JPH04121006A - Magnetic levitation train and attitude control method and device therefor - Google Patents

Magnetic levitation train and attitude control method and device therefor

Info

Publication number
JPH04121006A
JPH04121006A JP23973690A JP23973690A JPH04121006A JP H04121006 A JPH04121006 A JP H04121006A JP 23973690 A JP23973690 A JP 23973690A JP 23973690 A JP23973690 A JP 23973690A JP H04121006 A JPH04121006 A JP H04121006A
Authority
JP
Japan
Prior art keywords
vehicle
coil
magnetic field
current
levitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23973690A
Other languages
Japanese (ja)
Other versions
JP3057323B2 (en
Inventor
Hiroshi Aoyama
博 青山
Hiroshi Miyata
寛 宮田
Toshio Hattori
敏雄 服部
Toshiaki Makino
俊昭 牧野
Yasuhiro Nemoto
根本 泰弘
Hirochika Kametani
裕敬 亀谷
Yoshimitsu Mihara
三原 芳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2239736A priority Critical patent/JP3057323B2/en
Publication of JPH04121006A publication Critical patent/JPH04121006A/en
Application granted granted Critical
Publication of JP3057323B2 publication Critical patent/JP3057323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To prevent nodding of a head vehicle by providing the head vehicle of a magnetic levitation train, in which the vehicles are levitated by means of vehicle mounted electromagnetic coils and the coils on the track, with an independent field generating unit for supplementing the levitation force of the vehicle. CONSTITUTION:Cases 3 housing a set of a plurality of superconducting coils 2 are fixed to the lower parts on the opposite sides of a body 1. In a head vehicle, the cases 3 are fixed at the front of the body 3 and at the joint to a second vehicle. A case 7 housing a superconducting coil 6 is further fixed in front of the head case 3. Levitation coils 5 are laid on a track and an excited superconducting coil 2 is subjected to repulsion when it passes thereover. When the coil 2a passes over the coil 5a, the coil 2a is subjected to a high repelling force because the coil 5a is previously fed with a small quantity of induction current from the coil 6. According to the constitution, a nodding phenomenon of the head vehicle can be prevented without requiring auxiliary blade and attitude control can be carried out stably even under a bad weather.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄道車両のうち磁石の反発力を利用して車体
を浮上させる磁気浮上列車及びその姿勢制御方法と装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic levitation train in which the body of a railway vehicle is levitated using the repulsive force of a magnet, and a method and apparatus for controlling its attitude.

〔従来の技術〕[Conventional technology]

磁石の反発力を利用して車体を浮上させる磁気浮上列車
では、車体の両側に浮上力を発生させる浮上用コイルと
、地上の軌道上に設置された電磁コイルの極性変化によ
って推進力を受ける推進案内用コイルの2種類が取りつ
けられる。
In magnetic levitation trains, which use the repulsive force of magnets to levitate the car, there are levitation coils on both sides of the car that generate levitation force, and propulsion that receives propulsive force from the polarity changes of electromagnetic coils installed on the ground track. Two types of guide coils can be installed.

浮上の原理は、励磁された車体側のコイルが地」二に設
置された浮上用コイルの上を通過する際に、地上側のコ
イルに誘導電流が流れ、両コイルの間に反発力が発生す
るというものである。
The principle of levitation is that when the excited coil on the vehicle body side passes over the levitation coil installed on the ground, an induced current flows through the coil on the ground side, creating a repulsive force between the two coils. The idea is to do so.

実際の車両には浮上用および推進案内用コイルが一定の
間隔をおいて離散的に取りつけられる。
In an actual vehicle, levitation and propulsion guide coils are installed discretely at regular intervals.

また、地上の軌道上のコイルも離散的に配置されている
。そのため、車体が受ける電磁力は振動的なものになる
Further, the coils on the ground orbit are also arranged discretely. Therefore, the electromagnetic force that the car body receives becomes vibratory.

磁気浮上列車の走行時の安定性を保つ手段としては、特
開昭54−136018号公報に記載の例がある。この
例の構成は、浮上車両の先頭車の前頭部左右に、車両の
両側に突出した回転軸を介して前翼が回転自在に設けら
れており、前翼を車両の走行速度に応じて調整すること
によって、浮上車両は常に水平姿勢を保持して走行でき
るようにしようとするものである。
An example of means for maintaining stability during running of a magnetically levitated train is described in Japanese Patent Application Laid-Open No. 136018/1983. The configuration of this example is that front wings are rotatably provided on the left and right sides of the front head of the leading vehicle of the floating vehicle via rotary shafts that protrude on both sides of the vehicle, and the front wings are rotated according to the running speed of the vehicle. By making adjustments, the idea is to enable the floating vehicle to travel while always maintaining a horizontal attitude.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、かかる浮上方式を用いる磁気浮上列車は
、次のような問題を有する。
However, magnetic levitation trains using such a levitation method have the following problems.

すなわち、車体に取りつけられるコイルも軌道上に設置
されるコイルも離散的な配置を取るため、車体が受ける
浮上力は振動的になり、特に先頭車両に関しては、一番
先頭の浮上用コイルが地上コイル上を通過しても、地上
コイルに誘導電流が流れ出すまでに時間遅れが生じるこ
ともあって充分な浮上力を得られない恐れがある。
In other words, since both the coils attached to the car body and the coils installed on the track are arranged in a discrete manner, the levitation force applied to the car body becomes vibratory.Especially for the lead car, the first levitation coil is placed on the ground. Even if it passes over the coil, there may be a time delay before the induced current begins to flow into the ground coil, so there is a risk that sufficient levitation force will not be obtained.

