JPH0412058A - Stabilized zirconia solid electrolyte and production thereof - Google Patents

Stabilized zirconia solid electrolyte and production thereof

Info

Publication number
JPH0412058A
JPH0412058A JP2221260A JP22126090A JPH0412058A JP H0412058 A JPH0412058 A JP H0412058A JP 2221260 A JP2221260 A JP 2221260A JP 22126090 A JP22126090 A JP 22126090A JP H0412058 A JPH0412058 A JP H0412058A
Authority
JP
Japan
Prior art keywords
stabilized zirconia
powder
metal
solid electrolyte
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2221260A
Other languages
Japanese (ja)
Inventor
Hiroyuki Iwasaki
岩崎 浩之
Fumiya Ishizaki
石崎 文也
Toshihiko Yoshida
利彦 吉田
Noriaki Tagaya
多賀谷 宣秋
Isao Mukaisawa
向沢 功
Hiroshi Seto
浩志 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP2221260A priority Critical patent/JPH0412058A/en
Publication of JPH0412058A publication Critical patent/JPH0412058A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To improve strength of stabilized zirconia solid electrolyte without damaging oxygen ion conductivity, by making a metal oxide exist in granules of stabilized zirconia. CONSTITUTION:A slurry of submicron stabilized airconia powder blended with a metal alkoxide, a metal salt, submicron metal powder or metal oxide powder is molded and sintered at 1,300-1,700 deg.C in such a way that zirconia has >=95% density to give a polycrystalline solid electrolyte of sintered material which has >=60% metal oxide in granules of stabilized zirconia having >=2mum average particles diameter and >=90% cubic system and has peak strength of zorconia obtained by X-ray diffraction shown by formulas I and II and >=95% theoretical density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解質、より詳しくは酸素イオン伝導性を
損なわずに強度向上せしめた安定化ジルコニア固体電解
質、及びその製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid electrolyte, and more particularly to a stabilized zirconia solid electrolyte with improved strength without impairing oxygen ion conductivity, and a method for producing the same.

〔従来の技術] 固体電解質燃料電池の電解質には、安定化ジルコニアが
用いられている。安定化ジルコニアは安定化剤の量が少
ない領域では正方晶ジルコニア相(部分安定化ジルコニ
ア、Partially 5tabilizedZir
con ia)が生成し、安定化剤のトープ量が多くな
ると立方晶ジルコニア相(完全安定化ジルコニア、Fu
JIy 5tabilized Zirconia、以
下単に安定化ジルコニアと略称)が生成する。安定化剤
としては、イツトリウム、セリウム、カルシウム、マグ
ネシウムなどの元素が用いられる。
[Prior Art] Stabilized zirconia is used as an electrolyte in solid electrolyte fuel cells. Stabilized zirconia has a tetragonal zirconia phase (partially 5tabilized zirconia) in the region where the amount of stabilizer is small.
con ia) is formed, and when the amount of stabilizer topes increases, the cubic zirconia phase (fully stabilized zirconia, Fu
JIy 5tabilized Zirconia (hereinafter simply referred to as stabilized zirconia) is produced. Elements such as yttrium, cerium, calcium, and magnesium are used as stabilizers.

安定化ジルコニアも部分安定化ジルコニアも共に酸素イ
オン導電性をもつが、導電率の点では安定化ジルコニア
の方が高性能で、また高温時の安定性の面でも安定化ジ
ルコニアの方が優れている。
Both stabilized zirconia and partially stabilized zirconia have oxygen ion conductivity, but stabilized zirconia has higher performance in terms of conductivity, and stabilized zirconia is also superior in terms of stability at high temperatures. There is.

一方部分安定化ジルコニアはセラミックス材料中で最高
強度を有するものの1つで、構造材料としては安定化ジ
ルコニアより圧倒的に有利である。
On the other hand, partially stabilized zirconia has one of the highest strengths among ceramic materials, and is overwhelmingly more advantageous than stabilized zirconia as a structural material.

従って産業的には酸素センサーのような小体積のものは
導電率の点から安定化ジルコニアが用いられ、粉砕用ポ
ールやジルコニア包丁等は強度的な面から部分安定化ジ
ルコニアが利用されている。
Therefore, industrially, stabilized zirconia is used for small-volume items such as oxygen sensors from the viewpoint of electrical conductivity, and partially stabilized zirconia is used for crushing poles, zirconia knives, etc. from the viewpoint of strength.

