JPH0412224A - Straight line position sensor - Google Patents

Straight line position sensor

Info

Publication number
JPH0412224A
JPH0412224A JP11558090A JP11558090A JPH0412224A JP H0412224 A JPH0412224 A JP H0412224A JP 11558090 A JP11558090 A JP 11558090A JP 11558090 A JP11558090 A JP 11558090A JP H0412224 A JPH0412224 A JP H0412224A
Authority
JP
Japan
Prior art keywords
magnetic
coil
movable body
magnetic body
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11558090A
Other languages
Japanese (ja)
Inventor
Eiji Shimomura
英二 霜村
Kazuo Yamada
一夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11558090A priority Critical patent/JPH0412224A/en
Publication of JPH0412224A publication Critical patent/JPH0412224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To detect the movable body with high accuracy in a wide range by placing an exciting means at a prescribed interval against a magnetic material, and also, providing plural pieces so that each adjacent one generates a magnetic elastic wave whose phase is inverted to the magnetic material, respectively. CONSTITUTION:When a movable body 11 moves along a magnetic material 13 in a state that a magnetic elastic wave occurs in the magnetic material 13, a magnetic field by a permanent magnet 12 works on the magnetic material 13, and a voltage is induced in a detection coil 17. That is, since the magnetic elastic wave allowed to occur by an excited coil 14 or 15 of the side in which the magnet 12 is positioned is attenuated, it is offset by a magnetic elastic wave allowed to occur by the other coil 15 or 14 in a position of the coil 17. Also, an amplitude value and a phase of an induced voltage are varied in accordance with a position at the time when the magnet 12 works on the magnetic substance 13, therefore, by comparing the induced voltage obtained from the coil 17 with an exciting current, a position of movable body 11 can be detected. In such a way, a moving position of the movable body can be detected with high accuracy in a wide range.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、NC機器等において可動体の移動位置を磁気
的に検出するようにした直線位置センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a linear position sensor that magnetically detects the moving position of a movable body in an NC device or the like.

(従来の技術) この種の磁気式直線位置センサは、信頼性が高いことに
加えて耐環境性が良いことや取扱い性に優れるという利
点から、近年、メカトロニクス分野や医療分、野等で需
要が拡大している。原理的には、大別してデジタル形と
アナログ形の2種類のものがあり、例えば、デジタル形
では磁気記録方式のマグネスケールがあり、また、アナ
ログ形では磁気弾性波伝播方式によるものがある。この
うち、前者の磁気記録方式のものは、特に検出精度が要
求される場合に用いられ、これに対して、後者の磁気弾
性波伝播方式のものは、一般に精度よりも連応性、操作
性、簡易性が要求される場合に利用されることが多い。
(Prior technology) This type of magnetic linear position sensor has been in demand in the mechatronics, medical, and other fields in recent years due to its high reliability, environmental resistance, and ease of handling. is expanding. In principle, there are two types: digital type and analog type.For example, digital type includes magnetic recording type Magnescale, and analog type includes type using magnetoelastic wave propagation type. Among these, the former magnetic recording method is used when detection accuracy is particularly required, whereas the latter magnetoelastic wave propagation method generally improves coordination and operability rather than accuracy. It is often used when simplicity is required.

このような磁気弾性波伝播方式の直線位置センサについ
てその検出原理を以下に述べる。
The detection principle of such a magnetoelastic wave propagation type linear position sensor will be described below.