また、補助翼を用いた走行時の姿勢安定構造では次のよ
うな問題がある。これは車体の周りの空気の流れの中に
翼を置き、これに発生する揚力を調整して車体の安定を
保つものであるが、空気の流れが突発的に変化すると翼
に発生する力も急激に変化してしまい、かえって車体の
姿勢を乱すことにもなる。
In addition, the following problems arise in a structure that uses ailerons to stabilize the vehicle's posture while traveling. This system places wings in the airflow around the car body and adjusts the lift generated by them to keep the car body stable, but if the airflow suddenly changes, the force generated on the wings can also suddenly change. This may actually disturb the posture of the vehicle.

磁気浮上列車は従来の鉄道車両とは違い、地上から浮上
して走行するため、悪天候時の急激な風の変化の影響を
受けやすいと考えられる。風速や風向きに応じて翼の迎
え角を変えて揚力を調整するような姿勢制御法も考えら
れるが、システムが複雑になり、また車体も重くなるた
め実用的でない。
Unlike conventional railway vehicles, magnetic levitation trains travel while floating above the ground, so they are thought to be more susceptible to sudden changes in wind during bad weather. An attitude control method that adjusts lift by changing the angle of attack of the wings depending on the wind speed and direction is also considered, but this would be impractical as the system would be complicated and the vehicle would be heavy.

また、車体に翼を取り付けることで車体の寸法が変わり
、トンネル走行時や車両基地に格納される際にこれらの
翼が邪魔になることも予想される。
Additionally, attaching wings to the car body changes the dimensions of the car body, and these wings are expected to get in the way when driving in tunnels or when stored at a depot.

さらに、先頭車両にだけ翼を取り付けて安定化を保とう
としても、連結された車両の中間部の安定化は計れない
Furthermore, even if you try to maintain stability by attaching wings only to the leading vehicle, you will not be able to stabilize the middle part of the connected vehicles.

本発明の第1の目的は、先頭車両に、揚力を利用せずに
浮上力が他の車両と同等になるような装置を設置するこ
とで、安定した走行状態を保てるような磁気浮上列車を
提供することにある。
The first object of the present invention is to create a magnetically levitated train that can maintain stable running conditions by installing a device in the lead car that makes the levitation force equal to that of other cars without using lift. It is about providing.

本発明の第2の目的は、連結された車両の各々に浮上力
の微調整が可能となるような装置を備え中間車両の走行
時安定性を確保できるような姿勢制御方法及び装置を提
供することにある。
A second object of the present invention is to provide an attitude control method and device that is equipped with a device that enables fine adjustment of the levitation force of each connected vehicle and that ensures stability during running of an intermediate vehicle. There is a particular thing.

〔課題を解決するための手段〕[Means to solve the problem]

上記第1の目的は以下の手段によって達成される。 The above first objective is achieved by the following means.

車両に取りつけたコイルに電流を流して磁場を発生させ
、このコイルと軌道上に設置したコイルとの間に反発力
を発生させて前記車両を浮上させる磁気浮上列車におい
て、前記車両のうち先頭の車両に、前記車両を浮上させ
る磁場とは別に、車両の浮上力を補助する磁場の発生装
置を配設したことを特徴とする磁気浮上列車。
In a magnetic levitation train in which a current is passed through a coil attached to a vehicle to generate a magnetic field, and a repulsive force is generated between this coil and a coil installed on the track to levitate the vehicle, the first of the vehicles is A magnetic levitation train, characterized in that the vehicle is provided with a magnetic field generating device that assists the levitation force of the vehicle, in addition to the magnetic field that levitates the vehicle.

また、車両に取りつけた超電導材製のコイルに永久電流
を流して磁場を発生させ、この励磁されたコイルにより
、軌道上に設置された励磁されていないコイルに誘導電
流を生じさせ、これら両コイルの間に反発力を発生させ
て前記車両を浮上させる超電導による磁気浮上列車にお
いて、前記車両のうち先頭の車両に、前記車両を浮上さ
せる磁場とは別に、車両の浮上力を補助する磁場の発生
装置を配設したことを特徴とする磁気浮上列車。
In addition, a permanent current is passed through a coil made of superconducting material attached to the vehicle to generate a magnetic field, and this excited coil causes an induced current to be generated in an unexcited coil installed on the orbit, and both coils are In a superconducting magnetic levitation train that levitates the vehicle by generating a repulsive force between the two, the generation of a magnetic field that assists the levitation force of the vehicle in the first vehicle of the vehicles, in addition to the magnetic field that levitates the vehicle. A magnetic levitation train characterized by being equipped with a device.

また、上記第2の目的は以下の手段によって達成される
Moreover, the above second objective is achieved by the following means.