固体電解質燃料電池の電解質は、電池の内部抵抗低減の
ためには酸素イオン導電率の高いものが好ましいので、
−船釣には安定化ジルコニアが用いることが検討されて
いる。
The electrolyte for solid electrolyte fuel cells is preferably one with high oxygen ion conductivity in order to reduce the internal resistance of the battery.
-The use of stabilized zirconia for boat fishing is being considered.

固定電解質型燃料電池の構造としては、円筒型と平板型
が提案されている。円筒型は多孔質セラミックス支持チ
ューブ上にセル(電解質及び電極)を形成する方法で、
セルは自己支持する必要がないためセル材料に要求され
る強度条件はさして厳しいものではない。しかし、支持
体の体積分は発電に全く寄与しないため、高集積化は困
難である。
Cylindrical and flat plate structures have been proposed for fixed electrolyte fuel cells. The cylindrical type is a method of forming cells (electrolyte and electrodes) on a porous ceramic support tube.
Since the cell does not need to be self-supporting, the strength requirements for the cell material are not very strict. However, since the volume of the support does not contribute to power generation at all, high integration is difficult.

一方平版型はセルの支持体を持たないため高集積化が可
能である反面、セルを自己支持するためにセル、とりわ
け電解質に要求される強度条件はかなり厳しいものとな
る。
On the other hand, the lithographic type does not have a support for the cells, so it is possible to achieve high integration, but on the other hand, the strength conditions required for the cells, especially the electrolyte, are quite severe in order to support the cells themselves.

そこで、平板型固体電解質型燃料電池の電解質において
は、部分安定化ジルコニアの利用や、出発原料の安定化
ジルコニア粉末にアルミナ粉末を5〜30重量%添加し
て強度向上を計ることが提案されている。
Therefore, it has been proposed to use partially stabilized zirconia in the electrolyte of flat plate solid oxide fuel cells, and to add 5 to 30% by weight of alumina powder to the stabilized zirconia powder used as the starting material to improve strength. There is.

[発明が解決しようとする課題] 部分安定化ジルコニアを電解質に用いると、安定化ジル
コニアに比べて電池の内部抵抗が増大する点が問題であ
る。また、出発原料の安定化ジルコニア粉末にアルミナ
粉末を添加する方法では、固体電解質の強度は向上する
が、アルミナは絶縁物であるため、酸素イオン伝導性が
著しく低下するという問題があった。
[Problems to be Solved by the Invention] When partially stabilized zirconia is used as an electrolyte, there is a problem in that the internal resistance of the battery increases compared to stabilized zirconia. Furthermore, in the method of adding alumina powder to the stabilized zirconia powder as a starting material, the strength of the solid electrolyte is improved, but since alumina is an insulator, there is a problem in that the oxygen ion conductivity is significantly reduced.

そこで、本発明は、上記の如き事情に鑑み、安定化ジル
コニアの高いイオン伝導性を損なうことなく強度向上を
図った固体電解質及びその製造方法を提供することを目
的とする。
In view of the above-mentioned circumstances, the present invention aims to provide a solid electrolyte with improved strength without impairing the high ionic conductivity of stabilized zirconia, and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、安定化ジルコニ
ア中に金属酸化物を含み、該金属酸化物が安定化ジルコ
ニア粒子の粒内に存在することを特徴とする固体電解質
を提供する。同様に、金属アルコキシド、金属塩、又は
サブミクロンの金属粉末もしくは金属酸化物粉末を添加
した安定化ジルコニア粉末スラリーを出発原料とし、こ
れを成形、焼成することを特徴とする固定電解質の製造
方法と、金属アルコキシド又は金属塩溶液に安定化ジル
コニア粉末を分散後前水分解及び/又は仮焼して安定化
ジルコニア粉末に金属水酸化物又は酸化物を担持させ、
この粉末を出発原料とし、成形、焼成することを特徴と
する固体電解質の製造方法とを提供する。
In order to achieve the above object, the present invention provides a solid electrolyte characterized in that stabilized zirconia contains a metal oxide, and the metal oxide is present within the stabilized zirconia particles. Similarly, a method for producing a fixed electrolyte is characterized in that a stabilized zirconia powder slurry to which metal alkoxide, metal salt, or submicron metal powder or metal oxide powder is added is used as a starting material, and this is formed and fired. , after dispersing the stabilized zirconia powder in a metal alkoxide or metal salt solution, prehydrolyzing and/or calcining the stabilized zirconia powder to support the metal hydroxide or oxide;
The present invention provides a method for producing a solid electrolyte, which comprises using this powder as a starting material, molding and firing.