即ち、第4図は直線位置センサの原理的構成を示すもの
で、可動体1に対してその移動方向と平行に配置された
磁歪を有する長尺状の磁性体2を設け、この磁性体2の
一端側に励磁コイル3を配設すると共に可動体1に検出
用コイル4を設けて構成している。励磁コイル3にパル
ス電流を与えると、磁性体2の励磁コイル3と対向して
いる部分が局部的に伸縮することにより弾性波が生じ、
これが磁性体2の他端部に伝播して行く。この場合、磁
気弾性波は磁性体2内を4〜51an/sで伝播するた
め、励磁コイル3から遠ざかるにつれて位相遅れ及び振
幅減衰が大きくなる。つまり、磁性体2の不特定位置で
観測される磁気弾性波は、その観測位置に応じて振幅及
び位相が異なるようになる。一方、検出コイル4には、
磁性体2内を伝播する磁気弾性波による磁化の変化によ
り電圧パルスか1透起される。従って、例えば、第4図
において、励磁コイル3と同じ位置に相当する(a)と
、磁性体2に沿って全体の半分程度隔たった位置に相当
する(b)との両者の位置における検出コイル4の検出
電圧を比較すると、夫々第5図(a)、(b)に示すよ
うになる。即ち、励磁コイル3から遠ざかる位置にある
(b)の検出電圧は、(a)に比べて振幅はAからA′
へと減衰し、伝播に要する遅れ時間τが発生して位相が
ずれる。
That is, FIG. 4 shows the principle configuration of a linear position sensor, in which an elongated magnetic body 2 having magnetostriction is arranged parallel to the direction of movement of the movable body 1. An excitation coil 3 is disposed at one end of the movable body 1, and a detection coil 4 is disposed on the movable body 1. When a pulse current is applied to the excitation coil 3, the portion of the magnetic body 2 facing the excitation coil 3 locally expands and contracts, producing elastic waves.
This propagates to the other end of the magnetic body 2. In this case, since the magnetoelastic wave propagates within the magnetic body 2 at 4 to 51 an/s, the phase delay and amplitude attenuation increase as the distance from the exciting coil 3 increases. In other words, the magnetoelastic waves observed at an unspecified position of the magnetic body 2 have different amplitudes and phases depending on the observation position. On the other hand, the detection coil 4 has
A voltage pulse is generated by a change in magnetization caused by a magnetoelastic wave propagating within the magnetic body 2. Therefore, for example, in FIG. 4, the detection coil is located at both positions (a), which corresponds to the same position as the excitation coil 3, and (b), which corresponds to a position that is approximately half the distance along the magnetic body 2. Comparing the detected voltages of 4, the results are shown in FIGS. 5(a) and 5(b), respectively. That is, the detected voltage in (b) at a position far from the excitation coil 3 has an amplitude from A to A' compared to (a).
The delay time τ required for propagation occurs and the phase shifts.

このような関係が生ずることに基き、検出コイル4に誘
起される電圧を励磁コイル3への印加電圧と比較するこ
とにより、可動体1の位置を検出することができるので
ある。
Based on the existence of such a relationship, the position of the movable body 1 can be detected by comparing the voltage induced in the detection coil 4 with the voltage applied to the excitation coil 3.

(発明が解決しようとする課題) しかしながら、上記したような従来構成のものは、磁気
弾性波が伝播距離の増加に伴って指数関数的に減衰する
ため、長距離の伝播が望めず検出範囲か広く取れなくな
り、従って、前述したように広い範囲で精度の良い検出
が行えないという問題があった。このことは、単に励磁
コイル3への入力を増加させてもそれに比例して伝播距
離つまり横用距離を増やすことができないことを意味し
ており、しかも、磁性体2には利質的な限界があるため
、励磁電流を増加させても磁性体2か飽和現象を起こし
て磁化が比例して増加しなくなることによるものである
(Problem to be Solved by the Invention) However, with the conventional configuration as described above, magnetoelastic waves decay exponentially as the propagation distance increases, so long-distance propagation cannot be expected and the detection range is limited. Therefore, as mentioned above, there was a problem that accurate detection could not be performed over a wide range. This means that even if the input to the excitation coil 3 is simply increased, the propagation distance, that is, the lateral distance, cannot be increased proportionally, and furthermore, the magnetic material 2 has a limited advantage. Therefore, even if the excitation current is increased, the magnetic body 2 undergoes a saturation phenomenon and the magnetization does not increase proportionally.

また、従来構成のものは、検1七コイル4か可動体1に
配置されているので、検出コイル4から検出信号を取出
す等の信号処理を行うための構成が複雑になってしまう
欠点があった。
In addition, in the conventional configuration, since the detection coil 4 is disposed on the movable body 1, there is a drawback that the configuration for performing signal processing such as extracting the detection signal from the detection coil 4 becomes complicated. Ta.