車両に取りつけたコイルに電流を流して磁場を発生させ
、このコイルと軌道上に設置したコイルとの間に反発力
を発生させて前記車両を浮上させる磁気浮上列車の姿勢
制御方法において、前記車両に該車両の傾きを検知する
センサを配設し、該センサにより連結されて走行中の各
車両の傾きを検知し、その傾きを補正する演算処理を行
い、該演算処理値に基づいて各車両に取りつけられた姿
勢制御手段を動作させることによって、前記車両の走行
安定性を確保することを特徴とする磁気浮上列車の姿勢
制御方法。
In the attitude control method for a magnetically levitated train, the vehicle is levitated by applying a current to a coil attached to the vehicle to generate a magnetic field, and generating a repulsive force between the coil and a coil installed on a track to levitate the vehicle. A sensor that detects the inclination of the vehicle is installed, the sensor detects the inclination of each vehicle that is connected to the vehicle, performs calculation processing to correct the inclination, and adjusts each vehicle based on the calculation processing value. 1. A method for controlling the attitude of a magnetically levitated train, characterized in that running stability of the vehicle is ensured by operating an attitude control means attached to the vehicle.

また、車両に取りつけたコイルに電流を流して磁場を発
生させ、このコイルと軌道上に設置したコイルとの間に
反発力を発生させて前記車両を浮上させる磁気浮上列車
の姿勢制御装置において、前記磁気浮上列車の各車両の
姿勢制御用の電磁コイルと、該各車両の姿勢を検知する
センサと、該センサからの信号に基づいて該電磁コイル
のうちどれにどの程度の電流を流して励磁させるかを決
める演算機と、該演算機からの信号に基づいて励磁させ
るコイルを選択し該コイルに供給する電流を通すケーブ
ルを接続するチャンネル選択機と、該演算機からの信号
によりコイルに流す電流値を変化させる電流調節機とか
らなることを特徴とする磁気浮上列車の姿勢制御装置。
Further, in an attitude control device for a magnetically levitated train, which causes a current to flow through a coil attached to a vehicle to generate a magnetic field, and generates a repulsive force between this coil and a coil installed on a track to levitate the vehicle, An electromagnetic coil for controlling the attitude of each vehicle of the magnetically levitated train, a sensor for detecting the attitude of each vehicle, and a current to which one of the electromagnetic coils is excited based on a signal from the sensor. a channel selection machine that connects a cable that selects the coil to be excited based on the signal from the computer and conducts the current to be supplied to the coil; An attitude control device for a magnetic levitation train, comprising a current regulator that changes a current value.

〔作用〕[Effect]

上記第」−発明の構成によれば、磁気浮上列車の車体に
取り付けられた浮上用、推進案内用コイルは出発前に励
磁され、コイルは超電導状態で使用することができるの
で、−度コイルに電流が流されると永久電流にすること
ができる。こうして、車体に永久磁石が取りつけられた
のと同じ状態がつくり出される。この励磁作業の時に、
先頭車両の例えば前頭部左右側面に取りつけた超電導コ
イルも励磁される。
According to the configuration of the above invention, the levitation and propulsion guide coils attached to the body of the magnetically levitated train are excited before departure, and the coils can be used in a superconducting state, so that the coils can be used in a superconducting state. When a current is passed through it, it can become a persistent current. In this way, the same condition is created as if a permanent magnet were attached to the car body. During this excitation work,
Superconducting coils attached to the left and right sides of the forehead of the leading vehicle, for example, are also energized.

こうして列車が走行を始めると、地上の軌道上の浮上用
コイルには誘導電流が発生する。超電導コイルが通過し
てから電流が流れ出すまでには時間遅れがあるため、先
頭車両一番目の浮上用コイルは充分な浮上力を受けられ
ない。
When the train starts running, an induced current is generated in the levitation coil on the ground track. Because there is a time delay between the time the superconducting coil passes and the current starts flowing, the first levitation coil in the lead vehicle cannot receive sufficient levitation force.

そこで9例えば前頭部左右側面に取りつけた超電導コイ
ルがまずはじめに地上の浮上用コイルを通過し、これに
誘導電流を発生させ、車体側の一番目の浮」二層コイル
が通過する際時間遅tなく。
For example, a superconducting coil attached to the left and right sides of the forehead first passes through the levitation coil on the ground, which generates an induced current, and when the first levitation coil on the vehicle body passes, there is a time delay. Without t.

これに充分な浮上力を与えられるように作用する。It acts to give sufficient levitation force to this.

なお1例えば先頭車両前頭部に取りつけられる超電導コ
イルと車両の浮上用、推進案内用超電導コイルの取りつ
け距離は、列車の走行速度5コイルの磁束密度の大きさ
で決められる。
For example, the distance between the superconducting coil attached to the front head of the leading vehicle and the superconducting coil for vehicle levitation and propulsion guidance is determined by the magnitude of the magnetic flux density of the five coils at the running speed of the train.

また、上記第2発明の構成によれば、連結された各車両
の前部および後部の左右側面に例えば小型の電磁コイル
が取りつけ、このコイルに流す電流の大きさを乗務員、
地上の管制局あるいは列車上に搭載された制御装置から
の信号で可変にすることが可能となる。
Further, according to the configuration of the second invention, for example, small electromagnetic coils are attached to the left and right sides of the front and rear parts of each connected vehicle, and the magnitude of the current flowing through the coils is determined by the crew member.
This can be made variable using signals from a ground control station or a control device mounted on the train.