本発明によれば、溶液状の金属アルコキシドあるいは金
属塩がジルコニア粒子を薄く均一にまんべんなく覆うた
め、これを加水分解あるいは加熱分解することにより従
来のジルコニア粉末と金属酸化物(アルミナ)粉末の混
合分散法に比べてより少ない金属酸化物分率ではるかに
均一な分散が達成できる。粒内に存在する金属酸化物粒
子はきわめて小さいため、ジルコニアの酸素イオン伝導
に与える影響は軽微なもので済む。
According to the present invention, since the metal alkoxide or metal salt in the form of a solution covers the zirconia particles thinly and uniformly, by hydrolyzing or thermally decomposing the metal alkoxide or metal salt, it is possible to mix and disperse the conventional zirconia powder and metal oxide (alumina) powder. A much more uniform dispersion can be achieved with a lower metal oxide fraction compared to the method. Since the metal oxide particles present within the grains are extremely small, their influence on the oxygen ion conduction of zirconia is negligible.

本発明において安定化ジルコニアの強度を向上させるた
めに用いる金属酸化物は実質的にジルコニア粒子の粒内
に存在する(一部は粒界にも存在する)が、従来技術の
如(アルミナ等の金属酸化物がジルコニア粒子と同等の
粒子として存在しない。この構造はナノコンポジットと
呼ばれるもので、第1図にその組織を模式的に示すが、
同図中1がYSZ結晶粒、2が粒内のAl2O3である
In the present invention, the metal oxide used to improve the strength of stabilized zirconia exists substantially within the grains of the zirconia particles (some of them also exist at the grain boundaries); Metal oxides do not exist as particles equivalent to zirconia particles.This structure is called a nanocomposite, and its structure is schematically shown in Figure 1.
In the figure, 1 is a YSZ crystal grain, and 2 is Al2O3 inside the grain.

第2図に従来のAz2o3添加YSZの組織を示し、3
が737粒、4がAlt03粒である。ナノコンポジッ
トにおいて、737粒1はマイクロメートルのオーダー
、一般に数廂以上、典型的には数10〜数100庫の大
きさであるのに対し、金属酸化物粒2はナノメートル(
サブミクロン)のオーダーである。このようなナノコン
ポジット構造を採用することにより、イオン伝導性を低
下させることなく、強度向上を図ることができる。その
理由は、添加する金属酸化物が小さいこと、さらには少
ない添加量でよいことにあると考えられる。
Figure 2 shows the structure of conventional Az2o3-added YSZ.
is 737 grains, and 4 is Alt03 grains. In the nanocomposite, the 737 grains 1 are on the order of micrometers, generally several square feet or more, typically several tens to hundreds of cubes, whereas the metal oxide grains 2 are on the order of nanometers (
It is on the order of submicron. By employing such a nanocomposite structure, strength can be improved without reducing ionic conductivity. The reason for this is thought to be that the metal oxide to be added is small, and furthermore, a small amount is sufficient.

この目的に用いることができる金属酸化物には、安定化
ジルコニアと固溶体を形成しない物質、例えば、アルミ
ナ、クロミア、ムライトなどのほか、結晶学的には安定
化ジルコニアと固溶体を形成する物質、例えば、マグネ
シア、カルシアその他のアルカリ土類金属酸化物、希土
類元素の酸化物、チタニア、酸化ビスマス、トリア、ウ
ラニアなどを用いることもできる。結晶学的には固溶体
を形成し得る物質でも焼成条件、特に温度により、ナノ
コンポジット構造を形成するからである。また、その場
合、部分的に固溶体が形成されてもよいことは勿論であ
る。さらに、上記の各金属酸化物の混合物あるいは複合
物を用いてもよい。複合物としては、イツトリアドープ
セリアのようにそれ自体がイオン導電性を有するものが
あり、これの添加はイオン導電性の値下がより少ないの
で好ましい。
Metal oxides that can be used for this purpose include substances that do not form a solid solution with stabilized zirconia, such as alumina, chromia, and mullite, as well as substances that crystallographically form a solid solution with stabilized zirconia, such as , magnesia, calcia and other alkaline earth metal oxides, rare earth element oxides, titania, bismuth oxide, thoria, urania, etc. can also be used. This is because even substances that can form a crystallographic solid solution form a nanocomposite structure depending on the firing conditions, particularly the temperature. Moreover, in that case, it goes without saying that a solid solution may be partially formed. Furthermore, a mixture or composite of each of the above metal oxides may be used. Some composites, such as yttoria-doped ceria, have ionic conductivity in themselves, and the addition of this is preferable because the decrease in ionic conductivity is less.