本発明は、上記事情に鑑みてなされたもので、その1」
的は、磁気弾性波伝播方式による検出の利点を生かしな
がら、簡単な構成で広い範囲に渡って可動体の位置を精
度良く検出することができ、また、検出部を固定的に配
置することができて信号処理の構成も筒中化できる直線
位置センサを提供するにある。
The present invention has been made in view of the above circumstances, part 1.
The aim is to make use of the advantages of detection using the magnetoelastic wave propagation method, to be able to accurately detect the position of a movable object over a wide range with a simple configuration, and to be able to locate the detection part in a fixed manner. The object of the present invention is to provide a linear position sensor in which the signal processing structure can be integrated into a cylinder.

[発明の構成コ (課題を解決するための手段) 本発明の直線位置センサは、磁歪を有し長尺状をなす磁
性体と、所定間隔を存して配置され隣り合うもの同志が
夫々前記磁性体に対して位相が反転した磁気弾性波を発
生させる複数個の励磁手段と、隣り合う前記励磁手段の
間に配置され前記磁性体を伝播する磁気弾性波を検出す
る検出手段と、前記磁性体の長手方向に沿って移動可能
に配置された可動体と、この可動体に設けられ前記磁性
体に磁界を作用させる磁石とを具備したところに特徴を
有する。
[Structure of the Invention (Means for Solving the Problems)] The linear position sensor of the present invention includes a long magnetic body having magnetostriction, and adjacent pieces arranged at a predetermined interval, each of which has the above-mentioned shape. a plurality of excitation means for generating magnetoelastic waves whose phases are reversed with respect to the magnetic body; a detection means arranged between adjacent excitation means for detecting the magnetoelastic waves propagating through the magnetic body; It is characterized in that it includes a movable body disposed so as to be movable along the longitudinal direction of the body, and a magnet provided on the movable body to apply a magnetic field to the magnetic body.

(作用) 本発明の直線位置センサによれば、複数個の励磁手段に
励磁電流を与えると、磁性体には磁気弾性波が生起され
、しかも隣合う励磁手段との間に生ずる磁気弾性波が互
いに位相が反転していることにより一定の条件で干渉し
合うので、例えば両者の振幅が同じであれば、ちょうど
中央部で振幅がゼロとなり、且つ、励磁手段を設けた位
置ではピークとなるような分布状態が得られる。つまり
、距離に対して振幅の大きさは指数関数的ではなく略比
例して変化するような分布状態となるのである。この状
態で、検出手段には上述の分布に応じた一定の電圧が誘
起されるが、このとき、可動体の位置によって磁石の磁
界が磁性体に作用し、その位置における磁気弾性波を減
衰させるように働く。これにより、上記した検出手段に
誘起される電圧の振幅及び位相は、可動体の移動位置に
応じて異なる値が得られるようになる。従って、この誘
起電圧を励磁電流と比較することにより可動体の位置が
検出される。
(Function) According to the linear position sensor of the present invention, when an excitation current is applied to a plurality of excitation means, magnetoelastic waves are generated in the magnetic body, and the magnetoelastic waves generated between adjacent excitation means are Since their phases are inverted, they will interfere with each other under certain conditions, so for example, if the amplitudes of both are the same, the amplitude will be zero exactly at the center, and will peak at the position where the excitation means is installed. A distribution state can be obtained. In other words, the distribution state is such that the magnitude of the amplitude changes not exponentially but approximately proportionally to the distance. In this state, a constant voltage according to the above-mentioned distribution is induced in the detection means, but at this time, the magnetic field of the magnet acts on the magnetic body depending on the position of the movable body, and attenuates the magnetoelastic wave at that position. work like that. Thereby, the amplitude and phase of the voltage induced in the above-mentioned detection means can obtain different values depending on the moving position of the movable body. Therefore, the position of the movable body is detected by comparing this induced voltage with the excitation current.

(実施例) 以下、本発明の一実施例について第1図乃至第3図を参
照しながら説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.

