JPH04122101A - Plane antenna - Google Patents

Plane antenna

Info

Publication number
JPH04122101A
JPH04122101A JP24352890A JP24352890A JPH04122101A JP H04122101 A JPH04122101 A JP H04122101A JP 24352890 A JP24352890 A JP 24352890A JP 24352890 A JP24352890 A JP 24352890A JP H04122101 A JPH04122101 A JP H04122101A
Authority
JP
Japan
Prior art keywords
antenna array
phase
antenna
circuit board
supply terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24352890A
Other languages
Japanese (ja)
Other versions
JP3035853B2 (en
Inventor
Takuya Fujimoto
卓也 藤本
Masao Mizuno
水野 雅男
Kazuo Kaneko
一男 金子
Seiji Kado
誠司 嘉戸
Mitsuru Hirao
充 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Resonac Corp
Original Assignee
Omron Corp
Hitachi Chemical Co Ltd
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Hitachi Chemical Co Ltd, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2243528A priority Critical patent/JP3035853B2/en
Publication of JPH04122101A publication Critical patent/JPH04122101A/en
Application granted granted Critical
Publication of JP3035853B2 publication Critical patent/JP3035853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce transmitted power by selecting each electric length from other supply terminal to a one antenna array and from one supply terminal to other antenna array so that a signal propagating through the electric length from other supply terminal to one antenna array is in phase to a signal propagating through the electric length from one supply terminal to one antenna array and a signal propagating through the electric length from other supply terminal to other antenna array is in opposite to a signal propagating through the electric length from one supply terminal to other antenna array. CONSTITUTION:An electric length of a feeder from one supply terminal 27 on a sub circuit board 2 to one antenna array 33 or 35 of a main circuit board 1 is selected to be different from an electric length of the feeder from one supply terminal 27 on the sub circuit board 2 to other antenna array 34 or 36 of the main circuit board 1 by 1/4lambdag (lambdag is a line wavelength) so that a signal propagating through the electric length from the other supply terminal 28 to the one antenna array 33 or 35 is in-phase to a signal propagating through the electric length from the one supply terminal 27 to the one antenna array 33 or 35, and a signal propagating through the electric length from the other supply terminal 28 to the other antenna array 34 or 36 is in opposite phase to a signal propagating through the electric length from the one supply terminal 27 to the other antenna array 34 or 36. A signal received by the antenna array 33 appears at the terminal 27 without no phase lag but a signal received by the antenna array 34 appears at the terminal 27 with a phase lag of 180 deg. with respect to the phase of the signal received by the antenna array 33 and the signals are just canceled when they are synthesized and no output appears at the terminal 27. Thus, the loss of the transmitted power is reduced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、マイクロ波を用いた車両感知器に使用するビ
ーム切り換え型の平面アンテナに関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a beam switching type planar antenna used in a vehicle sensor using microwaves.

(ロ)従来の技術 先に本願出願人のうちの一人が提出した「多車線対応型
車両感知器」に示すように、車線を走行する車両の速度
と車両の有無を感知するために、複数の受信エレメント
を有し、その各エレメントに得られる受信信号を車線数
に対応して分配する分配器と、分配された信号を各車線
に対応する指回持性が得られるように、それぞれ所定の
位相だけ遅らせる複数の位相器を備え、同時に各車線に
対応する指向特性で各車線毎の受信信号を得るようにし
たアンテナが知られている。
(b) Conventional technology As shown in the "Multi-lane Vehicle Detector" submitted by one of the applicants, multiple a distributor which has a receiving element and distributes the received signal obtained to each element according to the number of lanes, and a distributor which distributes the received signal obtained to each element according to the number of lanes, and a distributor which has a predetermined number of receiving elements, respectively, so that the distributed signal can be handed over according to the number of lanes. An antenna is known that is equipped with a plurality of phase shifters that delay the phase by the phase of each lane, and simultaneously obtains a received signal for each lane with a directional characteristic corresponding to each lane.

(ハ)発明が解決しようとする課題 この従来のアンテナは、分配器の分配数に反比例して伝
送される電力が小さいことが分かった。
(c) Problems to be Solved by the Invention It has been found that in this conventional antenna, the power transmitted is small in inverse proportion to the number of distributions of the distributor.

すなわち伝送される電力が、二分配器であれば1/2に
、二分配器であれば1/3になるのである。
In other words, the transmitted power is reduced to 1/2 in the case of a two-way divider, and 1/3 in the case of a two-way divider.

本発明は、伝送される電力の損失の少ないビーム切り換
え型の平面アンテナを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a beam switching type planar antenna with little loss of transmitted power.

(ニ)課題を解決するための手段 本発明の平面アンテナは、第1図(a)、第1図(b)
に示すように、地導体3と、この地導体3の表面に設け
られた誘電体層4と、この誘電体層4の表面に形成され
たパッチ状放射素子5を2以上直列に接続したアンテナ
列33、・・・、36と、そのアンテナ列に電力を供給
する供給端子19、・・・ 22とを複数配列した主回
路板lと、 第1図(C)、第1図(b)に示すよう、地導体6と、
この地導体6の表面に設けられた誘電体層7と、この誘
電体層7の表面に形成された2つの電力を供給する供給
端子27および28と、この供給端子27.28のそれ
ぞれに接続された分配器23および24と、この分配器
23.24に接続され、かつ一方の分配器23からの供
給電力の位相は変えずに他方の分配器24からの供給電
力のみの位相を90°変える出力端子10または12と
、その一方の分配器23から供給電力のみの位相を90
°変え前記他方の分配器24からの供給電力の位相は変
えない出力端子11または13とを有するハイブリッド
回路25または26とを備えた副回路板2と、 第1図(ト))に示すように、前記副回路板2からの出
力を前記主回路板1のアンテナ列へ接続する伝送線路1
4とを備え、 第1図(a)、・・・、第1図(C)に示す前記副回路
板2の上の前記一方の供給端子27から前記主回路板1
の一方のアンテナ列33または35までの給電線路の電
気長が、隣接する他方のアンテナ列34または36との
間で1/4λg(λg:線路波長)異なり、他方の供給
端子28から同一のアンテナ列までの電気長が、一方の
アンテナ列33または35には前記一方の供給端子27
からの信号と同相となり、かつ他方のアンテナ列34ま
たは36には逆相となるように設けられたことを特徴と
する。
(d) Means for Solving the Problems The planar antenna of the present invention is shown in FIGS. 1(a) and 1(b).
As shown in the figure, an antenna is constructed by connecting in series a grounding conductor 3, a dielectric layer 4 provided on the surface of this grounding conductor 3, and two or more patch-like radiating elements 5 formed on the surface of this dielectric layer 4. A main circuit board l in which a plurality of arrays 33,..., 36 and supply terminals 19,... 22 for supplying power to the antenna arrays are arranged; FIG. 1(C), FIG. 1(b) As shown in FIG.
A dielectric layer 7 provided on the surface of this ground conductor 6, two supply terminals 27 and 28 formed on the surface of this dielectric layer 7 for supplying power, and connections to each of these supply terminals 27 and 28. are connected to the distributors 23 and 24, and the phase of only the power supplied from the other distributor 24 is changed by 90° without changing the phase of the power supplied from one distributor 23. The phase of only the power supplied from the output terminal 10 or 12 and the distributor 23 of one of them is changed to 90
As shown in FIG. 1 (G), a sub-circuit board 2 is provided with a hybrid circuit 25 or 26 having an output terminal 11 or 13 that does not change the phase of the power supplied from the other distributor 24; , a transmission line 1 connecting the output from the sub circuit board 2 to the antenna array of the main circuit board 1;
4, from the one supply terminal 27 on the sub circuit board 2 to the main circuit board 1 shown in FIGS. 1(a), . . . , FIG. 1(C)
The electrical length of the feed line from one antenna row 33 or 35 to the other adjacent antenna row 34 or 36 differs by 1/4λg (λg: line wavelength), and the same antenna from the other supply terminal 28 The electrical length up to the column is such that one antenna column 33 or 35 has the one supply terminal 27
It is characterized in that it is provided so that it is in phase with the signal from the antenna array 34 or 36, and in opposite phase to the other antenna array 34 or 36.

本発明に用いるパッチ状放射素子5は、導体であればど
のようなものでも使用することができ、損失が少なく形
成し易いものを選択して用いる。
The patch-shaped radiating element 5 used in the present invention can be made of any conductor, and one that has low loss and is easy to form is selected and used.

このような放射素子を2以上直列に接続したアンテナ列
33、・・・ 36としては、従来より知られた給電線
路8によって接続することができる。この給電線路8の
材料は放射素子と同様に、導体であればどのようなもの
でも使用でき、適宜選択して用いる。そのアンテナ列に
電力を供給する供給端子19、・・・、22としても、
前記放射素子5および給電線路8と同様であり、これら
を複数配列した主回路板1は、第1図(b)に示すよう
に、誘電体層4によって支持され、さらにこの誘電体層
4は地導体3によって支持される。
The antenna rows 33, . . . , 36 in which two or more such radiating elements are connected in series can be connected by a conventionally known feed line 8. As with the radiating element, any material can be used for the feed line 8 as long as it is a conductor, and is appropriately selected and used. As supply terminals 19, . . . , 22 for supplying power to the antenna array,
The main circuit board 1, which is similar to the radiating element 5 and the feed line 8, and has a plurality of them arranged, is supported by a dielectric layer 4, as shown in FIG. It is supported by a ground conductor 3.

この誘電体層4は、ポリエチレン、ポリイミド、ポリエ
ステル、ポリフルオロエチレン、ポリプロピレン、ポリ
エーテルイミド、ポリエーテルエーテルケトン等、比誘
電率、誘電正接の低いものを使用することができ、また
、通常のエポキシ系、アクリル系の樹脂であっても、気
泡を多く含むように構成されたもの、あるいは無機質の
絶縁材料であって多孔質のものも使用できる。さらには
、前記の有機絶縁材料をフィルムにしたものを主回路を
支持するものとして使用し、これらの絶縁材料をスペー
サとして、空気層を誘電体に代えて使用できる。
This dielectric layer 4 can be made of materials with low relative permittivity and dielectric loss tangent, such as polyethylene, polyimide, polyester, polyfluoroethylene, polypropylene, polyetherimide, polyether ether ketone, etc., or ordinary epoxy It is also possible to use resins such as acrylic or acrylic resins that contain many bubbles, or porous inorganic insulating materials. Furthermore, a film made of the above-described organic insulating material can be used to support the main circuit, these insulating materials can be used as a spacer, and the air layer can be used in place of the dielectric.

本発明の平面アンテナに使用する地導体3の材質は、導
体であればどのようなものでも使用でき、銅、アルミニ
ウム、鉄、青銅、真鍮、等必要とされる導電率、機械強
度に応じて選択し、その厚さも材質も必要とされる特性
に応じて選択することができる。
The material of the ground conductor 3 used in the planar antenna of the present invention may be any conductor, such as copper, aluminum, iron, bronze, brass, etc., depending on the required electrical conductivity and mechanical strength. The thickness and material can be selected depending on the required characteristics.

2つの位相の異なる電力を供給する供給端子27および
28と、その供給端子に接続された分配器23および2
4と、その分配器に接続され、がつ一方の分配器23か
らの供給電力の位相は変えずに他方の分配器24からの
供給電力のみの位相を90@変える出力端子10または
12と、その一方の分配器23からの供給電力のみの位
相を90°変え前記他方の分配器24がらの供給電力の
位相は変えない出力端子11または13とを有するハイ
ブリッド回路25または26とを備えた副回路板2も、
前記主回路板1と同様にして作ることができる。
Supply terminals 27 and 28 that supply power with two different phases, and distributors 23 and 2 connected to the supply terminals.
4, and an output terminal 10 or 12 that is connected to the distributor and changes the phase of only the power supplied from the other distributor 24 by 90@ without changing the phase of the power supplied from one distributor 23, and a hybrid circuit 25 or 26 having an output terminal 11 or 13 that changes the phase of only the power supplied from the one distributor 23 by 90 degrees and does not change the phase of the power supplied from the other distributor 24. Circuit board 2 also
It can be made in the same manner as the main circuit board 1 described above.

このハイプリント回路25または26は、詳細には第2
図に示すような形状をしており、線路29から供給され
た電力は、同一線上にある線路31へは位相を変えずに
取り出され、対角線上にある線路32へは90°位相が
遅れて取り出されるもので、また、線路30から供給さ
れた電力は、同一線上にある線路32へは位相を変えず
に取り出され、対角線上にある線路31へは90’位相
が遅れて取り出されるものである。
This high printed circuit 25 or 26 is specifically
It has the shape shown in the figure, and the power supplied from the line 29 is taken out to the line 31 on the same line without changing the phase, and the electric power is output to the line 32 on the diagonal with a 90° phase delay. Also, the power supplied from the line 30 is taken out to the line 32 on the same line without changing the phase, and is taken out to the line 31 on the diagonal with a 90' phase delay. be.

また、第1図(b)に示すように、副回路板2は、誘電
体層7に支持され、その誘電体層7は、地導体6によっ
て支持されている。
Further, as shown in FIG. 1(b), the sub-circuit board 2 is supported by a dielectric layer 7, and the dielectric layer 7 is supported by a ground conductor 6.

この誘電体層7は、前記誘電体層4と同様にでき、地導
体6も、前記地導体3と同様にできる。
This dielectric layer 7 is made in the same manner as the dielectric layer 4, and the ground conductor 6 is also made in the same manner as the ground conductor 3.

前記副回路板2からの出力を前記主回路板1のアンテナ
列へ接続する伝送線路14としては、同軸ケーブルある
いは同軸構造にした接続具が使用でき、伝送損失が少な
いものが好ましい。
As the transmission line 14 for connecting the output from the sub-circuit board 2 to the antenna row of the main circuit board 1, a coaxial cable or a connector having a coaxial structure can be used, and preferably one with low transmission loss is used.

前記主回路板2の上の前記一方の供給端子27から前記
主回路板1の一方のアンテナ列33または35までの給
電線路の電気長が、隣接する他方のアンテナ列34また
は36との間で1/4λg異なるようにするために、前
記ハイブリッド回路25または26を用いる。
The electrical length of the feed line from the one supply terminal 27 on the main circuit board 2 to the one antenna row 33 or 35 on the main circuit board 1 is between the other adjacent antenna row 34 or 36. In order to make the difference by 1/4λg, the hybrid circuit 25 or 26 is used.

また、他方の供給端子28から同一のアンテナ列33ま
たは35までの電気長が、前記一方の供給端子27から
の信号と同相となり、かつ他方のアンテナ列34または
36には逆相となるように設けるためには、前記各供給
端子27および28からハイブリッド回路25または2
6までの電気長を等しくし、かつ、ハイブリッド回路2
5および26から各アンテナ列33、・・・ 36まで
の電気長を等しくすることによって実現できる。
Further, the electrical length from the other supply terminal 28 to the same antenna row 33 or 35 is in phase with the signal from the one supply terminal 27, and in opposite phase to the other antenna row 34 or 36. In order to provide a hybrid circuit 25 or 2 from each supply terminal 27 and 28,
6 to equal electrical length, and hybrid circuit 2
This can be realized by making the electrical lengths from 5 and 26 to each antenna row 33, . . . 36 equal.

(ホ)作用 このように構成することによって、第3図に示すように
、この平面アンテナに対して−θの方向からの電波を受
信すると、アンテナ列33によって受信された電波は端
子10を介してハイブリッド回路25から位相が遅れず
に端子27へ出力され、同時にハイブリッド回路25が
ら位相が90”遅れて端子28へ出力される。このとき
、アンテナ列34によって受信されて電波は、アンテナ
列33との間隔lと電波の入射角度−θがら計算される
!・sinθだけアンテナ列33での信号より位相の遅
れた信号となる。このf−sinθの位相が、その周波
数でλg/4すなわち90@に相当する場合には、端子
11を介してハイブリッド回路25から端子28へはア
ンテナ列33の信号から90°遅れた信号となり、端子
27へはさらに90°遅れて180°遅れた信号となる
(E) Effect With this configuration, as shown in FIG. The hybrid circuit 25 outputs the signal to the terminal 27 without any phase delay, and at the same time, the hybrid circuit 25 outputs the signal to the terminal 28 with a 90" phase delay. At this time, the radio waves received by the antenna array 34 are The signal is calculated from the interval l and the incident angle of the radio wave -θ!・The signal is delayed in phase from the signal at the antenna array 33 by sinθ.The phase of this f-sinθ is λg/4 at that frequency, that is, 90 In the case corresponding to @, a signal is sent from the hybrid circuit 25 to the terminal 28 via the terminal 11 with a delay of 90 degrees from the signal of the antenna array 33, and a signal sent to the terminal 27 is delayed further by 90 degrees and delayed by 180 degrees. .

したがって、端子28には、アンテナ列33がら90″
遅れた信号とアンテナ列34がらはアンテナ列33に対
してやはり90°遅れた信号が現れ、合成するとアンテ
ナ列33で受信した信号の90°位相が遅れた大きな信
号が現れる。ところが、端子27には、アンテナ列33
で受信した信号は位相が遅れずに現れるが、アンテナ列
34がらの信号はアンテナ列33に対して18o°位相
が遅れており、合成するとちょうど消去されてしまい、
端子27に出力は現れない。
Therefore, the terminal 28 has a 90"
When the delayed signal and the antenna array 34 are combined, a signal delayed by 90 degrees with respect to the antenna array 33 appears, and when combined, a large signal with a phase delay of 90 degrees of the signal received by the antenna array 33 appears. However, the antenna row 33 is connected to the terminal 27.
The signals received from the antenna array 34 appear with no phase delay, but the signals from the antenna array 34 have a phase delay of 18 degrees with respect to the antenna array 33, and when combined, they are just erased.
No output appears at terminal 27.

アンテナ列35およびアンテナ列36の出力も同じよう
に作用する。
The outputs of antenna arrays 35 and 36 operate in a similar manner.

逆に、電波の入射角度がθである場合には、端子27に
は信号が現れ、端子28には信号が現れない。
Conversely, when the incident angle of the radio wave is θ, a signal appears at the terminal 27 and no signal appears at the terminal 28.

このようにして、アンテナは2方向に等しい大きさの損
失が極めて小さいビームを形成でき、そのどちらを使用
するか選択することができる。
In this way, the antenna can form beams with very low losses of equal magnitude in two directions, and it is possible to choose which one to use.

(へ)実施例 第1図(a)、・・・、第1図(C)に本発明の一実施
例平面アンテナを示す。
(F) Embodiment FIGS. 1(a), . . . , and FIG. 1(C) show a planar antenna according to an embodiment of the present invention.

誘電体層4および7は発泡ポリエチレンを用い、地導体
3および6はアルミニウム板を用いた。主回路板工と副
回路板2は、同軸構造の接続を行った。
Dielectric layers 4 and 7 were made of foamed polyethylene, and ground conductors 3 and 6 were made of aluminum plates. The main circuit board work and the sub circuit board 2 were connected in a coaxial structure.

このときに、アンテナを受信用にして測定したところ、
各端子27および28への出力の損失は、0.5〜1d
Bであり、損失が極めて低いビーム切り換え型のアンテ
ナとすることができた。
At this time, when I measured using the antenna for reception, I found that
The loss of output to each terminal 27 and 28 is 0.5 to 1 d
B, and it was possible to create a beam switching type antenna with extremely low loss.

(ト)発明の効果 以上に説明したように、本発明によって、損失の極めて
少ないビーム切り換え型の平面アンテナを提供すること
ができた。
(G) Effects of the Invention As explained above, the present invention makes it possible to provide a beam switching type planar antenna with extremely low loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例平面アンテナを示す上
面図、第1図(b)は同実施例平面アンテナの側面図、
第1図(C)は同実施例平面アンテナの透視下面図であ
り、第1図(a)の裏面図、第2図は同実施例平面アン
テナに用いたハイブリッド回路の上面図、第3図は本発
明の詳細な説明するために用いた概念図である。 符号の説明 1:主回路板、   2:副回路板、 3・6:地導体、  4・7:誘電体層、10、・・・
、13:ビーム切り換え回路板上の接続端子、 19、・・・、22ニアンテナ回路板上の接続端子、2
5・26:ハイブリッド回路、 33、・・・、36:アンテナ列。 特許出願人      オムロン株式会社(ばか1名)
FIG. 1(a) is a top view showing a planar antenna according to an embodiment of the present invention, and FIG. 1(b) is a side view of the same embodiment.
FIG. 1(C) is a perspective bottom view of the planar antenna of the same embodiment, the back view of FIG. 1(a), FIG. 2 is a top view of the hybrid circuit used in the planar antenna of the same embodiment, and FIG. 1 is a conceptual diagram used to explain the present invention in detail. Explanation of symbols 1: Main circuit board, 2: Sub-circuit board, 3 and 6: Ground conductor, 4 and 7: Dielectric layer, 10,...
, 13: Connection terminals on the beam switching circuit board, 19,..., 22 Connection terminals on the antenna circuit board, 2
5.26: Hybrid circuit, 33,..., 36: Antenna row. Patent applicant: OMRON Corporation (1 idiot)

Claims (1)

【特許請求の範囲】[Claims] (1)地導体と、この地導体の表面に設けられた誘電体
層と、この誘電体層表面に形成されたパッチ状放射素子
を2以上直列に接続したアンテナ列と、このアンテナ列
に電力を供給する供給端子とを複数配列した主回路板と
、 地導体と、この地導体の表面に設けられた誘電体層と、
この誘電体層表面に形成された2つの電力を供給する供
給端子と、この供給端子のそれぞれに接続された分配器
と、この分配器に接続され、かつ一方の分配器からの供
給電力の位相は変えずに他方の分配器からの供給電力の
みの位相を90゜変える出力端子と、前記一方の分配器
からの供給電力のみの位相を90゜変え前記他方の分配
器からの供給電力の位相は変えない出力端子とを有する
ハイブリッド回路とを備えた副回路板と、前記副回路板
からの出力を前記主回路板のアンテナ列へ接続する伝送
線路とを備え、 前記副回路板の上の前記一方の供給端子から前記主回路
板の一方のアンテナ列までの給電線路の電気長が、隣接
する他方のアンテナ列間で1/4λg(λg:線路波長
)異なり、他方の供給端子から同一のアンテナ列までの
電気長が、一方のアンテナ列には前記一方の供給端子か
らの信号と同相となり、かつ他方のアンテナ列には逆相
となるように設けられたことを特徴とする平面アンテナ
(1) A ground conductor, a dielectric layer provided on the surface of this ground conductor, and an antenna row in which two or more patch-like radiating elements formed on the surface of this dielectric layer are connected in series, and power is supplied to this antenna row. a main circuit board in which a plurality of supply terminals are arranged, a ground conductor, a dielectric layer provided on the surface of the ground conductor,
Two power supply terminals formed on the surface of this dielectric layer, a distributor connected to each of these supply terminals, and a phase of the power supplied from one of the distributors connected to this distributor. An output terminal that changes the phase of only the power supplied from the other distributor by 90 degrees without changing the output terminal, and an output terminal that changes the phase of only the power supplied from the one distributor by 90 degrees without changing the phase of the power supplied from the other distributor. a sub-circuit board having a hybrid circuit having an output terminal that does not change; and a transmission line connecting an output from the sub-circuit board to an antenna array of the main circuit board; The electrical length of the feed line from the one supply terminal to one antenna row of the main circuit board differs by 1/4λg (λg: line wavelength) between the other adjacent antenna rows, and 1. A planar antenna, characterized in that the electrical length up to the antenna array is provided such that one antenna array has the same phase as the signal from the one supply terminal, and the other antenna array has the opposite phase.
JP2243528A 1990-09-12 1990-09-12 Planar antenna Expired - Lifetime JP3035853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243528A JP3035853B2 (en) 1990-09-12 1990-09-12 Planar antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243528A JP3035853B2 (en) 1990-09-12 1990-09-12 Planar antenna

Publications (2)

Publication Number Publication Date
JPH04122101A true JPH04122101A (en) 1992-04-22
JP3035853B2 JP3035853B2 (en) 2000-04-24

Family

ID=17105246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243528A Expired - Lifetime JP3035853B2 (en) 1990-09-12 1990-09-12 Planar antenna

Country Status (1)

Country Link
JP (1) JP3035853B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159751A (en) * 1995-12-05 1997-06-20 Denso Corp Plane array antenna and phase monopulse radar equipment
JPH09162626A (en) * 1995-12-05 1997-06-20 Denso Corp Plane array antenna and monopulse radar equipment
US6324807B1 (en) 1998-07-29 2001-12-04 Nichiha Corporation Method of attaching siding boards and siding board attachment structure
JPWO2006030832A1 (en) * 2004-09-15 2008-05-15 松下電器産業株式会社 Monitoring device, surrounding monitoring system, and monitoring control method
JP2008545329A (en) * 2005-07-04 2008-12-11 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Improved repeater antenna used for point-to-point applications

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159751A (en) * 1995-12-05 1997-06-20 Denso Corp Plane array antenna and phase monopulse radar equipment
JPH09162626A (en) * 1995-12-05 1997-06-20 Denso Corp Plane array antenna and monopulse radar equipment
US6324807B1 (en) 1998-07-29 2001-12-04 Nichiha Corporation Method of attaching siding boards and siding board attachment structure
JPWO2006030832A1 (en) * 2004-09-15 2008-05-15 松下電器産業株式会社 Monitoring device, surrounding monitoring system, and monitoring control method
JP2008545329A (en) * 2005-07-04 2008-12-11 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Improved repeater antenna used for point-to-point applications
JP4746098B2 (en) * 2005-07-04 2011-08-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Improved repeater antenna used for point-to-point applications

Also Published As

Publication number Publication date
JP3035853B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
US4623894A (en) Interleaved waveguide and dipole dual band array antenna
EP0456680B1 (en) Antenna arrays
US6686885B1 (en) Phased array antenna for space based radar
US3854140A (en) Circularly polarized phased antenna array
US7705782B2 (en) Microstrip array antenna
EP0355898B1 (en) A planar array antenna, comprising coplanar waveguide printed feed lines cooperating with apertures in a ground plane
US6232920B1 (en) Array antenna having multiple independently steered beams
EP0163997B1 (en) Antenna feed network
KR100526585B1 (en) Planar antenna with circular and linear polarization.
US3997900A (en) Four beam printed antenna for Doopler application
GB1470884A (en) Microstrip antenna structures and arrays
Adamidis et al. Design and implementation of single-layer 4× 4 and 8× 8 Butler matrices for multibeam antenna arrays
CN106602265A (en) Wave beam forming network, input structure thereof, input/output method of wave beam forming network, and three-beam antenna
CN106229658A (en) A kind of circular polarization microstrip antenna
GB2220303A (en) Dual polarised phased array antenna
KR20200011500A (en) Tripolar Current Loop Radiating Element with Integrated Circular Polarization Feed
CN111525280B (en) Circular polarization scanning array antenna based on Rotman lens
CN206040964U (en) Circularly polarized microstrip antenna
JPH04122101A (en) Plane antenna
KR20200132618A (en) Dual Polarization Antenna Using Shift Series Feed
US3299430A (en) Parallel dipole array supported on insulator having a low dielectric constant
JPH04122103A (en) Plane antenna
RU2365001C1 (en) Phased aerial with two orthogonal linear spatial polarisations
JPS6369301A (en) Shared planar antenna for polarized wave
JPH04122102A (en) Plane antenna

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11