そして、列車走行時に何らかの原因(例えば悪天候で強
風が吹いている)で、列車に働く浮上力がアンバランス
になった場合、各車両の姿勢の乱れを検知し、前部およ
び後部の左右側面につけた電磁コイルのいずれかを励磁
し、磁場の強さを変えることで地上の軌道上のコイルと
の間の反発力を調整することが可能になる。
If the levitation force acting on the train becomes unbalanced due to some reason (for example, bad weather and strong winds) while the train is running, the system detects the disturbance in the posture of each car and attaches it to the left and right sides of the front and rear. By exciting one of the electromagnetic coils and changing the strength of the magnetic field, it is possible to adjust the repulsion between the coil and the coil in orbit on the ground.

車体に取り付けられた姿勢センサは、列車走行中、常に
車体の傾きを検知し、データを演算機に送る。演算機で
は、センサから送られてくるデータをもとに、車体のど
の部分の浮上力が不足気味なのかを判断する。そして、
励磁させるべきコイルを決定し、チャンネル選択機に信
号を送る。また、電流調節機は、演算機からの信号で、
コイルに流す電流を変える。このようにすることにより
、走行中の磁気浮上列車の姿勢を安定なものに制御する
ことができる。
An attitude sensor attached to the car body constantly detects the inclination of the car body while the train is running, and sends the data to a computer. Based on the data sent from the sensors, the computer determines which parts of the car body are lacking in levitation force. and,
Decide which coil should be energized and send a signal to the channel selector. In addition, the current regulator uses the signal from the calculator,
Change the current flowing through the coil. By doing so, the attitude of the running magnetically levitated train can be controlled to be stable.

〔実施例〕〔Example〕

以下1本発明のいくつかの実施例を、図面を参照して説
明する。
Hereinafter, some embodiments of the present invention will be described with reference to the drawings.

(第1実施例) 本発明の第1の実施例を第1図、第2図および第3図を
用いて説明する。
(First Embodiment) A first embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3.

第1図は本実施例による浮上力補助システムを搭載した
超電導磁気浮上列車の先頭車の概略図である。第2図は
車体が受ける浮上力と車体側のコイル位置との関係を示
したものである。第3図は第1図のA部詳細図である。
FIG. 1 is a schematic diagram of the lead car of a superconducting magnetic levitation train equipped with a levitation force assist system according to this embodiment. FIG. 2 shows the relationship between the levitation force applied to the vehicle body and the coil position on the vehicle body side. FIG. 3 is a detailed view of section A in FIG. 1.

これらの図において、ボディ1には超電導コイル2が複
数個組番ニなって1つのケース3に格納されている。ケ
ース3はボディ1の左右側面下部に取りつけられる。先
頭車両については、ケース3がボディlの前部および2
両目との連結部に取りつけられる。
In these figures, a plurality of superconducting coils 2 are housed in one case 3 in a body 1 in different set numbers. The case 3 is attached to the lower left and right sides of the body 1. For the leading vehicle, case 3 covers the front part of body l and 2
It is attached to the connecting part between both eyes.

地上の軌道4には浮上用コイル5が取りつけられており
、励磁された超電導コイル2がその上部を通過する際に
初めて励磁され反発力を発生する。
A levitation coil 5 is attached to the ground track 4, and when the excited superconducting coil 2 passes above it, it is excited for the first time and generates a repulsive force.

第2図は、縦軸に第1図におけるコイル2aが受ける浮
上力を、横軸にコイル2aの位置をとったものである。
In FIG. 2, the vertical axis represents the levitation force exerted on the coil 2a in FIG. 1, and the horizontal axis represents the position of the coil 2a.

先頭コイル2aが地上の浮上用コイル5aを通過する瞬
間には、誘導電流の立ち上がりに時間遅れが生じるため
、まだ浮上力は発生していない。このことを示したのが
第2図の一点鎖線である。
At the moment when the leading coil 2a passes the levitation coil 5a on the ground, there is a time delay in the rise of the induced current, so levitation force has not yet been generated. This is shown by the dashed line in FIG.

第1図において、先頭のケース3の前方に超電導コイル
6を取りつける。コイル6はケース7に格納されている
6 第3図において、超電導コイル2は内槽8および外槽9
によって包まれ、内部を真空に保たれる。
In FIG. 1, a superconducting coil 6 is attached to the front of the first case 3. The coil 6 is housed in a case 7. In FIG.
The inside is kept in a vacuum.

外槽9の上部にはコイル冷却用の液体ヘリウムを溜めて
おくタンク10および冷凍機11が取りつけられる。超
電導コイル6も内槽12および外槽13によって包まれ
、内部を真空に保たれる。外槽13の上にはヘリウムタ
ンク14と冷凍機15が取りつけられている。
A tank 10 for storing liquid helium for coil cooling and a refrigerator 11 are attached to the upper part of the outer tank 9. The superconducting coil 6 is also surrounded by an inner tank 12 and an outer tank 13, and the inside is kept in a vacuum. A helium tank 14 and a refrigerator 15 are attached above the outer tank 13.

列車運行前にコイル2とコイル6は、ヘリウムによって
冷却される。そして、永久電流スイッチ16.17を通
して各々のコイルに電流が流される。走行中のコイルの
温度上昇等の原因で気化したヘリウムは冷凍機11.1
5で再び液化される。
Before train operation, coil 2 and coil 6 are cooled with helium. Current is then passed through each coil through persistent current switches 16,17. Helium that vaporizes due to the rise in temperature of the coil while running is stored in the refrigerator 11.1.
It is liquefied again at 5.