第1図は全体の構成を模式的に示しており、移動可能に
配設された可動体11には永久磁石12が設けられてお
り、この可動体11の移動位置に対応して長さしの磁歪
を有する磁性体]3が配置されている。磁性体13は例
えばFe系のアモルファス薄帯等の制料からなる。そし
て、この磁性体13の両端部に夫々位置して励磁手段た
る励磁コイル14及び15が配設され、これらは磁性体
13に対して生起させる磁気弾性波の位相を反転させる
ように逆接続状態で直列にして励磁源となる交流電源1
6の両端子間に接続されている。また、磁性体]3の略
中央部(励磁コイル]4及び15の夫々から長さL/2
だけ離れている)には検出手段たる検出コイル17が配
設されており、上述の永久磁石12が設置されていない
状態で、上記励磁コイル14及び15により生起される
磁気弾性波は丁度この検出コイル17の位置で相殺しあ
ってその振幅がゼロになるように設定されている。
FIG. 1 schematically shows the overall configuration, in which a movable body 11 that is movably arranged is provided with a permanent magnet 12, and the length of the movable body 11 is adjusted according to the movement position of the movable body 11. A magnetic material having magnetostriction] 3 is arranged. The magnetic material 13 is made of a material such as an Fe-based amorphous ribbon. Excitation coils 14 and 15, which serve as excitation means, are disposed at both ends of the magnetic body 13, respectively, and these are connected in reverse so as to reverse the phase of the magnetoelastic waves generated in the magnetic body 13. AC power supply 1 which is connected in series and serves as an excitation source.
It is connected between both terminals of 6. Also, the length L/2 from each of the approximately central part of the magnetic body] 3 (excitation coil) 4 and 15
A detection coil 17, which is a detection means, is disposed at a portion (separated by a distance of They are set so that they cancel each other out at the position of the coil 17 and the amplitude becomes zero.

次に、本実施例の作用について第2図をも参照しながら
説明する。
Next, the operation of this embodiment will be explained with reference to FIG. 2.

初めに、説明の都合上、可動体11がない状態つまり永
久磁石12による磁界が磁性体13に作用しない状態で
あると仮定する。この状態で、交流電源16から励磁コ
イル14及び15に対して励磁周波数fの電流を与える
と、磁性体12の内部ではパルス状の励磁電流に応じて
磁気弾性波が発生する。そして、この磁気弾性波は互い
に位相が反転されている(位相が1800ずれている)
ので、これらの磁気弾性波の合成として得られる磁性体
12の振動状態は、励磁コイル14及び15の位置でプ
ラス或はマイナスのピーク値を示し、中央部即ち検出コ
イル17のある位置に近付くに従ってその振幅はゼロに
近付き、検出コイル17の位置でゼロとなる。これは、
励磁コイル14及び15の位置から生起された磁気弾性
波が進むに従って互いに干渉するためで、検出コイル1
7の位置で丁度ゼロとなるのである。つまり、検出コイ
ル17の位置で磁性体13の磁気弾性波同志の干渉によ
り強制的に振幅をゼロとするようにしているので、磁性
体13の長手方向に沿った振幅の分布は、従来のように
指数関数的に減衰するのではなく、むしろ正比例に近い
関係で変化するようになる。
First, for convenience of explanation, it is assumed that the movable body 11 is not present, that is, the magnetic field from the permanent magnet 12 does not act on the magnetic body 13. In this state, when a current with an excitation frequency f is applied from the AC power supply 16 to the excitation coils 14 and 15, magnetoelastic waves are generated inside the magnetic body 12 in response to the pulsed excitation current. The phases of these magnetoelastic waves are inverted (1800 degrees out of phase).
Therefore, the vibration state of the magnetic body 12 obtained as a combination of these magnetoelastic waves exhibits a positive or negative peak value at the positions of the excitation coils 14 and 15, and decreases as it approaches the center, that is, the position of the detection coil 17. Its amplitude approaches zero and becomes zero at the position of the detection coil 17. this is,
This is because the magnetoelastic waves generated from the positions of the excitation coils 14 and 15 interfere with each other as they advance.
It becomes exactly zero at position 7. In other words, since the amplitude is forced to zero at the position of the detection coil 17 due to interference between the magnetoelastic waves of the magnetic body 13, the amplitude distribution along the longitudinal direction of the magnetic body 13 is not the same as in the conventional case. It does not decay exponentially, but rather changes in a relationship close to direct proportion.

