensation section during generation of acetyl fluoride is
It was 20℃. The yield of acetyl fluoride collected was 831 gr (13.4 mol), which was quantitative with respect to the hydrogen fluoride used, and the acetic acid in the autoclave was substantially fluorine-free. Similar operations were performed to generate other acyl fluorides, and the results are summarized in Table 1.

【表】 実施例 2 (アシル化反応) 内容積500mlのジヤケツトつきステンレス製オ
ートクレーブをアシル化器として使用した。 オートクレーブにβ−メチルナフタレン142gr
(1モル)を53gr(0.85モル)のフツ化アセチルに
溶解させて仕込み、次に液体フツ化水素170gr
(8.5モル)を加えた後、ジヤケツトに冷媒を通
じ、撹拌しながらフツ化硼素ガス60gr(0.87モル)
を計量槽より約10分間でゆつくり供給した。フツ
化硼素の吸収に伴なう発熱をジヤケツト冷却で除
去し、温度が10℃を超えないように維持する。そ
の後ゆつくり撹拌しながら温度20℃で1時間反応
後、内容物を氷水中にとり出しベンゼン200grで
稀釈後、油層をアルカリ水と水で洗浄し、蒸留に
よりベンゼンを除き、順次蒸留によりβ−メチル
ナフタリン37gr(0.26モル)と184〜190℃(15mm
Hg)の留分としてアシル化メチルナフタリン
151gr(0.82モル%、ガスクロ分析による異性体組
成:α−アセチル−6−メチルナフタレン84.7
%、その他15.3%)を得、また釜残として高沸物
3.7gが残つた。 同様の操作により各種の原料についてアシル化
反応を行なつた結果を第2表に示す。
[Table] Example 2 (Acylation reaction) A stainless steel autoclave with a jacket and an internal volume of 500 ml was used as an acylation device. β-Methylnaphthalene 142gr in autoclave
(1 mole) was dissolved in 53gr (0.85mol) of acetyl fluoride, then 170g of liquid hydrogen fluoride was added.
After adding (8.5 mol), the refrigerant was passed through the jacket and 60 gr (0.87 mol) of boron fluoride gas was added while stirring.
was slowly fed from the measuring tank over a period of about 10 minutes. The heat generated by the absorption of boron fluoride is removed by jacket cooling, and the temperature is maintained at no higher than 10°C. Thereafter, after reacting for 1 hour at a temperature of 20℃ with gentle stirring, the contents were taken out into ice water and diluted with 200g of benzene.The oil layer was washed with alkaline water and water, and the benzene was removed by distillation, and the β-methyl Naphthalene 37gr (0.26mol) and 184~190℃ (15mm
Acylated methylnaphthalene as a fraction of Hg)
151gr (0.82mol%, isomer composition by gas chromatography: α-acetyl-6-methylnaphthalene 84.7
%, other 15.3%), and high-boiling substances as residue from the pot.
3.7g remained. Table 2 shows the results of acylation reactions of various raw materials performed in the same manner.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族化合物をフツ化水素、又はフツ化水素
及びフツ化硼素の存在下、フツ化アシルと反応さ
せて芳香族ケトンを製造するに際し、酸無水物を
予じめフツ化水素と反応させてフツ化アシルを合
成し、これから単離されたフツ化アシルをアシル
化剤として使用することを特徴とする芳香族ケト
ンの製造法
1. When producing an aromatic ketone by reacting an aromatic compound with an acyl fluoride in the presence of hydrogen fluoride, or hydrogen fluoride and boron fluoride, the acid anhydride is reacted with the hydrogen fluoride in advance. A method for producing an aromatic ketone, which comprises synthesizing an acyl fluoride and using the acyl fluoride isolated from the synthesized acyl fluoride as an acylating agent.
JP59043091A 1984-03-07 1984-03-07 Preparation of aromatic ketone Granted JPS60188343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59043091A JPS60188343A (en) 1984-03-07 1984-03-07 Preparation of aromatic ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59043091A JPS60188343A (en) 1984-03-07 1984-03-07 Preparation of aromatic ketone

Publications (2)

Publication Number Publication Date
JPS60188343A JPS60188343A (en) 1985-09-25
JPH0412254B2 true JPH0412254B2 (en) 1992-03-04

Family

ID=12654166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59043091A Granted JPS60188343A (en) 1984-03-07 1984-03-07 Preparation of aromatic ketone

Country Status (1)

Country Link
JP (1) JPS60188343A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593125A (en) * 1985-03-13 1986-06-03 Celanese Corporation Acylation of naphthalenes
DE3806656A1 (en) * 1988-03-02 1989-09-14 Hoechst Ag METHOD FOR PRODUCING HALOGENIC AROMATIC COMPOUNDS
US4990681A (en) * 1989-12-04 1991-02-05 Curtis Thomas A Method for removing hydrogen fluoride from mixtures comprising aromatic ketones
US5208383A (en) * 1991-06-14 1993-05-04 Mitsubishi Gas Chemical Company, Inc. Process for producing aromatic acylation product
CA2093511C (en) * 1991-08-08 1999-09-21 Koji Sumitani Process for producing dialkylnaphthalene
TW306910B (en) * 1992-09-11 1997-06-01 Hoechst Ag
EP1961727A1 (en) * 2007-02-26 2008-08-27 Bayer CropScience AG Method for manufacturing 2,4-dihydroxyphenyl-4-methoxybenzyl ketones

Also Published As

Publication number Publication date
JPS60188343A (en) 1985-09-25

Similar Documents

Publication Publication Date Title
JP2002524542A (en) Method for producing aromatic aldehyde
JPS5914255B2 (en) Olefin carbonylation method
JPS644493B2 (en)
JPH0412254B2 (en)
EP0215351B1 (en) Process for producing acetyl-substituted aromatic compound
JPS6234024B2 (en)
EP0488638B1 (en) BF3 catalyzed acetylation of butylbenzene
US4731483A (en) Method for preparing 3-ethylbenzophenone
JP2569760B2 (en) Method for decomposing aromatic acylated product / HF-BF3 complex
JP4619602B2 (en) Method for producing diphenyl ether compound
JPS582210B2 (en) Method for producing 2,3-dimethyl-2,3-butanediol
JPH0769991A (en) Production of dimethyl 2,6-naphthalenedicarboxylate
JPH06502189A (en) Method for producing aryl ketone
JPS58124761A (en) Sulfonylation of halogenobenzene
WO2021039230A1 (en) METHOD FOR PRODUCING m-DIALKYLBENZALDEHYDE
JPH0114895B2 (en)
JPH0615498B2 (en) Process for producing α- (p-isobutylphenyl) propionic acid or its alkyl ester
Effenberger et al. Perfluoroalkanesulfonic acid catalyzed acylations of alkylbenzenes: Synthesis of alkylanthraquinones
JPH0585957A (en) Process for preparing 2,2-bis(3,4-dimethylphenyl)propane
JPH0466217B2 (en)
JPS6156148A (en) Preparation of macrocyclic ketone
JPS615048A (en) Novel preparation of o-benzoylbenzoic acid
KR960009677B1 (en) Preparation of 4-isobutyl styrene
JPS63275530A (en) Production of 4-isobutylstyrene
JPH06172327A (en) Production of 2-acetylpyrazine