走行中、コイル6は常にコイル2より先行して地上側の
浮上用コイル5の上を通過し、そこに誘導電流を発生さ
せる。そのため、第1図においてコイル2aが地上側の
コイル5aを通過する際には、コイル5aにあらかじめ
コイル6によって誘導電流が少量流されているため、コ
イル2aの受ける反発力は、コイル6が無い場合と比べ
て大きくなる。このコイル6がある場合の浮上力の変化
の様子を第2図に実線で示す6 コイル6を取りつけたことにより、先頭車両の先頭コイ
ルが受ける反発力不足による車体の頭下げ現象が防げる
While traveling, the coil 6 always passes over the levitation coil 5 on the ground side in advance of the coil 2, and an induced current is generated there. Therefore, when the coil 2a passes the ground-side coil 5a in FIG. 1, a small amount of induced current is passed through the coil 5a by the coil 6 in advance, so the repulsive force received by the coil 2a is the same as that of the coil 6. larger than the case. Figure 2 shows how the levitation force changes when this coil 6 is present.By installing the coil 6, it is possible to prevent the head-down phenomenon of the vehicle body due to insufficient repulsive force received by the leading coil of the leading vehicle.

(第2実施例) 第4図に、本発明の第2の実施例を示す。(Second example) FIG. 4 shows a second embodiment of the invention.

この実施例は、浮上力誘起用の超電導コイル6をケース
3の中に入れてしまうものである。こうすることで、コ
イル6用に内槽12.外槽13゜ヘリウムタンク14お
よび冷凍機15を作る必要はなくなり、スペースユーテ
ィリティ、重量軽減の点で効果がある。
In this embodiment, a superconducting coil 6 for inducing levitation force is placed inside the case 3. By doing this, the inner tank 12. There is no need to create an outer tank 13° helium tank 14 and refrigerator 15, which is effective in terms of space utility and weight reduction.

(第3実施例) 以下、本発明の第3の実施例を第5図、第6図。(Third example) A third embodiment of the present invention will be described below with reference to FIGS. 5 and 6.

第7図および第8図を用いて説明する。This will be explained using FIGS. 7 and 8.

第5図は本実施例の概観図であり、連結された数車両の
一部を示したものである。第6図は第5図におけるB部
の詳細図、第7図は本実施例の動作説明図、第8図は本
実施例の動作制御に関する流れ図である。
FIG. 5 is an overview diagram of this embodiment, showing a portion of several connected vehicles. FIG. 6 is a detailed view of section B in FIG. 5, FIG. 7 is an explanatory diagram of the operation of this embodiment, and FIG. 8 is a flowchart regarding operation control of this embodiment.

第5図において、連結された車両18a、18b、18
cの連結部には超電導コイルの入ったケース19a、1
9bが取りつけられており、浮上力、推進力を受けてい
る。各車両の前部および後部の左右両側面下部には小型
の電磁コイル20を取りつけである。
In FIG. 5, connected vehicles 18a, 18b, 18
Cases 19a and 1 containing superconducting coils are connected to the connection part c.
9b is attached and receives levitation and propulsion force. Small electromagnetic coils 20 are attached to the lower portions of both left and right sides of the front and rear parts of each vehicle.

第6図において、電磁コイル20は普通の銅線でつくら
れるものとし、銅線の端部は電流調節機21に接続され
ている。電流調節機21には、コイル20に流す電流を
供給するケーブル22と制御系からの信号線23が接続
される。制御系は次に示す機器で構成される6車両の姿
勢を検知するセンサ24、演算機25およびチャンネル
切換機26より成る。
In FIG. 6, the electromagnetic coil 20 is made of ordinary copper wire, and the end of the copper wire is connected to a current regulator 21. A cable 22 for supplying current to the coil 20 and a signal line 23 from a control system are connected to the current regulator 21 . The control system consists of a sensor 24 for detecting the posture of six vehicles, a computing device 25, and a channel switching device 26, which are comprised of the following devices.

第7図(a)により本実施例の動作を説明する。The operation of this embodiment will be explained with reference to FIG. 7(a).

列車走行中に何らかの原因で車体が後方に傾いたとする
。この傾き量を車体中央に設けられたセンサ24が検知
し、その値を演算機25に送る。
Suppose that the car body leans backwards for some reason while the train is running. A sensor 24 provided at the center of the vehicle body detects this amount of inclination, and sends the value to a computer 25.

演算機25の内部では、演算処理により、車体のどの位
置の浮上力を変化させれば車体が水平になるかが計算さ
れる。車体が後方に傾いている場合、車体後方の浮上力
を増そうと計算される。こうして、車体後部左右両側面
のコイル27に、電流が流れるようにチャンネル切換機
26が動作する。
Inside the computer 25, calculation processing is performed to calculate at which position on the vehicle body the levitation force should be changed to make the vehicle horizontal. If the vehicle is leaning backwards, the calculation will try to increase the levitation force at the rear of the vehicle. In this way, the channel switching device 26 operates so that current flows through the coils 27 on both the left and right sides of the rear portion of the vehicle body.

流される電流の量は、やはり演算機25からの信号が電
流調節機21に送られることで変化するようになってい
る。
The amount of current flowing is also changed by sending a signal from the computing device 25 to the current regulator 21.

