JPH04122034A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH04122034A
JPH04122034A JP24355390A JP24355390A JPH04122034A JP H04122034 A JPH04122034 A JP H04122034A JP 24355390 A JP24355390 A JP 24355390A JP 24355390 A JP24355390 A JP 24355390A JP H04122034 A JPH04122034 A JP H04122034A
Authority
JP
Japan
Prior art keywords
chip
electrode
header
plating layer
thick plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24355390A
Other languages
Japanese (ja)
Inventor
Manabu Watase
渡瀬 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24355390A priority Critical patent/JPH04122034A/en
Publication of JPH04122034A publication Critical patent/JPH04122034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce an L (inductance) element which is parasitic on wiring and to restrain dispersion thereof by forming a wiring between each electrode and header on a semiconductor chip of thick plating layers 6, 7 which reach a chip rear from each electrode. CONSTITUTION:Not only a source electrode 2 but also a gate electrode 3 and a drain electrode 4 are connected to each of electrode terminals 13, 14 of a header 9 through an L-shaped thick plating layer 7 formed toward an outside of the chip from a semiconductor substrate side. Therefore, an L (inductance) element which is parasitic on the wiring is extremely small, thereby reducing dispersion thereof. Furthermore, since the L-shaped thick plating layer 7 formed toward the outside of the chip has an effect as a buffer material for strain caused by thermal stress, etc., element reliability can be improved.

Description

【発明の詳細な説明】 〔竜東上の利用分野〕 この発明はピアホール形半導体チップの入出力電極に付
加するインダクタンス成分の低減並び壷こばらつきを抑
制する事ができる電界効果トランジスタに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of Ryuto] The present invention relates to a field effect transistor that can reduce the inductance component added to the input and output electrodes of a peer-hole type semiconductor chip and suppress the variation in voltage.

〔従来の技術〕[Conventional technology]

電界効果トランジスタC以下FETとよぶ)は単結晶半
導体基板として砒化ガリワムC以下Ca人−と呼ぶ)を
用いたショットキー障壁ゲート構造G、A、電界効果ト
ランジスタc以下GaAB M E S F E Tと
呼ぶ)の場合を例にとって以下の説明を行う。
The field effect transistor C (hereinafter referred to as FET) uses Schottky barrier gate structure G, A, and the field effect transistor C (hereinafter referred to as GaAB M E S F E T) uses Galliwam arsenide (hereinafter referred to as Ca) as a single crystal semiconductor substrate. The following explanation will be given using the case of (call) as an example.

ピアホール型GaA4 M E S F ): TはX
帯以上の高周波領域において高利得を維持するのに有効
である事は周知である。これはピアホール(貫通孔)を
通してFETチップのソース電極が接地される事による
寄生インダクタンスrLs)の低減効果。
Pierhole type GaA4 M E S F ): T is X
It is well known that this method is effective in maintaining high gain in the high frequency region above the band. This is the effect of reducing the parasitic inductance (rLs) due to the source electrode of the FET chip being grounded through the pier hole.

及びFETチップの基板厚が薄膜化される事による熱抵
抗の低減効果による所が大である。ところで、この樵の
)ETの場合でもFETチップ上のゲート並びにドレイ
ン電極とヘッダー上の各電極端子或いはヘッダー上に付
加された誘電体基板上のメタライズパターン等との配線
にはAu線が一般的に用いられている。
This is largely due to the effect of reducing thermal resistance due to the thinner substrate of the FET chip. By the way, even in the case of this ET, Au wire is generally used for wiring between the gate and drain electrodes on the FET chip and each electrode terminal on the header or the metallized pattern on the dielectric substrate added on the header. It is used in

第3図、第4図は従来のこの種のG1A6 M E S
 F ETの断面図で、@3図はチップ構造、l!4図
は第3図のチップ組立状態を示す組立図である。
Figures 3 and 4 show the conventional G1A6 M E S of this type.
In the cross-sectional view of FET, figure @3 shows the chip structure, l! FIG. 4 is an assembly diagram showing the state in which the chip of FIG. 3 is assembled.