金属酸化物の量は安定化ジルコニア電解質中0.1重量
%でも強度向上の効果があり、その量の増加によって強
度向上も大きくなるが、金属酸化物量があまり多くなる
と安定化ジルコニアのイオン伝導性を損なうので30重
量%以下が好ましい。
Even if the amount of metal oxide is 0.1% by weight in the stabilized zirconia electrolyte, it has the effect of improving the strength, and as the amount increases, the strength increases, but if the amount of metal oxide is too large, the ionic conductivity of the stabilized zirconia will decrease. 30% by weight or less is preferable.

より好ましくは0.01〜20重量%、さらには0.1
〜5重量%の範囲内である。
More preferably 0.01 to 20% by weight, even 0.1% by weight
-5% by weight.

安定化ジルコニアは、ジルコニアをイツトリア、カルシ
ア等の安定化剤を5〜10mo1%、典型的には8ff
lo1%添加して安定化したものが有効である。
Stabilized zirconia is made by mixing zirconia with a stabilizer such as yttria or calcia at 5 to 10 mo1%, typically 8ff.
It is effective to stabilize it by adding 1% lo.

金属酸化物を安定化ジルコニアの粒内に存在させる第1
の方法は、安定化ジルコニアスラリー中に金属アルコキ
シド、金属塩、又はサブミクロンΦ金属粉末もしくは金
属酸化物粉末を添加する方法である。金属アルコキシド
はM(OC,)Izn41)ffiC式中、Mは金属元
素、nは典型的には1〜4の整数、mは金属Mの原子価
を表わす。〕で表わされるものが好ましい。溶媒として
はCf1F[2n。、0H(n=1〜4)の低級アルコ
ールや、ヘンゼン、トルエンなどの芳香族系有機溶媒な
どを用いることができる。また、スラリーにはバインダ
ー、分散剤、消泡剤、可塑剤など慣用の添加剤を添加す
ることができる。
A first step in which a metal oxide is present within the grains of stabilized zirconia.
This method is a method in which a metal alkoxide, a metal salt, or a submicron Φ metal powder or metal oxide powder is added to a stabilized zirconia slurry. The metal alkoxide has the formula M(OC,)Izn41)ffiC, where M is a metal element, n is typically an integer of 1 to 4, and m is the valence of the metal M. ] is preferable. As a solvent, Cf1F[2n. , 0H (n=1 to 4) lower alcohols, aromatic organic solvents such as Hensen, toluene, etc. can be used. Further, conventional additives such as a binder, a dispersant, an antifoaming agent, and a plasticizer can be added to the slurry.

安定化ジルコニアスラリーの成形、焼成は慣用手法に従
うことができる。
The stabilized zirconia slurry can be shaped and fired by conventional methods.

金属酸化物を安定化ジルコニアの粒内に存在させる第2
の方法は、金属アルコキシド又は金属塩溶液に安定化ジ
ルコニア粒子を分散させた後、加水分解を行ない、これ
を濾過、洗浄、乾燥して水酸化物の形で金属成分を安定
化ジルコニア粒子に担持させ、又必要に応じて仮焼して
熱分解により金属酸化物の形に変換して担持させ、この
安定化ジルコニア粒子を用いて成形、焼成する方法であ
る。この場合も、金属アルコキシドの溶媒としては上記
同様の溶媒を用いることができる。金属塩としては硝酸
塩、塩化物、炭酸塩、酢酸塩などを用いることができる
。この場合には、溶媒は水、あるいは低級アルコール、
グリコールなどが用いられる。加水分解は水酸化アルカ
リ、アンモニア、塩基性アミン等を前記溶媒に溶かした
ものを慣用の手法を用いて滴下・混合することにより行
われる。
A second process in which a metal oxide is present within the grains of stabilized zirconia.
In this method, stabilized zirconia particles are dispersed in a metal alkoxide or metal salt solution, and then hydrolyzed, followed by filtration, washing, and drying to support metal components in the form of hydroxide on the stabilized zirconia particles. This is a method in which the stabilized zirconia particles are heated, calcined if necessary, converted into a metal oxide form by thermal decomposition, supported, and then molded and fired using the stabilized zirconia particles. Also in this case, the same solvent as above can be used as the solvent for the metal alkoxide. As the metal salt, nitrate, chloride, carbonate, acetate, etc. can be used. In this case, the solvent is water, lower alcohol,
Glycol etc. are used. Hydrolysis is carried out by dropping and mixing a solution of alkali hydroxide, ammonia, basic amine, etc. in the above-mentioned solvent using a conventional method.

こうして得られた安定化ジルコニア粒子は表面に微細な
水酸化物又は酸化物の形で金属成分を担持する。この安
定化ジルコニア粒子を用いた成形、焼成は慣用の手法に
従うことができる。
The stabilized zirconia particles thus obtained carry metal components in the form of fine hydroxides or oxides on their surfaces. Molding and firing using the stabilized zirconia particles can be carried out by conventional methods.

[実施例] 夫隻開土 トルエン50ccに、アルミニウムイソプロポキシド(
Mw=204.25)4.085gを加え、よく攪拌し
て完全に溶解させた。安定化剤としてY2O2(イツト
リア)を8mo1%含んだ完全安定化ジルコニア(8Y
SZ)粉末(東ソー製、TZ−8Y 、平均粒径0.3
IITn)を100g秤量し、イソプロパツール50c
cを加えて、ボールミルにてよく混合・分散を行なった
[Example] Aluminum isopropoxide (
Mw=204.25) 4.085 g was added and stirred well to completely dissolve. Completely stabilized zirconia (8Y) containing 8 mo1% of Y2O2 (Ittria) as a stabilizer.
SZ) powder (manufactured by Tosoh, TZ-8Y, average particle size 0.3
Weigh 100g of IITn) and add isopropanol 50c.
c was added and thoroughly mixed and dispersed using a ball mill.

これに、先のアルミニウムイソプロポキシドのトルエン
溶液と、ポリビニルブチラール(PVB)粉末10g、
及び少量の分散剤、脱泡剤、可塑剤を添加し、ボールミ
ルにて更に混合・分散を行った。出東上がったスラリー
を真空脱泡後、ドクターブレード装置にてグリーンシー
トを作製し、打ち抜き、焼成を経てセラミックス焼成体
シートを得た。焼成体は厚さ約200−で、曲げ強度、
抵抗、燃料電池セル性能を下記表に示すが、そのいずれ
においても著しく良好な性能を示した。
To this, the toluene solution of aluminum isopropoxide, 10 g of polyvinyl butyral (PVB) powder,
A small amount of a dispersant, a defoaming agent, and a plasticizer were added, and the mixture was further mixed and dispersed in a ball mill. After degassing the slurry in vacuum, a green sheet was produced using a doctor blade device, punched, and fired to obtain a fired ceramic sheet. The fired body has a thickness of about 200 mm, bending strength,
The resistance and fuel cell performance are shown in the table below, and both showed extremely good performance.

焼成体を透過電子顕微鏡で観察したが、安定化ジルコニ
ア粒子内にアルミナ粒子の存在が認められた。また、ア
ルミナ粒子の1部はジルコニア粒子の粒界にも存在する
When the fired body was observed using a transmission electron microscope, the presence of alumina particles within the stabilized zirconia particles was observed. Further, a part of the alumina particles also exists at the grain boundaries of the zirconia particles.

実施貫呈 トルエン100ccに実施例1と同様にアルミニウムイ
ソプロポキシド8.17gを溶解させたものに、インド
リウム安定化ジルコニア(YSZ) 粉末を100gを
よ(分散させてスラリー化した後、純水5gと微量のア
ンモニア水にイソプロパツールを加えて100ccとし
たものをゆっくりと滴下し、加水分解を行なった。これ
を濾過・乾燥した粉末を600°Cにて仮焼し、アルミ
ナ担持YSZ粉末を得た。
Example 100 g of indolium stabilized zirconia (YSZ) powder was dissolved in 100 cc of toluene in the same manner as in Example 1, and 100 g of indolium stabilized zirconia (YSZ) powder was added (dispersed to form a slurry, then mixed with pure water). Hydrolysis was carried out by slowly adding 5 g of isopropanol to a small amount of ammonia water to make 100 cc.The filtered and dried powder was calcined at 600°C to form alumina-supported YSZ powder. I got it.

この粉末にトルエン50cc、イソプロパツール50c
c、ポリビニルブチラール(PVB) 10g、および
少量の分散剤、脱泡剤、可塑剤を加えてボールミルにて
混合・分散を行い、ドクターブレード装置にてシート引
きを行なった。焼成体の強度、セル性能共に下記表1に
示すが実施例1とほぼ同様の性能を得た。
Add 50cc of toluene and 50cc of isopropanol to this powder.
c. 10 g of polyvinyl butyral (PVB) and a small amount of a dispersant, a defoaming agent, and a plasticizer were added, mixed and dispersed in a ball mill, and sheeted using a doctor blade device. Both the strength and cell performance of the fired body are shown in Table 1 below, and almost the same performance as in Example 1 was obtained.

焼成体を透過電子顕微鏡で観察したが、安定化ジルコニ
ア粒子内にアルミナ粒子の存在が確認された。また、ア
ルミナ粒子は1部ジルコニア粒子の粒界にも存在する。
When the fired body was observed using a transmission electron microscope, the presence of alumina particles within the stabilized zirconia particles was confirmed. In addition, a part of the alumina particles also exists at the grain boundaries of the zirconia particles.

ル較炭上工I 実施例2のアルミナ担持YSZ粉末に代えて、安定化剤
としてイツトリアを3mo1%及び8mo1%含んだ部
分安定化及び完全安定化ジルコニア(3ysz及び8Y
SZ、平均粒径0.3声)を用い、実施例2と同様の方
法でスラリーを作成し、成形及び焼成した。
Comparative Coal Construction I Instead of the alumina-supported YSZ powder of Example 2, partially stabilized and fully stabilized zirconia (3ysz and 8Y) containing 3 mo1% and 8 mo1% of ittria as stabilizers were used.
A slurry was prepared in the same manner as in Example 2 using SZ (average particle size: 0.3 mm), and was molded and fired.

焼成体の特性を下記表に示す。The characteristics of the fired body are shown in the table below.

ル較狙主二工 比較例2の完全安定化ジルコニア(8YSZ)粉末にア
ルミナ粉末(大関化学製TM−DR、平均粒径0、2 
am )を10重量%、20重量%、及び30重量%添
加し、以下実施例2と同様にして焼成体を作成した。
Alumina powder (Ozeki Chemical TM-DR, average particle size 0, 2
am ) was added in an amount of 10% by weight, 20% by weight, and 30% by weight, and fired bodies were produced in the same manner as in Example 2.

焼成体の特性を下記表1に示す。The characteristics of the fired body are shown in Table 1 below.

ス11」l トルエン50ccに、安定化剤としてY2O2(イント
リア)を3mo1%含んだ完全安定化ジルコニア(8Y
SZ)粉末(東ソー製、TZ−8Y 、平均粒径0.3
1!m)と、表2に示した添加物質(粒径0.3〜0,
5μ)とを表2に示した割合で合計100g秤量し、イ
ソプロパツール50ccを加えて、ボールミルにてよく
混合・分散を行なった。これに、ポリビニルブチラール
(PVB)粉末10g1及び少量の分散剤、脱泡剤、可
塑剤を添加し、ボールミルにて更に混合・分散を行った
。出来上がったスラリーを真空脱泡後、ドクターブレー
ド装置にてグリーンシートを作製し、打ち抜き、140
0°C18時間焼成を経てセラミックス焼成体シートを
得た。焼成体は厚さ約200趨で、曲げ強度、抵抗、燃
料電池セル性能を下記表2に示すが、そのいずれにおい
ても著しく良好な性能を示した。
Completely stabilized zirconia (8Y
SZ) powder (manufactured by Tosoh, TZ-8Y, average particle size 0.3
1! m) and the additive substances shown in Table 2 (particle size 0.3-0,
A total of 100 g of 5μ) was weighed out in the proportions shown in Table 2, 50 cc of isopropanol was added, and the mixture was thoroughly mixed and dispersed in a ball mill. To this, 10 g of polyvinyl butyral (PVB) powder and a small amount of a dispersant, a defoaming agent, and a plasticizer were added, and the mixture was further mixed and dispersed in a ball mill. After vacuum defoaming of the finished slurry, a green sheet was made using a doctor blade device, punched out, and
After firing at 0°C for 18 hours, a fired ceramic sheet was obtained. The fired body had a thickness of about 200 mm, and its bending strength, resistance, and fuel cell performance are shown in Table 2 below, and it showed extremely good performance in all of them.

なお、表2において、強度は、3 m X 40mm 
XO,2l!mで寸法誤差10%以内の試験片を10片
用意し、スパン30mmにて3点曲げ試験を行なった平
均値である。導電率は、試験片の両面に面積0.5 c
iの電極をPtペーストの塗布により形成し、Pt網に
て集電したもので、1000°C1大気中の値である。
In addition, in Table 2, the strength is 3 m x 40 mm
XO, 2l! This is the average value obtained by preparing 10 test pieces with a dimensional error within 10% in m and performing a three-point bending test with a span of 30 mm. The conductivity is determined by applying an area of 0.5 c on both sides of the specimen.
The electrode i was formed by applying Pt paste, and the current was collected using a Pt net, and the value was at 1000° C1 in the atmosphere.

セル性能は、試験片の両面に面積0.5 cutのアノ
ード(Ni  二8YSZ =9 : 1の重量比で混
合したペースト〕およびカソード(L ao、 9 S
 ro、 I M103ペースト)を形成し、Pt網に
て集電したもので、1000°Cにて燃料として純水素
を、また酸化側として純酸素を、それぞれ流量100c
c/min、にて流したときのIA定電流時の出力であ
る。
The cell performance was determined by placing an anode (Ni28YSZ paste mixed at a weight ratio of 9:1) and a cathode (Lao, 9S) on both sides of the test piece.
ro, I M103 paste) was formed and current was collected using a Pt network, and pure hydrogen was used as a fuel at 1000°C, and pure oxygen was used as an oxidation side at a flow rate of 100c.
This is the output at constant IA current when flowing at c/min.

表 〔発明の効果〕 本発明による完全安定化ジルコニア固定電解質は少量の
金属酸化物が粒内に存在して焼成体強度を高めるので、
完全安定化ジルコニアの優れたイオン伝導性を損なうこ
となく強度向上を図ることができる。
Table [Effects of the Invention] In the fully stabilized zirconia fixed electrolyte according to the present invention, a small amount of metal oxide exists in the grains, increasing the strength of the fired product.
Strength can be improved without impairing the excellent ionic conductivity of fully stabilized zirconia.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明及び従来法の安定化
ジルコニア固体電解質の模式組織図である。 1・・・732粒、    2・・・Affiz03.
3・・・732粒、    4・・・へ!203粒。
FIG. 1 and FIG. 2 are schematic organization diagrams of stabilized zirconia solid electrolytes of the present invention and the conventional method, respectively. 1...732 grains, 2...Affiz03.
3...732 grains, 4...to! 203 grains.

Claims (3)

【特許請求の範囲】[Claims] 1.安定化ジルコニア中に金属酸化物を含み、該金属酸
化物が安定化ジルコニア粒子の粒内に存在することを特
徴とする固体電解質。
1. A solid electrolyte characterized in that stabilized zirconia contains a metal oxide, and the metal oxide is present within the grains of stabilized zirconia particles.
2.金属アルコキシド、金属塩、又はサブミクロンの金
属粉末もしくは金属酸化物粉末を添加した安定化ジルコ
ニア粉末スラリーを出発原料とし、これを成形、焼成す
ることを特徴とする固体電解質の製造方法。
2. A method for producing a solid electrolyte, which comprises using as a starting material a stabilized zirconia powder slurry to which metal alkoxide, metal salt, or submicron metal powder or metal oxide powder is added, and molding and firing the slurry.
3.金属アルコキシド又は金属塩溶液に安定化ジルコニ
ア粉末を分散後加水分解及び/又は仮焼して安定化ジル
コニア粉末に金属水酸化物又は酸化物を担持させ、この
粉末を出発原料とし、成形、焼成することを特徴とする
固体電解質の製造方法。
3. Stabilized zirconia powder is dispersed in a metal alkoxide or metal salt solution, then hydrolyzed and/or calcined to make the stabilized zirconia powder support a metal hydroxide or oxide, and this powder is used as a starting material to be shaped and fired. A method for producing a solid electrolyte, characterized by:
JP2221260A 1989-08-25 1990-08-24 Stabilized zirconia solid electrolyte and production thereof Pending JPH0412058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2221260A JPH0412058A (en) 1989-08-25 1990-08-24 Stabilized zirconia solid electrolyte and production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1-217539 1989-08-25
JP21753989 1989-08-25
JP1-253760 1989-09-30
JP2221260A JPH0412058A (en) 1989-08-25 1990-08-24 Stabilized zirconia solid electrolyte and production thereof

Publications (1)

Publication Number Publication Date
JPH0412058A true JPH0412058A (en) 1992-01-16

Family

ID=26522073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2221260A Pending JPH0412058A (en) 1989-08-25 1990-08-24 Stabilized zirconia solid electrolyte and production thereof

Country Status (1)

Country Link
JP (1) JPH0412058A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077355A1 (en) * 2005-01-24 2006-07-27 Areva T & D Sa Method for production of ceramic semiconductors made from metal oxides such as tin in particular for varistors
JP2012512521A (en) * 2008-12-17 2012-05-31 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Co-doped YSZ electrolyte for solid oxide fuel cell stack
JPWO2019187840A1 (en) * 2018-03-30 2020-04-30 旭化成株式会社 Catalyst, catalyst production method, acrylonitrile production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077355A1 (en) * 2005-01-24 2006-07-27 Areva T & D Sa Method for production of ceramic semiconductors made from metal oxides such as tin in particular for varistors
JP2012512521A (en) * 2008-12-17 2012-05-31 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Co-doped YSZ electrolyte for solid oxide fuel cell stack
JPWO2019187840A1 (en) * 2018-03-30 2020-04-30 旭化成株式会社 Catalyst, catalyst production method, acrylonitrile production method
US10940463B2 (en) 2018-03-30 2021-03-09 Asahi Kasei Kabushiki Kaisha Catalyst, method for producing catalyst, and method for producing acrylonitrile

Similar Documents

Publication Publication Date Title
US5130210A (en) Stabilized zirconia solid electrolyte and process for preparation thereof
US5169811A (en) Beneficiated lanthanum chromite for low temperature firing
CN108417889B (en) Preparation method of lithium lanthanum zirconium oxide based oxide powder
CN111918838B (en) Ceramic powder, sintered body, and battery
WO1994012447A1 (en) Fluxed lanthanum chromite for low temperature air firing
JP6655122B2 (en) Method for producing proton conductive oxide fuel cell
KR20140040268A (en) Lithium-ion-conducting material, lithium-ion-conducting solid electrolyte using lithium-ion-conducting material, electrode protection layer for lithium ion cell, and method for manufacturing lithium-ion-conducting material
WO2006087959A1 (en) Elctrolyte sheet for solid oxide fuel battery, process for producing the same, and solid oxide fuel battery cell
JP3260988B2 (en) Method for producing solid electrolyte
JP3011387B2 (en) Ceramics, cylindrical solid electrolyte fuel cells using the same, and flat solid electrolyte fuel cells
JP3458863B2 (en) Solid electrolyte sintered body for solid oxide fuel cell
JP4334894B2 (en) Method for producing solid electrolyte
JP2008041469A (en) Base material for interconnector of solid oxide fuel cell, interconnector of solid oxide fuel cell, its manufacturing method, and solid oxide fuel cell
JPH0412058A (en) Stabilized zirconia solid electrolyte and production thereof
JPH07149522A (en) Zirconia electrolyte powder and its production
Muccillo et al. Thermal analyses of yttrium-doped barium zirconate with phosphor pentoxide, boron oxide and zinc oxide addition
JP2941038B2 (en) Polycrystalline sintered solid electrolyte
JP3411064B2 (en) Method for producing solid electrolyte sintered body for solid oxide fuel cell
US11145894B2 (en) Process for fabrication of enhanced β″-alumina solid electrolytes for energy storage devices and energy applications
JP4039618B2 (en) Solid oxide fuel cell
JPH04139063A (en) Solid electrolyte of stabilized zirconia and its production
JP7171487B2 (en) Method for producing perovskite-type ion-conducting oxide
JP2003178771A (en) Manufacturing method of solid electrolyte film
JP3323923B2 (en) Zirconia polycrystalline thin film and method for producing the same
JP4873291B2 (en) Method for producing high-strength oxide ion conductor