コイル27に電流が流されることで発生磁場の強さが変
わり、地上側の浮上用コイル5との間に働く反発力を調
整できる。この反発力により車体後部が持ち上がり、車
体が水平になる方向に動く。
By passing a current through the coil 27, the strength of the generated magnetic field changes, and the repulsive force acting between it and the levitation coil 5 on the ground side can be adjusted. This repulsive force lifts the rear part of the car and moves it in a horizontal direction.

車体の傾きは常にセンサ24で監視されており、リアル
タイムで車体の傾きは制御される。
The tilt of the vehicle body is constantly monitored by the sensor 24, and the tilt of the vehicle body is controlled in real time.

第7図(b)に示されるように、車体が左方に傾いた場
合には上記と同様の動作原理で車体左側前部および後部
のコイル28が励磁される。そして、車体の左部の浮上
力が増し、車体が水平になる方向に動くのである。
As shown in FIG. 7(b), when the vehicle body leans to the left, the coils 28 at the left front and rear portions of the vehicle body are excited using the same operating principle as described above. The levitation force on the left side of the vehicle increases, causing the vehicle to move horizontally.

第8図は以上説明してきた車体姿勢制御の流れ図を示し
たものである。
FIG. 8 shows a flowchart of the vehicle body attitude control described above.

センサ24は車体底部中央に取りつけられ、車体の前後
方向の傾きθwe、左右方向の傾きθ□を計測する。θ
6.の絶対値が許容値を超えたと判断されると、次に車
体の前が下がり気味なのか、後が下がり気味なのか判断
され、前が下がり気味の時はコイル31.32を励磁す
る。
The sensor 24 is attached to the center of the bottom of the vehicle body, and measures the inclination θwe in the front-rear direction and the inclination θ□ in the left-right direction of the vehicle body. θ
6. When it is determined that the absolute value of has exceeded the allowable value, it is then determined whether the front of the vehicle body is trending downward or the rear is trending downward, and if the front is trending downward, the coils 31 and 32 are energized.

θ。についても同様の制御が行われる。まずθlの絶対
値が許容値を超えたと判断されると、次に左右面が下が
り気味なのか左側面が下がり気味なのか判断される。仮
に、右側面が下がり気味と判断されると、直ちに、右側
面に付けられた電磁コイル29.31が励磁され浮上力
が微調整される。
θ. Similar control is also performed for. First, when it is determined that the absolute value of θl exceeds the allowable value, it is then determined whether the left and right surfaces are trending downward or the left surface is trending downward. If it is determined that the right side surface is moving downward, the electromagnetic coils 29 and 31 attached to the right side surface are immediately excited to finely adjust the levitation force.

この実施例により、悪天候時に、連結された各車両が突
風であおられ、車体が不規則に傾いた場合でも、直ちに
車体各部の浮上力が微調整され、安定した走行が可能と
なる。
According to this embodiment, even if the connected vehicles are blown by a gust of wind during bad weather and the vehicle body tilts irregularly, the floating force of each part of the vehicle body is immediately finely adjusted, allowing stable running.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、超電導磁気浮上列
車の走行中の先頭車両の浮上力不足を補うことができる
ため、先頭車両の頭下げ現象を防ぐ効果のある磁気浮上
列車を得ることができる。
As explained above, according to the present invention, it is possible to compensate for the lack of levitation force of the leading car while the superconducting magnetic levitation train is running, so it is possible to obtain a magnetic levitation train that is effective in preventing the head-down phenomenon of the leading car. can.

さらに、浮上力補助の手段として車体に内蔵された電磁
コイルを用いることができるので2補助翼を用いた浮上
力補助と異なり、風の影響を受けない。そのため、悪天
候時でも姿勢制御が安定して行える。
Furthermore, since an electromagnetic coil built into the vehicle body can be used as a levitation force assisting means, unlike levitation force assistance using two ailerons, it is not affected by wind. Therefore, posture control can be performed stably even in bad weather.

また、本発明による姿勢制御方法又は装置により走行中
の連結された各車両の姿勢が独立して検知され、それを
補正するように各車両の前後部左右側面の各電磁コイル
が励磁できるので、走行中の不規則な各車両の姿勢変動
を独立して安定化することができる。
Furthermore, the attitude control method or device according to the present invention allows the attitude of each connected vehicle to be independently detected while the vehicle is running, and the electromagnetic coils on the front, rear, left and right sides of each vehicle can be excited to correct the attitude. Irregular posture fluctuations of each vehicle while traveling can be stabilized independently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す超電導磁気浮上列車先
頭車の概略図、第2図は車体が受ける浮上力と車体側の
コイル位置との関係図、第3図は第1図のA部詳細図、
第4図は本発明の第2の実施例の概観図、第5図は本発
明の第3の実施例の概観図、第6図は第5図のB部詳細
図、第7図は第3の実施例の動作説明図、第8図は第3
の実施例の制御の流れ図である。 6・ (浮上力補正用)超電導コイル 20・・ (姿勢制御用)電磁コイル 21・・電流調節機 24・・・姿勢センサ 25・・・計算機 26・・・チャンネル切換機 代理人  鵜  沼  辰  之 第 図 第 図 9a 2゜ b ケーフル 第 図(O)2□、28 (j勢和1t5Jl用)コイル ゝ・I 第 ア 図(b) 第 区
Fig. 1 is a schematic diagram of the lead car of a superconducting magnetically levitated train showing an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the levitation force applied to the car body and the coil position on the car body side, and Fig. 3 is the same as that of Fig. 1. A detailed diagram,
FIG. 4 is an overview of the second embodiment of the present invention, FIG. 5 is an overview of the third embodiment of the invention, FIG. 6 is a detailed view of section B in FIG. 5, and FIG. FIG. 8 is an explanatory diagram of the operation of the third embodiment.
2 is a control flowchart of an embodiment of the present invention. 6. Superconducting coil 20 (for levitation force correction)... Electromagnetic coil 21 (for attitude control)... Current regulator 24... Attitude sensor 25... Calculator 26... Channel switching machine representative Tatsuyuki Unuma Fig. Fig. 9a 2゜b Cable Fig. (O) 2□, 28 (for j Seiwa 1t5Jl) Coil ゝ・I Fig. A (b) Section