ここで、発明者らが実験的に得た結果について簡単に述
べると、励磁コイル14及び]5の間の距離りをパラメ
ータとして入力電圧に対する出力電圧の大きさの比(百
分率)を表わすと、第3図に示すような結果が得られた
。即ち、この場合に、距離りを5cm、8cm及び1.
6 cmとし、励磁周波数を5  kllz、励磁コイ
ル巻数を3回、検出コイル巻数を20としたときの結果
である。尚、この場合に、磁性体13としてはアライド
社製のアモルファス薄帯METGLAS2605S2材
の10mm幅のものを用いている。この第3図において
、入出力電圧比R(%)は、夫々の場合において距離り
の中間点てゼロとなり、各励磁コイル14及び15に対
応する磁性体11の部分においては互いに最大の振幅と
なるような結果が得られる。そして、距離りに対しては
、間隔が短くなる程そのピーク値は大きくなり、従って
、分解能が良くなることを示している。
Here, to briefly describe the results obtained experimentally by the inventors, the ratio (percentage) of the magnitude of the output voltage to the input voltage is expressed using the distance between the excitation coil 14 and ]5 as a parameter. The results shown in FIG. 3 were obtained. That is, in this case, the distances are 5 cm, 8 cm, and 1.
6 cm, the excitation frequency was 5 kllz, the number of turns of the excitation coil was 3, and the number of turns of the detection coil was 20. In this case, as the magnetic body 13, a 10 mm wide amorphous ribbon METGLAS2605S2 material manufactured by Allied Co., Ltd. is used. In this FIG. 3, the input/output voltage ratio R (%) becomes zero at the midpoint of the distance in each case, and reaches the maximum amplitude at the part of the magnetic body 11 corresponding to each exciting coil 14 and 15. You can get results like this. As for the distance, the shorter the interval, the larger the peak value, which indicates that the resolution is better.

次に、上述のように磁性体13に磁気弾性波が生起され
ている状態で、可動体11が磁性体13に沿って移動す
ると、その永久磁石12による磁界が磁性体13に作用
し、検出コイル17には電圧が誘起されるようになる。
Next, when the movable body 11 moves along the magnetic body 13 while magnetoelastic waves are being generated in the magnetic body 13 as described above, the magnetic field by the permanent magnet 12 acts on the magnetic body 13 and is detected. A voltage is induced in the coil 17.

即ち、永久磁石12の直流磁界が磁性体に作用すると、
永久磁石12が位置する側の励磁コイル14または15
により生起された磁気弾性波が減衰されるため、検出コ
イル17の位置で他方の励磁コイル15または14によ
り生起された磁気弾性波と相殺される。つまり、検出コ
イル17の位置では、一方の減衰された磁気弾性波と他
方の正常な磁気弾性波が干渉することになり、その振幅
及び位相の差により、検出コイル17に電圧が誘起され
ることになるのである。そして、この誘起電圧の振幅値
及び位相は永久磁石12が磁性体13に作用するときの
位置に応じて変化するので、検出コイル17から得られ
る誘起電圧を励磁電流と比較することにより、可動体1
1の移動位置が検出できるのである。
That is, when the DC magnetic field of the permanent magnet 12 acts on the magnetic material,
Excitation coil 14 or 15 on the side where permanent magnet 12 is located
Since the magnetoelastic waves generated by the magnetoelastic waves are attenuated, they are canceled out by the magnetoelastic waves generated by the other excitation coil 15 or 14 at the position of the detection coil 17. That is, at the position of the detection coil 17, one attenuated magnetoelastic wave and the other normal magnetoelastic wave interfere, and a voltage is induced in the detection coil 17 due to the difference in amplitude and phase. It becomes. The amplitude value and phase of this induced voltage change depending on the position when the permanent magnet 12 acts on the magnetic body 13, so by comparing the induced voltage obtained from the detection coil 17 with the exciting current, 1
1 movement position can be detected.

このような本実施例によれば、磁性体13の全長に渡っ
て磁気弾性波の振幅の変化を大きくすることができ、従
って、検出距離の変化に対して検出コイル12には変化
の大きな電圧を誘起させることができ、可動体11の位
置をより精度良く広い範囲で検出することができる。
According to this embodiment, it is possible to increase the change in the amplitude of the magnetoelastic wave over the entire length of the magnetic body 13, and therefore, the voltage that changes greatly in the detection coil 12 with respect to a change in the detection distance can be increased. can be induced, and the position of the movable body 11 can be detected more accurately over a wide range.

また、本実施例によれば、検出コイル17を可動体11
に設ける必要がないので、検出電圧の信号処理が簡単に
なる。
Further, according to this embodiment, the detection coil 17 is connected to the movable body 11.
Since there is no need to provide a detection voltage, signal processing of the detection voltage becomes easy.

そして、上記実施例によれば、励磁コイル14及び15
の間隔を小さくするほど検出電圧の変化をより大きくす
ることができ、これによりさらに検出精度を向上させる
ことができる。
According to the above embodiment, the excitation coils 14 and 15
The smaller the interval, the larger the change in the detection voltage can be, and thereby the detection accuracy can be further improved.

尚、上記実施例においては、磁性体としてFe系のアモ
ルファス材料を用いた場合について述べたが、これに限
らず、磁歪を有し磁気弾性波を発生させる磁性体であれ
ば良い。
In the above embodiment, a case was described in which an Fe-based amorphous material was used as the magnetic material, but the material is not limited to this, and any magnetic material that has magnetostriction and generates magnetoelastic waves may be used.

また、上記実施例においては、磁石として永久磁石]2
を用いたが、電磁石を用いる構成としても良い。
In addition, in the above embodiment, the magnet is a permanent magnet]2
However, a configuration using an electromagnet may also be used.

さらに、磁気弾性波の検出にはホール素子等の磁気検出
素子を用いることもてきる。
Furthermore, a magnetic detection element such as a Hall element may be used to detect magnetoelastic waves.

そして、上記実施例においては、励磁手段として励磁コ
イル]4及び]5の2個を用いる構成の場合について述
べたが、これに限らず、3個以上の励磁コイルを励磁手
段として設ける構成でも良い。即ち、この場合には、検
出領域を複数に区分して可動体の移動位置を検出するも
ので、隣り合う検出領域においては第2図に示した検出
電圧の特性が反転するようになるが、予めこれらを各領
域に対応付けて記憶しておくことにより、前述の場合よ
りもさらに広い範囲に渡って可動体の移動位置を検出す
ることができる。
In the above embodiment, a configuration is described in which two excitation coils ] 4 and ] 5 are used as excitation means, but the configuration is not limited to this, and a configuration in which three or more excitation coils are provided as excitation means may also be used. . That is, in this case, the detection area is divided into a plurality of parts to detect the moving position of the movable body, and the characteristics of the detection voltage shown in FIG. 2 are reversed in adjacent detection areas. By storing these in advance in association with each area, the moving position of the movable body can be detected over a wider range than in the case described above.

[発明の効果] 以上説明したように、本発明の直線位置センサによれば
、励磁手段を磁性体に対して所定間隔を存して配置する
と共に隣合うもの同志が夫々磁性体に対して位相が反転
した磁気弾性波を発生させるように複数個設けたので、
磁性体の全領域に渡る広い範囲で可動体の移動に対して
検出電圧の振幅の変化を大きくとることができ、簡単な
構成で可動体の移動位置を広い範囲で精度良く検出でき
る。また、検出手段を固定的に配置する構成としている
ので、可動部分から信号を取出すための構成が不要とな
って、信号処理が簡単になるという優れた効果を奏する
[Effects of the Invention] As explained above, according to the linear position sensor of the present invention, the excitation means are arranged at a predetermined interval with respect to the magnetic body, and adjacent ones are arranged in phase with respect to the magnetic body. Since we installed multiple units to generate magnetoelastic waves in which the
The amplitude of the detection voltage can be largely changed with respect to the movement of the movable body over a wide range over the entire area of the magnetic body, and the moving position of the movable body can be detected accurately over a wide range with a simple configuration. Further, since the detection means is arranged in a fixed manner, there is no need for a structure for extracting a signal from a movable part, resulting in an excellent effect of simplifying signal processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の第1の実施例を示し、第1
図は全体構成の概略図、第2図は検出電圧の分布特性図
、第3図は入出力電圧比を実験により求めた結果を示す
図である。第4図及び第5図は従来例を示し、第4図は
第1図相当図、第5図は検出電圧の波形図である。 図面中、11は可動体、12は永久磁石(磁石)13は
磁性体、14及び15は励磁コイル(励磁手段)、17
は検出コイル(検出手段)である。 <引代U田沢(メ) %壬11刊
1 to 3 show a first embodiment of the present invention.
2 is a diagram showing the distribution characteristics of the detected voltage, and FIG. 3 is a diagram showing the results of the input/output voltage ratio determined by experiment. 4 and 5 show a conventional example, where FIG. 4 is a diagram corresponding to FIG. 1, and FIG. 5 is a waveform diagram of a detected voltage. In the drawing, 11 is a movable body, 12 is a permanent magnet (magnet), 13 is a magnetic body, 14 and 15 are excitation coils (excitation means), and 17
is a detection coil (detection means). <Delivery U Tazawa (Me) % 11th edition

Claims (1)

【特許請求の範囲】[Claims] 1、磁歪を有し長尺状をなす磁性体と、所定間隔を存し
て配置され隣り合うもの同志が夫々前記磁性体に対して
位相が反転した磁気弾性波を発生させる複数個の励磁手
段と、隣り合う前記励磁手段の間に配置され前記磁性体
を伝播する磁気弾性波を検出する検出手段と、前記磁性
体の長手方向に沿って移動可能に配置された可動体と、
この可動体に設けられ前記磁性体に磁界を作用させる磁
石とを具備してなる直線位置センサ。
1. An elongated magnetic body having magnetostriction, and a plurality of excitation means arranged at a predetermined interval and adjacent to each other, each of which generates a magnetoelastic wave whose phase is reversed with respect to the magnetic body. , a detection means arranged between the adjacent excitation means to detect magnetoelastic waves propagating in the magnetic body, and a movable body disposed so as to be movable along the longitudinal direction of the magnetic body.
A linear position sensor comprising a magnet provided on the movable body and applying a magnetic field to the magnetic body.
JP11558090A 1990-05-01 1990-05-01 Straight line position sensor Pending JPH0412224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11558090A JPH0412224A (en) 1990-05-01 1990-05-01 Straight line position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11558090A JPH0412224A (en) 1990-05-01 1990-05-01 Straight line position sensor

Publications (1)

Publication Number Publication Date
JPH0412224A true JPH0412224A (en) 1992-01-16

Family

ID=14666108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11558090A Pending JPH0412224A (en) 1990-05-01 1990-05-01 Straight line position sensor

Country Status (1)

Country Link
JP (1) JPH0412224A (en)

Similar Documents

Publication Publication Date Title
US4774465A (en) Position sensor for generating a voltage changing proportionally to the position of a magnet
EP0292843B1 (en) Position detector
US5196791A (en) Magnetostrictive linear position detector and a dual pole position magnet therefor
US5412316A (en) Magnetostrictive linear position detector with axial coil torsional strain transducer
US4634973A (en) Position detecting apparatus
RU2554592C2 (en) Method and device to record magnetic fields
US4709210A (en) Magnetoacoustic proximity sensor
JP2001281308A (en) Magnetic sensor and position detector
JP3352366B2 (en) Pulse signal generator
JP3673413B2 (en) Pulse signal generator
US5998992A (en) Length measuring apparatus employing magnetostrictive delay line
JPH1197986A (en) Pulse signal generating method and device therefor
JPH0412224A (en) Straight line position sensor
JP2000101400A (en) Method and device for generating pulse signal
JPH03231107A (en) Linear position sensor
JP4418042B2 (en) Magnetic sensor
Meydan et al. Displacement transducers using magnetostrictive delay line principle in amorphous materials
JPH11325808A (en) Displacement sensor
JPH0445110B2 (en)
JPH0545149A (en) Straight line position sensor
JPH06180204A (en) Position detection sensor
JPH03296615A (en) Detecting apparatus of position of moving body
RU2194286C1 (en) Device measuring intensity of magnetic field
SU1270116A1 (en) Method of eddy current check
JPH03277901A (en) Magnetic displacement meter