第3図において、ソース電極のは半導体基板0に形成さ
れた貫通孔(ハ)を経て、半導体基板の裏面と厚メツキ
層ωにより連結されている。一方、ゲート電極のとドレ
イン電極弼は半導体基板のにより裏面と分離されている
In FIG. 3, the source electrode is connected to the back surface of the semiconductor substrate through a through hole (c) formed in the semiconductor substrate 0 by a thick plating layer ω. On the other hand, the gate electrode and the drain electrode are separated from the back surface of the semiconductor substrate.

このようなFETチップの組立状態を第4図に示す。ソ
ース電極のは貫通孔口内からチップ裏面にわ1こり形成
さrLTこ厚メツキ層(社)とハンダ材面を介して、マ
イクロ波用ヘッダー−のソース電ft1g5子囚に接地
される。一方、ゲート電極のとドレイン電t@(至)は
Au線ωによりヘッダー■に付加さ、れた誘電体基板(
ロ)上のメタライズパターン国を経てゲート電極端子(
至)又はドレイン電極端子−に接続されている。
FIG. 4 shows the assembled state of such a FET chip. The source electrode is grounded from the inside of the through hole to the source electrode of the microwave header via the thick plating layer formed on the back surface of the chip and the solder material surface. On the other hand, the gate electrode and drain currents t@ (to) are added to the header ■ by the Au wire ω, and the dielectric substrate (
b) Pass through the metallized pattern on the gate electrode terminal (
) or drain electrode terminal -.

〔発明が解決しようとする課題] 従来のFETは以上のように構成されてぃγこので、ゲ
ート電極及びドレイン電極からヘッダー各室I@端子へ
の配線にAu線を用いる番が必然的である事から、高周
波で動作する素子に8いて、裏、このAu線のしくイン
ダクタンス)成分又はAuJ長の変動(インダクタンス
の変動)が性能を阻害する要因となっていた。
[Problems to be Solved by the Invention] The conventional FET is configured as described above. Therefore, it is inevitable to use Au wire for wiring from the gate electrode and drain electrode to each chamber I@terminal of the header. For certain reasons, in devices that operate at high frequencies, variations in the inductance component of this Au wire or variations in the AuJ length (variations in inductance) are factors that impede performance.

父、大信号素子のようにヘッダー〇二付加される誘電体
基板とメタライズパターンがインビーダンス整合回路を
構成するような場合、このL(インダクタンス)成分の
ばらつきは整合を阻害する大きな要因となるという問題
点を有してい1こ。
Father, when the dielectric substrate and metallized pattern added to the header 〇2 constitute an impedance matching circuit, such as in a large signal element, variations in this L (inductance) component become a major factor that inhibits matching. There is one problem.

この発明は上記のような問題点を解消する1こめになさ
れたもので、チップ電極に付加するLlインダクタンス
)成分とそのばらつきを低減できるFETを得ることを
目6′:Jとする。
This invention has been made with the aim of solving the above-mentioned problems, and the object is to obtain an FET that can reduce the Ll inductance component added to the chip electrode and its variation.

〔課題を解決する1こめの手段〕 この発明【こ係るFETは、接地を極(ソース)を二対
して、は半導体基板を貫通するピアホール内(こ充填さ
れ1こ厚メツキ層、入力を極(ゲート)、出力電極(ド
レイン)に対してはチップ側面(こサイドウオール厚メ
ツキ層をそれぞれ形成し、各を極に対応する厚メツキ層
をマイクロ波用ヘッダーの各it極極端子−1エヘノク
ーに付加され1こ誘電体基板上のメタライズパターンに
それぞれ直接(こ接着するようにしγこものである。こ
の場合サイドウオール厚メツキ層は、チップの裏面側で
チップの外側に向ってL字状に形成されておりチップの
外側に同って形成された厚メツキ層がマイクロ波ヘッダ
ーの各電極端予成いはヘッダーに付加され1こ誘電体基
板上のメタライズパターンにそれぞれ直接接着される。
[First Means to Solve the Problem] This FET has two pairs of grounded poles (sources), a pair of grounded poles (sources), a pair of grounded poles (sources), a pair of grounded poles (sources), a pair of grounded poles (sources), a pair of grounded poles (sources), a pier hole that penetrates the semiconductor substrate (this is filled with a thick plating layer, and an input pole). For the (gate) and output electrode (drain), a thick plating layer is formed on the side wall of the chip, and a thick plating layer corresponding to each pole is placed on each it pole terminal-1 echenocou of the microwave header. The sidewall thick plating layer is formed in an L-shape on the back side of the chip toward the outside of the chip. A thick plating layer, also formed on the outside of the chip, is added to each electrode end preform of the microwave header or header, and one is directly bonded to the metallized pattern on the dielectric substrate.

〔作用〕[Effect]

この発明における厚メツキ層は半導体チップ上の入出力
電極とヘッダーの各電極端子との結合がチップ11側面
からチップの外側に同ってL字状に形成さrLlこ厚メ
ツキ層により達成される事から、配線によるL(インダ
クタンス)成分が低減すると同時にそのばらつきも低減
でき回路設計が容易となる。父、マイクロ波用ヘッダー
のt極端子、或いはヘッダーに付加さびた誘電体基板上
のメタライズパターンとの接着がチップの外@をこ向っ
て形成されTこ厚メツキ層の端部で行なわれる事から熱
ス)L/ス等により生じるヘッダー、チップ関の歪がこ
の部分で吸収される形となり高信頼度化に有効である。
In this invention, the thick plating layer is formed in an L-shape from the side of the chip 11 to the outside of the chip, and the connection between the input/output electrodes on the semiconductor chip and each electrode terminal of the header is achieved by the thick plating layer. Therefore, the L (inductance) component due to wiring is reduced, and at the same time, the variation thereof is also reduced, making circuit design easier. This is because adhesion to the t-pole terminal of a microwave header or the metallized pattern on the rusted dielectric substrate added to the header is done at the edge of the thick plating layer, which is formed facing away from the outside of the chip. Distortion in the header and chip connection caused by heat, heat, and heat is absorbed in this part, which is effective in increasing reliability.

〔実施唯〕〜 以下、この発明の一実施例を図Gこついて説明するO 第1図、第2図はこの発明の一実施例であるGaAsM
ESFETの断面図で、第2図はチップ構造。
[Embodiment] ~ Hereinafter, one embodiment of the present invention will be explained in detail. Figures 1 and 2 are GaAsM
A cross-sectional view of the ESFET, and Figure 2 shows the chip structure.

第2図は111図のチップの組立状態を示す組立図であ
る。図において、ソース電極(2)は半導体基板It)
に形成された貫通孔(5)を経て、半導体基板m裏面と
第1のメツキ層(C?)により連結されている。−方、
ゲート電極(3)、ドレイン電極(4)は各室ffl 
i3) 。
FIG. 2 is an assembly diagram showing the assembled state of the chip shown in FIG. 111. In the figure, the source electrode (2) is on the semiconductor substrate It)
It is connected to the back surface of the semiconductor substrate m through a through hole (5) formed in the first plating layer (C?). - direction,
The gate electrode (3) and drain electrode (4) are connected to each chamber ffl.
i3).

(4)より半導体基板+11裏面に至り、基板(1)q
面及び清面からチップ外側に向って形成されγこL字状
の第2の厚メツキ層(刀により連結されている。1記従
来のものに比べ基板+11側面及び偏置からチップ外@
をこ向って形成され1こL字状の第2の厚メンキ層(7
)の形成を必要とするが、これは2周知のピアホール形
成技術、厚メンキ技術、チップ分離技術を適用すること
により容易に得られる。
(4) reaches the back surface of the semiconductor substrate +11, and the substrate (1) q
The second thick plating layer (connected by a sword) is formed from the top and bottom sides to the outside of the chip.
A second thick coating layer (7
), which can be easily obtained by applying two well-known pier hole formation techniques, thick hole formation techniques, and chip separation techniques.

熱的な観点から半導体基板11)裏面に形成される厚メ
ツキ層(6)の幅が問題視されるが、実際には半導体基
板fl)は数lOμm迄薄膜化される事からチップ表面
の発熱領域からの熱流の拡がりを*[に入れてもさほど
問題にはならない。
From a thermal point of view, the width of the thick plating layer (6) formed on the back surface of the semiconductor substrate 11) is seen as a problem, but in reality, the semiconductor substrate fl) is thinned to several 10 μm, so heat generation on the chip surface increases. Even if we put the spread of heat flow from the region into *[, it doesn't pose much of a problem.

第2図は第1図のチップをマイクロ波用のヘッダー(9
)1こ実装した場合の概略構成である。この図において
、ヘッダー(9)の入出力相当の電極(至)、α◆に誘
電体基板が付加さG、その表面なこメタラズパターン0
2が形成されており、インピーダンス整合回路として作
用する。
Figure 2 shows the chip in Figure 1 connected to a microwave header (9
) This is a schematic configuration when one is implemented. In this figure, a dielectric substrate G is added to the electrode (to) corresponding to the input and output of the header (9), α◆, and the metal laz pattern 0 on its surface is
2 is formed and acts as an impedance matching circuit.

図からも判るようGこ、ソース電極(2)は甫うに及ば
ず、ゲート電ffl +31 、  ドレイン電極(4
)も半導体基板側面からチップの外側に向ってL字状に
形成されTコ厚メツキ層(7)により、ヘッダー(9)
の各電極端子03.n41に結合されている。
As can be seen from the figure, the source electrode (2) is not as strong as G, and the gate voltage ffl +31 and the drain electrode (4
) is also formed in an L-shape from the side of the semiconductor substrate toward the outside of the chip, and the header (9) is formed by the T-thick plating layer (7).
Each electrode terminal 03. It is bound to n41.

従って、配線に寄生するL(インダクタンス)成分が極
めて小さく、且つそのばらつきも低減できる。父、チッ
プの外側に向って形成され1こL字状の厚メツキ層(7
)が熱ストレス等により生じる歪の緩衝材としての効果
を有するγこめ素子信頼度の向上につながる。
Therefore, the L (inductance) component parasitic to the wiring is extremely small, and its variation can also be reduced. First, there is a thick plating layer in an L-shape (7 mm) formed toward the outside of the chip.
) is effective as a buffer material for distortion caused by thermal stress, etc., and leads to improved reliability of the γ-instrument element.

図中、(8)ははんだ材、賎はソース電極端子である0 マイクロ波ヘッダー(9)の構造はチップの形状に合せ
設計する必要のあることは言うに及ばない。
In the figure, (8) is a solder material, and the pin is a source electrode terminal (0).It goes without saying that the structure of the microwave header (9) must be designed in accordance with the shape of the chip.

なお、上記実施例はG&^8MESFETの場合を例に
とって説明したが、この発明はこれに限定されるもので
はなく、他の素子構造についても同様に適用できること
は言うまでもない。
It should be noted that although the above embodiment has been explained using the G&^8 MESFET as an example, the present invention is not limited thereto, and it goes without saying that it can be similarly applied to other device structures.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、半導体チップ上の各電
極とヘッダー関の配線が半導体チップ上の各電極からチ
ップ裏面に達する厚メツキ層で形成されTこので配線瘉
こ寄生するL(インダクタンス)成分が小さくでき、且
つそのばらつきも抑えられ、素子性能の放香が計られる
。又、厚メツキ層をL字状(こして、チップとヘッダー
或いはヘッダーに付加され1こ誘電体基板上のメタライ
ズパターンとが、L字状厚メツキ層の端部で接される事
から、この部分が熱ストレス等により生じる歪の緩衝材
としての効果を持つ事がら素子の高信頼度化に有効とな
る。
As described above, according to the present invention, the wiring between each electrode on the semiconductor chip and the header is formed of a thick plating layer extending from each electrode on the semiconductor chip to the back surface of the chip. ) The components can be made small and their variations can be suppressed, and the device performance can be improved. In addition, the thick plating layer is formed into an L-shape (this is because the chip and the header or the metallized pattern on the dielectric substrate attached to the header are in contact at the ends of the L-shaped thick plating layer). Since the portion acts as a buffer against distortion caused by thermal stress, etc., it is effective in increasing the reliability of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はこの発明のFETの一実施例を示す断
面図、第3図、w、4図は従来のFETの断面図である
。 図において、(1)は半導体基板、(2)はソース電極
。 (3)はゲート電極、(4)はドレイン電極、(5)は
貫通孔、(6)は第1の厚メツキ層、(7)は第2の厚
メツキ層。 (8)ははんだ材、(9)はマイクロ波用ヘッダー、■
はソース電極端子、0])は誘電体基板、 02はメタ
ライズパターン、Q3はゲート電極亀子、(2)はドレ
イン電極端子を示す。 なお1図中、同一符号は同一 または相当部分を示す。
1 and 2 are cross-sectional views showing one embodiment of the FET of the present invention, and FIGS. 3, 3, and 4 are cross-sectional views of conventional FETs. In the figure, (1) is a semiconductor substrate, and (2) is a source electrode. (3) is a gate electrode, (4) is a drain electrode, (5) is a through hole, (6) is a first thick plating layer, and (7) is a second thick plating layer. (8) is solder material, (9) is microwave header, ■
0]) is a dielectric substrate, 02 is a metallized pattern, Q3 is a gate electrode terminal, and (2) is a drain electrode terminal. In Figure 1, the same symbols indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 性質の異なる複数の電極を有する半導体チップとマイク
ロ波用ヘッダーに形成された電極端子或いは前記ヘッダ
ーに付加された表面に所望の電極パターンを有する誘電
体基板との結合媒体がソース電極部においてはバイアホ
ール及びバイアホールに充填された金属層であり、ゲー
ト及びドレイン電極部においてはチップ側面に形成され
たサイドウォール形の金属層である事を特徴とする電界
効果トランジスタ。
A coupling medium between a semiconductor chip having a plurality of electrodes having different properties and an electrode terminal formed on a microwave header or a dielectric substrate having a desired electrode pattern on the surface added to the header is a via in the source electrode section. A field effect transistor characterized in that the metal layer is a metal layer filled in holes and via holes, and a sidewall-shaped metal layer formed on the side surface of a chip in the gate and drain electrode parts.
JP24355390A 1990-09-12 1990-09-12 Field effect transistor Pending JPH04122034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24355390A JPH04122034A (en) 1990-09-12 1990-09-12 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24355390A JPH04122034A (en) 1990-09-12 1990-09-12 Field effect transistor

Publications (1)

Publication Number Publication Date
JPH04122034A true JPH04122034A (en) 1992-04-22

Family

ID=17105576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24355390A Pending JPH04122034A (en) 1990-09-12 1990-09-12 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH04122034A (en)

Similar Documents

Publication Publication Date Title
US4042952A (en) R. F. power transistor device with controlled common lead inductance
JPH09321175A (en) Microwave circuit and chip
US4359754A (en) Semiconductor device
WO2018185839A1 (en) Semiconductor device and method for manufacturing same
EP0015709B1 (en) Constructional arrangement for semiconductor devices
US9899967B1 (en) Embedded harmonic termination on high power RF transistor
JP2755250B2 (en) Semiconductor integrated circuit
JPH04122034A (en) Field effect transistor
JP7456517B2 (en) transistor
JPH05335487A (en) Transmission circuit element
JPS5892277A (en) Manufacture of field effect transistor
JPS6129155B2 (en)
WO2022260141A1 (en) Passive element and electronic device
JPS6251509B2 (en)
JP3631428B2 (en) Semiconductor device having flip-chip mounting structure
JPS6255721B2 (en)
JP2689957B2 (en) Semiconductor device
JP3168969B2 (en) Field effect transistor and integrated circuit, method for manufacturing field effect transistor or integrated circuit
JPS63280463A (en) Semiconductor device
JP2000091376A (en) Electronic circuit device
JPH0453144A (en) High output gaas fet
JP2002280393A (en) Semiconductor device
JPH03263333A (en) Semiconductor device
JPS5929377Y2 (en) High frequency high power transistor device
JPH04321240A (en) Semiconductor device