Claims (1)

【特許請求の範囲】 1、車両に取りつけたコイルに電流を流して磁場を発生
させ、このコイルと軌道上に設置したコイルとの間に反
発力を発生させて前記車両を浮上させる磁気浮上列車に
おいて、 前記車両のうち先頭の車両に、前記車両を浮上させる磁
場とは別に、車両の浮上力を補助する磁場の発生装置を
配設したことを特徴とする磁気浮上列車。 2、車両に取りつけた超電導材製のコイルに永久電流を
流して磁場を発生させ、この励磁されたコイルにより、
軌道上に設置された励磁されていないコイルに誘導電流
を生じさせ、これら両コイルの間に反発力を発生させて
前記車両を浮上させる超電導による磁気浮上列車におい
て、前記車両のうち先頭の車両に、前記車両を浮上させ
る磁場とは別に、車両の浮上力を補助する磁場の発生装
置を配設したことを特徴とする磁気浮上列車。 3、請求項1又は2記載の列車において、 前記浮上力を補助する磁場の発生装置は、前記先頭の車
両の前頭部側面に取りつけたことを特徴とする磁気浮上
列車。 4、請求項1又は2記載の列車において、 前記浮上力を補助する磁場の発生装置として、電磁コイ
ルを用いたことを特徴とする磁気浮上列車。 5、車両に取りつけたコイルに電流を流して磁場を発生
させ、このコイルと軌道上に設置したコイルとの間に反
発力を発生させて前記車両を浮上させる磁気浮上列車の
姿勢制御方法において、前記車両に該車両の傾きを検知
するセンサを配設し、該センサにより連結されて走行中
の各車両の傾きを検知し、その傾きを補正する演算処理
を行い、該演算処理値に基づいて各車両に取りつけられ
た姿勢制御手段を動作させることによって、前記車両の
走行安定性を確保することを特徴とする磁気浮上列車の
姿勢制御方法。 6、請求項5記載の方法において、 前記姿勢制御手段として、発生磁場の強さを変えること
のできる磁場発生装置を用いたことを特徴とする磁気浮
上列車の姿勢制御方法。 7、請求項6記載の方法において、 前記磁場発生装置を、前記各車両の前部及び後部の左右
の側部に取りつけたことを特徴とする磁気浮上列車の姿
勢制御方法。 8、請求項6記載の方法において、 前記磁場発生装置として、電磁コイルを用いたことを特
徴とする磁気浮上列車の姿勢制御方法。 9、請求項5記載の方法において、 前記姿勢制御手段は、前記各車両に取りつけた電磁コイ
ルの励磁状態を変化させることにより、該各車両の姿勢
を制御することを特徴とする磁気浮上列車の姿勢制御方
法。 10、車両に取りつけたコイルに電流を流して磁場を発
生させ、このコイルと軌道上に設置したコイルとの間に
反発力を発生させて前記車両を浮上させる磁気浮上列車
の姿勢制御装置において、前記磁気浮上列車の各車両の
姿勢制御用の電磁コイルと、該各車両の姿勢を検知する
センサと、該センサからの信号に基づいて該電磁コイル
のうちどれにどの程度の電流を流して励磁させるかを決
める演算機と、該演算機からの信号に基づいて励磁させ
るコイルを選択し該コイルに供給する電流を通すケーブ
ルを接続するチャンネル選択機と、該演算機からの信号
によりコイルに流す電流値を変化させる電流調節機とか
らなることを特徴とする磁気浮上列車の姿勢制御装置。
[Claims] 1. A magnetic levitation train in which a current is passed through a coil attached to a vehicle to generate a magnetic field, and a repulsive force is generated between this coil and a coil installed on a track to levitate the vehicle. A magnetic levitation train according to claim 1, wherein a magnetic field generator for assisting the levitation force of the vehicle is disposed in the first vehicle of the vehicles, in addition to the magnetic field for levitating the vehicle. 2. A persistent current is passed through a coil made of superconducting material attached to the vehicle to generate a magnetic field, and this excited coil causes
In a superconducting magnetic levitation train in which an induced current is generated in a non-excited coil installed on the track and a repulsive force is generated between these two coils to levitate the vehicle, the first vehicle among the vehicles is A magnetic levitation train, characterized in that a magnetic levitation train is provided with a magnetic field generating device that assists the levitation force of the vehicle, in addition to the magnetic field that levitates the vehicle. 3. The magnetic levitation train according to claim 1 or 2, wherein the magnetic field generator for assisting the levitation force is attached to a side surface of the front head of the leading vehicle. 4. The magnetic levitation train according to claim 1 or 2, wherein an electromagnetic coil is used as a magnetic field generator for assisting the levitation force. 5. A magnetic levitation train attitude control method in which a magnetic field is generated by passing a current through a coil attached to a vehicle, and a repulsive force is generated between this coil and a coil installed on a track to levitate the vehicle, A sensor for detecting the inclination of the vehicle is disposed in the vehicle, the sensor detects the inclination of each vehicle connected to the vehicle, the inclination is corrected, and the arithmetic processing is performed to correct the inclination, based on the arithmetic processing value. 1. A method for controlling the attitude of a magnetically levitated train, characterized in that running stability of the vehicle is ensured by operating an attitude control means attached to each vehicle. 6. The method according to claim 5, wherein a magnetic field generator capable of changing the strength of the generated magnetic field is used as the attitude control means. 7. The method according to claim 6, wherein the magnetic field generator is attached to the left and right sides of the front and rear parts of each vehicle. 8. The method according to claim 6, wherein an electromagnetic coil is used as the magnetic field generator. 9. The method according to claim 5, wherein the attitude control means controls the attitude of each vehicle by changing the excitation state of an electromagnetic coil attached to each vehicle. Posture control method. 10. An attitude control device for a magnetically levitated train that causes a current to flow through a coil attached to a vehicle to generate a magnetic field, and generates a repulsive force between this coil and a coil installed on a track to levitate the vehicle, An electromagnetic coil for controlling the attitude of each vehicle of the magnetic levitation train, a sensor for detecting the attitude of each vehicle, and a current to which one of the electromagnetic coils is applied to excite it based on a signal from the sensor. a channel selection machine that connects a cable that selects the coil to be excited based on the signal from the computer and conducts the current to be supplied to the coil; An attitude control device for a magnetic levitation train, comprising a current regulator that changes a current value.
JP2239736A 1990-09-10 1990-09-10 Maglev train Expired - Fee Related JP3057323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2239736A JP3057323B2 (en) 1990-09-10 1990-09-10 Maglev train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2239736A JP3057323B2 (en) 1990-09-10 1990-09-10 Maglev train

Publications (2)

Publication Number Publication Date
JPH04121006A true JPH04121006A (en) 1992-04-22
JP3057323B2 JP3057323B2 (en) 2000-06-26

Family

ID=17049169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2239736A Expired - Fee Related JP3057323B2 (en) 1990-09-10 1990-09-10 Maglev train

Country Status (1)

Country Link
JP (1) JP3057323B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092755A1 (en) * 2000-05-31 2001-12-06 Yoshihiro Suda Oscillation controlling device and magnetic levitation device equipped with the same
CN103786595A (en) * 2014-01-16 2014-05-14 南车株洲电力机车有限公司 Gateway controller and control system of suspension control node network
CN107813730A (en) * 2017-09-27 2018-03-20 中车株洲电力机车有限公司 A kind of magnetic suspension train
CN109515204A (en) * 2018-10-24 2019-03-26 西南交通大学 A kind of electrodynamics suspension transportation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092755A1 (en) * 2000-05-31 2001-12-06 Yoshihiro Suda Oscillation controlling device and magnetic levitation device equipped with the same
CN103786595A (en) * 2014-01-16 2014-05-14 南车株洲电力机车有限公司 Gateway controller and control system of suspension control node network
CN107813730A (en) * 2017-09-27 2018-03-20 中车株洲电力机车有限公司 A kind of magnetic suspension train
CN109515204A (en) * 2018-10-24 2019-03-26 西南交通大学 A kind of electrodynamics suspension transportation system

Also Published As

Publication number Publication date
JP3057323B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
KR101004511B1 (en) Magnetic suspension system
US6101952A (en) Vehicle guidance and switching via magnetic forces
US8688303B2 (en) Apparatus and methods for control of a vehicle
US3871301A (en) Stabilization and ride control of suspended vehicles propelled by a linear motor
US7448327B2 (en) Suspending, guiding and propelling vehicles using magnetic forces
KR100583677B1 (en) Arrangement for operating a transportation system with a magnetic levitation vehicle
JP4849215B2 (en) Traveling vehicle
US11890946B2 (en) Levitation control system for a transportation system
JPH04121006A (en) Magnetic levitation train and attitude control method and device therefor
JP3163639U (en) Mobile suspension system
JP3000771B2 (en) Magnetically levitated running body and its running stabilization method
JPH05176417A (en) Anti-rolling unit
JP2985807B2 (en) Maglev train vehicle
JPH0614413A (en) Magnetic levitation vehicle and rolling damping system
JP3092723B2 (en) Underwater linear transportation system
JP4798393B2 (en) Traveling vehicle
JP5105069B2 (en) Traveling vehicle
JPH0327703A (en) Driving method of railway vehicle by synchronous type linear motor
JP3787537B2 (en) Guide direction control device
JPH01206802A (en) Superconductor magnetic levitation transportation system
JPH07212920A (en) Constant position stop controller for linear motor
JP2986854B2 (en) Underwater linear transportation system
JP5141931B2 (en) Traveling vehicle
WO2001092755A1 (en) Oscillation controlling device and magnetic levitation device equipped with the same
JPH02106104A (en) Magnet suspension structure for magnetic levitation vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees