JPH04120276A - Surface treating device - Google Patents

Surface treating device

Info

Publication number
JPH04120276A
JPH04120276A JP23348789A JP23348789A JPH04120276A JP H04120276 A JPH04120276 A JP H04120276A JP 23348789 A JP23348789 A JP 23348789A JP 23348789 A JP23348789 A JP 23348789A JP H04120276 A JPH04120276 A JP H04120276A
Authority
JP
Japan
Prior art keywords
coupling hole
electromagnetic waves
chamber
plasma generation
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23348789A
Other languages
Japanese (ja)
Inventor
Kojin Nakagawa
行人 中川
Kiyoushiyoku Kin
金 京植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP23348789A priority Critical patent/JPH04120276A/en
Publication of JPH04120276A publication Critical patent/JPH04120276A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of utilizing the electric power of electromagnetic waves in plasma generation by improving the coupling between the electromagnetic waves and plasma generating chamber in an ECR device and introducing the electromagnetic waves in the state of linearly polarized waves into this chamber. CONSTITUTION:A magnetic field B parallel with the side wall of the plasma generating chamber 1 is produced by, for example, air core coils 8, 8'. A metallic plate 100 having a coupling hole 10 of a rectangular shape for introducing the electromagnetic waves into the chamber 1 is joined to the terminal of a square waveguide 9. The coupling hole 10 may be shaped to an oval, elliptic or cocoon shape. After the inside of the generating chamber 1 and a treating chamber 2 is evacuated to a vacuum by a discharge system 5, a gas for treatment is introduced by gas introducing systems 6, 7 into the chambers and prescribed pressures are maintained in the chambers 1, 2. The electromagnetic waves are then impressed to the chamber 1 and are introduced through a three-dimensional circuit element, such as tuner 9', into the waveguide 9. The electromagnetic waves are radiated through the coupling hole 10 into the generating chamber 1 and the high-density plasma is generated by the small electric power if the reflected waves from the coupling hole 10 are negated by the tuner 9'.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面処理装置に関し、例えば、プラズマエツ
チング、プラズマCVD装置、光エッチング、光CVD
1置、スパッタ装置、スパッタエツチング装置およびこ
れらの複合装置などに適用して効果の著しいものである
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a surface treatment apparatus, for example, a plasma etching, plasma CVD apparatus, photoetching, photoCVD
It is highly effective when applied to single-stage etching, sputtering equipment, sputter etching equipment, and combination equipment thereof.

(従来の技術およびその問題点) 本発明の従来技術としては例えば、松尾らによる特開昭
55−141729号公報あるいは特開昭57−177
975号公報のイオンシャワー装置の発明がある。これ
らの発明は、いわゆるECR装置として広く実用されて
いる。その装置の概略を第8図に示す。
(Prior art and its problems) As the prior art of the present invention, for example, Japanese Patent Application Laid-Open No. 55-141729 by Matsuo et al.
There is an invention of an ion shower device disclosed in Japanese Patent No. 975. These inventions are widely put into practice as so-called ECR devices. A schematic diagram of the device is shown in FIG.

この従来のECR装置にはいくつかの欠点がある。即ち
、プラズマ生成室1に導波管9により電磁波を導入する
に当たっては、TE、、方形導波管(もしくはTE、、
円形導波管)9の端面を真空窓を兼ねた石英もしくはア
ルミナ等の誘電体の板で作られた導入窓11を介してプ
ラズマ生成室1に直接結合している。このためプラズマ
生成室1を共振器と見た場合、この電磁波導入部は結合
穴としての最適条件を満たしておらず、Q値の低い即ち
電力利用効率の極めて悪いものとなっている。
This conventional ECR device has several drawbacks. That is, when introducing electromagnetic waves into the plasma generation chamber 1 through the waveguide 9, a TE, rectangular waveguide (or TE,
The end face of the circular waveguide (9) is directly connected to the plasma generation chamber 1 via an introduction window 11 made of a dielectric plate such as quartz or alumina, which also serves as a vacuum window. Therefore, when the plasma generation chamber 1 is viewed as a resonator, this electromagnetic wave introduction part does not satisfy the optimum conditions as a coupling hole, and has a low Q value, that is, extremely poor power utilization efficiency.

また電磁波の導入窓11の部分でインピーダンスマツチ
ングにずれを生じるため、電磁波の損失が発生し、プラ
ズマ生成室1内に有効に伝播する電磁波の電力の割合が
小さく、窓部11.導波管9および立体回路部での損失
が大きい。この欠点により、プラズマ12の密度を高め
る目的で、プラズマ生成室1に印加する電磁波の電力を
大きくすると、導入窓11の部分での電磁波の損失が大
きいため、発熱量が増大し、導入窓11の破壊を含む各
種のトラブルが発生しやすい。
Further, since a shift occurs in impedance matching at the electromagnetic wave introduction window 11, electromagnetic wave loss occurs, and the proportion of the electromagnetic wave power that effectively propagates into the plasma generation chamber 1 is small. The loss in the waveguide 9 and the three-dimensional circuit section is large. Due to this drawback, when the power of the electromagnetic waves applied to the plasma generation chamber 1 is increased in order to increase the density of the plasma 12, the loss of electromagnetic waves at the introduction window 11 is large, so the amount of heat generated increases. Various troubles, including destruction, are likely to occur.

また従来の装置では、窓部11の面積が広いため、プラ
ズマ生成室1内に均一にプラズマ12を発生させるには
適しているが、プラズマを小さい体積の空間内に集中さ
せて高密度化を図るには適していなかった。
In addition, in the conventional device, since the area of the window portion 11 is large, it is suitable for generating plasma 12 uniformly in the plasma generation chamber 1, but it is difficult to concentrate the plasma in a small volume of space to increase the density. It wasn't suitable for trying.

(発明の目的) 本発明は、プラズマ生成における電磁波電力の利用効率
を向上させ、小さい電力にょって高密度のプラズマの発
生を可能にする表面処理装置の提供を目的とする。
(Objective of the Invention) An object of the present invention is to provide a surface treatment apparatus that improves the utilization efficiency of electromagnetic wave power in plasma generation and enables generation of high-density plasma with small electric power.

(問題点を解決するための手段) 本発明は、処理ガスを導入し減圧状態に保持することの
出来るプラズマ生成室と、そのプラズマ生成室内へ電磁
波を導入して処理ガスのプラズマを発生させる手段と、
電磁波の進行方向に平行の成分を持つ磁界をプラズマ生
成室内に発生させる手段と、プラズマ生成室内もしくは
その室に接続して設置された処理室内に被処理物を載置
する手段と、を備えた表面処理装置にて、電磁波が直線
偏波の状態でプラズマ生成室に導入されているように構
成された表面処理装置によって前記目的を達成したもの
である。
(Means for Solving the Problems) The present invention provides a plasma generation chamber capable of introducing a processing gas and maintaining it in a reduced pressure state, and a means for introducing electromagnetic waves into the plasma generation chamber to generate plasma of the processing gas. and,
A means for generating a magnetic field having a component parallel to the direction of propagation of electromagnetic waves in a plasma generation chamber, and a means for placing an object to be processed in the plasma generation chamber or a processing chamber installed in connection with the chamber. The above object is achieved by a surface treatment apparatus configured such that electromagnetic waves are introduced into a plasma generation chamber in a linearly polarized state.

プラズマ生成室と、それに電磁波を導入すべく設けられ
た立体回路素子との間に、電磁波の進行方向と直角にそ
の厚さがM電磁波の波長に比較して十分に小さい導電性
の板を設置し、且つその板には板の導波管側の面におけ
る振動電場に直角な方向に長辺をもつスリット状の結合
穴を貫通し、その結合穴から電磁波をプラズマ室内に導
入するように構成すること、そしてその結合穴の長辺の
長さを、ほぼλ/2(λは電磁波の自由空間波長)にし
、結合穴の形状を、長方形、長円形、楕円形、又は繭形
に選ぶ時に、処理の均一性の向上の達成される育為な装
置が得られる。
A conductive plate whose thickness is sufficiently smaller than the wavelength of the M electromagnetic wave is installed at right angles to the direction of propagation of the electromagnetic wave between the plasma generation chamber and the three-dimensional circuit element installed to introduce electromagnetic waves into it. In addition, the plate is configured to pass through a slit-shaped coupling hole with a long side in a direction perpendicular to the oscillating electric field on the waveguide side surface of the plate, and to introduce electromagnetic waves into the plasma chamber from the coupling hole. The length of the long side of the coupling hole should be approximately λ/2 (λ is the free space wavelength of electromagnetic waves), and the shape of the coupling hole should be selected to be rectangular, oval, elliptical, or cocoon-shaped. , an improved device is obtained in which improved processing uniformity is achieved.

また、結合穴とプラズマ生成室の間に電磁ホーンを設置
するとき更に高効率の装置となる。
Further, when an electromagnetic horn is installed between the coupling hole and the plasma generation chamber, the device becomes even more efficient.

(作用) 本発明の主旨は、電磁波とその共振器であるプラズマ生
成室の間の結合を改善することにある。
(Operation) The gist of the present invention is to improve the coupling between electromagnetic waves and a plasma generation chamber that is a resonator thereof.

導波管とプラズマ生成室の間の結合を改善するにはいく
つかの方法が考えられるが、この発明は、スロットアン
テナがマイクロ波領域の電磁波を効率よく放射すること
に着目し、その手法を流用してプラズマ生成室への電磁
波の供給効率を向上させたものである。
Several methods can be considered to improve the coupling between the waveguide and the plasma generation chamber, but this invention focuses on the fact that slot antennas efficiently radiate electromagnetic waves in the microwave region, and developed this method. This was used to improve the efficiency of supplying electromagnetic waves to the plasma generation chamber.

前記した従来の第8図の装置では、放電時に電磁波のマ
ツチングを完全にとるのが難しく、また−見マッチング
がとれたかに見える状態であっても、窓11や導波管9
等に部分で電磁波の損失による発熱が大きく、大電力を
注入してもプラズマを効率よ(高密度に発生させること
が不可能であった。しかし本発明の構成によれば、電磁
波の供給効率が向上し電力の利用効率が向上するために
同一電力印加時の処理速度の向上が達成された。
In the conventional device shown in FIG. 8, it is difficult to perfectly match the electromagnetic waves during discharge, and even when it appears that matching has been achieved, the window 11 and the waveguide 9
The generation of heat due to loss of electromagnetic waves is large in areas such as areas, and even if large amounts of power are injected, it has been impossible to generate plasma efficiently (high density).However, according to the configuration of the present invention, the efficiency of supplying electromagnetic waves can be improved As a result, the processing speed when applying the same power has been improved due to the improved power usage efficiency.

(実施例) 第1図a(正面断面図)、b(その一部の側面図)は本
発明の実施例の概略を示すものであって、1はプラズマ
生成室、2は処理室、3は被処理物のホルダー 4は被
処理物、9は方形導波管、11は石英、アルミナ等で作
られた真空窓である。
(Example) Figures 1a (front sectional view) and b (partial side view) schematically show an example of the present invention, in which 1 is a plasma generation chamber, 2 is a processing chamber, and 3 Reference numeral 4 indicates a holder for an object to be processed, 9 is a rectangular waveguide, and 11 is a vacuum window made of quartz, alumina, or the like.

プラズマ生成室1内には、空心コイル8.8′(これは
単数又は3つ以上であってもよい)によって磁界Bが作
られる。本実施例では、二つの空心コイルによって磁界
Bはプラズマ生成室1の側壁と平行な方向に、いわゆる
ミラー磁場状に設定されている。方形導波管9の末端に
は、電磁波をプラズマ生成室に導入するための結合穴1
0を備えた金属板100が接合されている。なお、この
金属板100は真空窓11の真空室1の側に設置しても
よい。その結合穴10の形状の代表的例を第3図as 
 bs  CXdに示す。それぞれは矩形、長円形、楕
円形、繭形である。第1図すに示すようにこの実施例で
は幅h1 長さαの矩形の結合穴を使用している。
A magnetic field B is created in the plasma generation chamber 1 by an air-core coil 8.8' (which may be one or more than two). In this embodiment, the magnetic field B is set in a direction parallel to the side wall of the plasma generation chamber 1 by two air-core coils in a so-called mirror magnetic field shape. At the end of the rectangular waveguide 9, there is a coupling hole 1 for introducing electromagnetic waves into the plasma generation chamber.
A metal plate 100 with 0 is joined. Note that this metal plate 100 may be installed on the vacuum chamber 1 side of the vacuum window 11. A typical example of the shape of the coupling hole 10 is shown in Figure 3 as
bs Shown in CXd. They are rectangular, oblong, oval, and cocoon-shaped. As shown in FIG. 1, this embodiment uses a rectangular coupling hole with a width h1 and a length α.

この装置を動作させるには、プラズマ生成室1および処
理室2の室内を排気システム5を用いて真空排気したの
ち、ガス導入システム6.7を用いて処理用ガスを導入
し、排気システム5の排気速度を調節してプラズマ生成
室1内及び真空室2内を所定の圧力に保つ。次にプラズ
マ生成室1に電磁波を印加する。ここでは、電磁波とし
て、2.45GHzの、マイクロ波を供給している。
To operate this device, the plasma generation chamber 1 and the processing chamber 2 are evacuated using the exhaust system 5, and then a processing gas is introduced using the gas introduction system 6.7. The exhaust speed is adjusted to keep the inside of the plasma generation chamber 1 and the inside of the vacuum chamber 2 at a predetermined pressure. Next, electromagnetic waves are applied to the plasma generation chamber 1. Here, microwaves of 2.45 GHz are supplied as electromagnetic waves.

図示されていない電磁波発生装置より出力された電磁波
は、図示されていないアイソレータ、パワーモニター 
および、チューナー9′等の立体回路素子を通して導波
管9に導かれる。このチューナー9′を用いて結合穴1
0からの反射波を打ち消せば、電磁波は結合穴10を通
ってプラズマ生成室1に放射される。このときの導波管
9の伝搬モードが通常使用されるTE、sモードであれ
ば、結合穴10は、第1図すにその側面図を示すように
、導波管のE面に平行に設けておくのが最良である。
Electromagnetic waves output from an electromagnetic wave generator (not shown) are transmitted to an isolator (not shown) and a power monitor (not shown).
The light is then guided to the waveguide 9 through a three-dimensional circuit element such as a tuner 9'. Using this tuner 9', connect hole 1
If the reflected wave from 0 is canceled, the electromagnetic wave is radiated into the plasma generation chamber 1 through the coupling hole 10. If the propagation mode of the waveguide 9 at this time is the normally used TE or s mode, the coupling hole 10 is parallel to the E plane of the waveguide, as shown in the side view of FIG. It is best to set it up.

結合穴10の長さ1をλ/2程度に選べば最良の放射効
率が得られる。結合穴10の幅りはλ/2より小さい任
意の値であり、放射効率が最良となるように選ばれる。
The best radiation efficiency can be obtained by selecting the length 1 of the coupling hole 10 to be approximately λ/2. The width of the coupling hole 10 is an arbitrary value smaller than λ/2, and is selected so as to provide the best radiation efficiency.

結合孔の幅りの最良値はプラズマ生成室1の形状等によ
って変化する。
The best value for the width of the coupling hole varies depending on the shape of the plasma generation chamber 1 and other factors.

以上の操作によりプラズマ生成室1内にはプラズマ12
が発生するが、そのプラズマ12の形状を第5図a(正
面図)、b(そのA−A’断面図)に示す。
With the above operations, plasma 12 is generated in the plasma generation chamber 1.
The shape of the plasma 12 is shown in FIGS. 5a (front view) and 5b (sectional view taken along line AA').

結合穴10よりプラズマ生成室1内に放射される電磁波
は、結合穴10の形状に依存した指向性を持ち、プラズ
マの形状は偏平となる。磁界が上記したようなミラー磁
界である場合は、第5図aに示すように、中央部が膨ら
んだ形状となる。
The electromagnetic waves radiated into the plasma generation chamber 1 from the coupling hole 10 have directivity that depends on the shape of the coupling hole 10, and the shape of the plasma is flat. When the magnetic field is a mirror magnetic field as described above, the shape is bulged at the center as shown in FIG. 5a.

本実施例において、被処理物4の処理の均一性が問題と
なる場合は、結合穴10の形状を例えば、第3図b−d
に示すような、長円形、楕円形等とすることで、プラズ
マの形状を変化させ、均一性を向上させることも可能で
ある。
In this embodiment, if the uniformity of processing of the workpiece 4 is a problem, the shape of the coupling hole 10 may be changed, for example, as shown in FIGS. 3b-d.
It is also possible to change the shape of the plasma and improve its uniformity by making it into an oval shape, an ellipse shape, etc. as shown in FIG.

また空心コイル8.8′をヘルムホルツ型に設置するこ
とでも、均一性の良好なプラズマが得られる。
Also, by arranging the air-core coils 8,8' in a Helmholtz configuration, plasma with good uniformity can be obtained.

なお、従来の装置のプラズマは、!第5図Cにその断面
図を示すように回転曲面形状である。
In addition, the plasma of the conventional device is! As shown in the cross-sectional view of FIG. 5C, it has a rotating curved surface shape.

第2図a(正面断面図)、b(その一部の側面図)に本
発明の別の実施例を示す。
Another embodiment of the present invention is shown in FIGS. 2a (front sectional view) and 2b (partial side view).

プラズマ生成室lの、電磁波導入部に対し反対側の端部
には可動短絡板13を設置し、処理室2はプラズマ生成
室1に対して、第1図の場合と違って直角方向に設けら
れている。装置をこのように構成した理由は、生成した
プラズマから被処理物4に入射する荷電粒子による衝撃
を小さ(し、専らプラズマ中の中性活性種およびプラズ
マの発光を用いて被処理基板4の表面処理を行ないたい
ためである。
A movable shorting plate 13 is installed at the end of the plasma generation chamber 1 opposite to the electromagnetic wave introducing section, and the processing chamber 2 is installed at right angles to the plasma generation chamber 1, unlike the case shown in FIG. It is being The reason for configuring the apparatus in this way is to reduce the impact of charged particles incident on the substrate 4 from the generated plasma, and to reduce the impact on the substrate 4 by exclusively using the neutral active species in the plasma and the light emitted from the plasma. This is because we want to perform surface treatment.

この場合、プラズマの形状は、被処理基板40表面に平
行な方向には均一性よく広がり、垂直な方向には薄く集
中するような偏平な形状にすることが、プラズマの発生
効率、中性活性種の利用効率を向上させる点で望ましい
In this case, the shape of the plasma should be flat so that it spreads with good uniformity in the direction parallel to the surface of the substrate 40 to be processed and is thinly concentrated in the perpendicular direction. This is desirable in terms of improving the efficiency of seed use.

本発明の装置の場合は、結合穴10の幅りを可能な範囲
で小さ(設定することにより、上記の目的に適合した形
状のプラズマを簡単に得ることが出来る。また可動短絡
板13がその位置を移動出来るため、結合穴10の形状
の広範囲の変化に対して、常に最良のプラズマ生成条件
を作り出すことが出来る。
In the case of the device of the present invention, by setting the width of the coupling hole 10 to be as small as possible, it is possible to easily obtain a plasma having a shape suitable for the above purpose. Since the position can be moved, the best plasma generation conditions can always be created even when the shape of the coupling hole 10 changes over a wide range.

この第2図の装置で、点線で示したように、この上にさ
らにターゲット20を付加して、電源21 (交、直、
RF、  マイクロ波、いずれでも可)により電力を供
給すれば、これをスパッタ装置として用いることもでき
る。この場合は、基板4には殆んど荷電粒子が流入しな
くなるので、損傷や膜組成変化の極めて少ない薄膜を作
ることができる。
In the apparatus shown in FIG. 2, a target 20 is further added on top of the target as shown by the dotted line, and a power source 21 (alternating, direct,
If power is supplied by RF or microwave (either RF or microwave), this can also be used as a sputtering device. In this case, since almost no charged particles flow into the substrate 4, a thin film with very little damage or change in film composition can be produced.

また、目的とするプロセスの必要上、適当な荷電粒子衝
撃を得たい場合には、電源22(交、直、RF、  マ
イクロ波、いずれでも可)を用いて目的を達成すること
ができる。
Further, if it is desired to obtain an appropriate charged particle impact according to the needs of the target process, the purpose can be achieved using the power source 22 (alternating current, direct power, RF, or microwave).

また、ターゲットは可動短絡板13上に設置してもよい
。その場合は可動短絡板13の方に電源22を移し、そ
こからバイアス電圧が印加される構造にしてもよい。
Further, the target may be placed on the movable shorting plate 13. In that case, the power source 22 may be moved to the movable shorting plate 13 and a bias voltage may be applied from there.

第4図には更に、本発明の別の実施例の正面断面図を示
す。基本的な構成は第2図と同一であるが、真空窓11
の真空室側に電磁ホーン14が設置されている。電磁ホ
ーン14の設置により、導波管9よりプラズマ生成室1
内に至る間の特性インピーダンスの変化が連続的となり
、電磁波の放射効率を先の第1.2図の実施例の装置よ
りも一層向上させることが出来る。電磁ホーン14の入
口部の幅を、先の結合穴の幅の最適値りと同一にする時
は、結合穴10を設けずに直接電磁ホーンな導波管9に
接続しても同様の特性が得られる。
FIG. 4 further shows a front sectional view of another embodiment of the invention. The basic configuration is the same as in FIG. 2, but the vacuum window 11
An electromagnetic horn 14 is installed on the vacuum chamber side. By installing the electromagnetic horn 14, the plasma generation chamber 1 is connected to the waveguide 9.
The characteristic impedance changes continuously throughout the process, and the radiation efficiency of electromagnetic waves can be further improved compared to the device of the embodiment shown in FIG. 1.2. When the width of the inlet of the electromagnetic horn 14 is made the same as the optimum width of the coupling hole described above, the same characteristics can be obtained even if the coupling hole 10 is not provided and the electromagnetic horn is directly connected to the waveguide 9. is obtained.

なお、この時の電磁ホーン14の入口におけるE面の幅
は先の1と同じかそれより大きくする。電磁ホーン14
の奥行きの長さSは、2λ程度が理悲的であるが、より
短いものでも十分な効果が得られる。
Note that the width of the E plane at the entrance of the electromagnetic horn 14 at this time is set to be the same as or larger than the above 1. Electromagnetic horn 14
Ideally, the depth length S should be about 2λ, but sufficient effects can be obtained even if it is shorter.

電磁ホーン14は通常は4枚の平板で構成する闇、放物
面等の曲面で構成しても良い。
The electromagnetic horn 14 may be constructed of a curved surface such as a paraboloid or the like, which is usually composed of four flat plates.

この実施例の装置では、プラズマと電磁ホーンとが接触
する接触面23に、プラズマ中の荷電粒子の大部分が流
入し、窓11への流入が激減する。
In the device of this embodiment, most of the charged particles in the plasma flow into the contact surface 23 where the plasma and the electromagnetic horn come into contact, and the flow into the window 11 is drastically reduced.

そのため窓11の過熱や破損が殆んどな(、高密度なプ
ラズマで被処理物の表面を安定に処理することができる
Therefore, there is almost no overheating or damage to the window 11 (and the surface of the object to be processed can be stably processed with high-density plasma.

またホルダー3上にエツチングしたい物を置き、エツチ
ングに適したガスを導入すれば、秀れたりアクティブイ
オンエツチング装置あるいはプラズマエツチング装置と
して本装置を用いることができる。被処理物の温度を調
節したいときは、ホルダー3内に設けられた装置で加熱
あるいは冷却(ヒーターの代わりに冷媒を通す)する。
Furthermore, by placing an object to be etched on the holder 3 and introducing a gas suitable for etching, this apparatus can be used as an active ion etching apparatus or a plasma etching apparatus. When it is desired to adjust the temperature of the object to be processed, it is heated or cooled by a device provided in the holder 3 (by passing a coolant instead of a heater).

荷電粒子が窓に向かって流入するのを少な(したい場合
は、その部分に、第4図に図示するように、局部磁場2
5を設けることにより更に効果を挙げることができる。
To reduce the flow of charged particles toward the window (if desired, apply a local magnetic field 2 to that area, as illustrated in Figure 4).
Further effects can be obtained by providing 5.

第6図には更に別の実施例の結合部の正面断面図を示す
。電磁波の導入部のみを示したが、プラズマ生成室1や
処理室2の構成は前記の実施例と同一である。この実施
例では空洞共振器15が新たに設けられ、導波管9との
間に結合穴16が開けられている。
FIG. 6 shows a front cross-sectional view of a coupling portion of still another embodiment. Although only the electromagnetic wave introducing section is shown, the configurations of the plasma generation chamber 1 and the processing chamber 2 are the same as those of the previous embodiment. In this embodiment, a cavity resonator 15 is newly provided, and a coupling hole 16 is opened between it and the waveguide 9.

空洞共振器15の深さXを (n / 2 )λg(た
だし、λgは電磁波の管内波長、nは整数)にして、共
振モードをTE、llnとする。電磁波が結合穴10か
らプラズマ生成室1に放射される点は先の各実施例と同
じであるが、結合穴10の前に空洞共振器15を設置す
ることによって放射効率が大いに改善される。なお、空
洞共振器15の結合穴16を最適結合状態に設計すれば
、チューナ9′は不要となる。また、空洞共振器15の
共振モードは別のモードに設計してもよい。
The depth X of the cavity resonator 15 is set to (n/2) λg (where λg is the internal wavelength of the electromagnetic wave, and n is an integer), and the resonance mode is set to TE and lln. The point that electromagnetic waves are radiated from the coupling hole 10 to the plasma generation chamber 1 is the same as in the previous embodiments, but by installing the cavity resonator 15 in front of the coupling hole 10, the radiation efficiency is greatly improved. Incidentally, if the coupling hole 16 of the cavity resonator 15 is designed in an optimal coupling state, the tuner 9' becomes unnecessary. Further, the resonance mode of the cavity resonator 15 may be designed to be another mode.

第7図には更に別の実施例の電磁波の導入部の正面図を
示す。90は方形導波管9の先端に設けられたテーパー
状導波管である。テーパー状導波管90が窓11に接す
る部分でのE面の幅を、第4図で示した実施例の電磁ホ
ーン14のE面の幅と同一にしである。電磁ホーン14
の入口部とテーパー導波管90の出口部の形状が同じで
あるために、結合穴は必要でな(なり、電磁波をさらに
効率よくプラズマ生成室1内に放射することが出来る。
FIG. 7 shows a front view of an electromagnetic wave introduction section of still another embodiment. 90 is a tapered waveguide provided at the tip of the rectangular waveguide 9. The width of the E plane at the portion where the tapered waveguide 90 contacts the window 11 is made to be the same as the width of the E plane of the electromagnetic horn 14 of the embodiment shown in FIG. Electromagnetic horn 14
Since the shape of the inlet of the tapered waveguide 90 and the outlet of the tapered waveguide 90 are the same, a coupling hole is not necessary (and the electromagnetic waves can be radiated into the plasma generation chamber 1 more efficiently).

(発明の効果) 本発明の装置によれば、プラズマ生成室における電磁波
電力の利用効率を向上させ、またプロセスに応じてプラ
ズマの形状を変化させることが出来る。従って、電力利
用効率のよい、言い替えれば、同一電力でより高速の処
理の可能な、表面処理装置を提供することが出来る。
(Effects of the Invention) According to the apparatus of the present invention, it is possible to improve the utilization efficiency of electromagnetic wave power in the plasma generation chamber and to change the shape of plasma according to the process. Therefore, it is possible to provide a surface treatment apparatus that has good power utilization efficiency, in other words, can perform faster processing with the same amount of power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2.4図の各aとbの図は、それぞれ本発明の実
施例の表面処理装置の概略の正面断面図とその央部の断
面図。第3図asbs・cX dは結合穴の形状の例。 第5図aは、本発明の装置により生成されるプラズマの
形状を示す。第5図すは従来の装置の同様の図。 第6.7図は、本発明の別の実施例の結合部の正面断面
図。 第8図は、従来のECR型表面処理装はの概略の正面断
面図である。 1・・・・・・プラズマ生成室、  2・・・・・・処
理室、3・・・・・・ホルダー   4・・・・・・被
処理物、5・・・・・・排気系、6.7・・・・・・ガ
ス導入系、8.8′・・・・・・空芯ソレノイドコイル
、9・・・・・・方形導波管、  9′・・・・・・チ
ューナー10・・・・・・結合穴、  11・・・・・
・真空窓。
Figures a and b in Fig. 1.2.4 are a schematic front sectional view and a sectional view of the central part of the surface treatment apparatus according to the embodiment of the present invention, respectively. Figure 3 ASBS/CX d is an example of the shape of the coupling hole. FIG. 5a shows the shape of the plasma generated by the device of the invention. FIG. 5 is a similar diagram of a conventional device. Figure 6.7 is a front cross-sectional view of a joint according to another embodiment of the invention. FIG. 8 is a schematic front sectional view of a conventional ECR type surface treatment apparatus. 1... Plasma generation chamber, 2... Processing chamber, 3... Holder 4... Processed object, 5... Exhaust system, 6.7... Gas introduction system, 8.8'... Air core solenoid coil, 9... Rectangular waveguide, 9'... Tuner 10・・・・・・Connection hole, 11・・・・・・
・Vacuum window.

Claims (8)

【特許請求の範囲】[Claims] (1)処理ガスを導入し減圧状態に保持することの出来
るプラズマ生成室と、該プラズマ生成室内へ電磁波を導
入して該処理ガスをプラズマ化させる手段と、該電磁波
の進行方向に平行の成分を持つ磁界を該プラズマ生成室
内に発生させる手段と、該プラズマ生成室内もしくは該
室に接続して設置された処理室内に被処理物を載置する
手段と、を備えた表面処理装置において、該電磁波が直
線偏波の状態で該プラズマ生成室に導入されていること
を特徴とする表面処理装置。
(1) A plasma generation chamber capable of introducing a processing gas and maintaining it in a reduced pressure state, a means for introducing electromagnetic waves into the plasma generation chamber to turn the processing gas into plasma, and a component parallel to the direction of propagation of the electromagnetic waves. A surface treatment apparatus comprising: means for generating a magnetic field within the plasma generation chamber; and means for placing a workpiece within the plasma generation chamber or a processing chamber installed in connection with the chamber; A surface treatment apparatus characterized in that electromagnetic waves are introduced into the plasma generation chamber in a linearly polarized state.
(2)該プラズマ生成室と、それに電磁波を導入すべく
設けられた立体回路素子との間に、該電磁波の進行方向
と直角に導電性の板を設置し、且つ該板には該板の手前
における振動電場に直角な方向に長辺をもつスリット状
の結合穴を貫通し、該結合穴から該電磁波を該プラズマ
室内に導入したことを特徴とする特許請求の範囲第1項
記載の表面処理装置。
(2) A conductive plate is installed between the plasma generation chamber and the three-dimensional circuit element installed to introduce electromagnetic waves therein, at right angles to the traveling direction of the electromagnetic waves; The surface according to claim 1, characterized in that the electromagnetic wave is introduced into the plasma chamber through a slit-shaped coupling hole having a long side in a direction perpendicular to the oscillating electric field in the front, and through the coupling hole. Processing equipment.
(3)該結合穴の長辺の長さが、ほぼλ/2(λは電磁
波の自由空間波長)であることを特徴とする特許請求の
範囲第2項記載の表面処理装置。
(3) The surface treatment apparatus according to claim 2, wherein the length of the long side of the coupling hole is approximately λ/2 (λ is the free space wavelength of electromagnetic waves).
(4)該結合穴の形状が、長方形であることを特徴とす
る特許請求の範囲第2または3項記載の表面処理装置。
(4) The surface treatment device according to claim 2 or 3, wherein the coupling hole has a rectangular shape.
(5)該結合穴の形状が、長円形であることを特徴とす
る特許請求の範囲第2または3項記載の表面処理装置。
(5) The surface treatment device according to claim 2 or 3, wherein the coupling hole has an oval shape.
(6)該結合穴の形状が、楕円形であることを特徴とす
る特許請求の範囲第2または3項記載の表面処理装置。
(6) The surface treatment device according to claim 2 or 3, wherein the coupling hole has an elliptical shape.
(7)該結合穴の形状が、繭形であることを特徴とする
特許請求の範囲第2または3項記載の表面処理装置。
(7) The surface treatment device according to claim 2 or 3, wherein the shape of the coupling hole is a cocoon shape.
(8)該結合穴と該プラズマ生成室の間に電磁ホーンを
設置したことを特徴とする特許請求の範囲第1、2、3
、4、5、6、7または8項記載の表面処理装置。
(8) Claims 1, 2, and 3, characterized in that an electromagnetic horn is installed between the coupling hole and the plasma generation chamber.
, 4, 5, 6, 7 or 8.
JP23348789A 1989-09-08 1989-09-08 Surface treating device Pending JPH04120276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23348789A JPH04120276A (en) 1989-09-08 1989-09-08 Surface treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23348789A JPH04120276A (en) 1989-09-08 1989-09-08 Surface treating device

Publications (1)

Publication Number Publication Date
JPH04120276A true JPH04120276A (en) 1992-04-21

Family

ID=16955779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23348789A Pending JPH04120276A (en) 1989-09-08 1989-09-08 Surface treating device

Country Status (1)

Country Link
JP (1) JPH04120276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288799A (en) * 1998-01-26 1999-10-19 Commiss Energ Atom Linear microwave plasma generating device using permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288799A (en) * 1998-01-26 1999-10-19 Commiss Energ Atom Linear microwave plasma generating device using permanent magnet

Similar Documents

Publication Publication Date Title
US6158383A (en) Plasma processing method and apparatus
US5389154A (en) Plasma processing apparatus
JP3217274B2 (en) Surface wave plasma processing equipment
JP4671313B2 (en) Electron cyclotron resonant plasma source with coaxial microwave applicator and plasma generation method
JP2004055614A (en) Plasma processing apparatus
JP2004055600A (en) Plasma processing apparatus
KR0174070B1 (en) Plasma treatment device and plasma treatment method
JP3677017B2 (en) Slot array antenna and plasma processing apparatus
JPH09106900A (en) Plasma processing method and plasma processing device
JPH0319332A (en) Microwave plasma treatment device
JPH09289099A (en) Plasma processing method and device
JPH01184923A (en) Plasma processor optimum for etching, ashing, film formation and the like
CN113874978A (en) Plasma processing apparatus
JP2760845B2 (en) Plasma processing apparatus and method
JP4057541B2 (en) Plasma generation system
JPH04120276A (en) Surface treating device
JPH01184922A (en) Plasma processor useful for etching, ashing, film formation and the like
JP3491190B2 (en) Plasma processing equipment
JPH09293599A (en) Plasma treating method and device
JP3757159B2 (en) Plasma processing equipment
JP2000306890A (en) Plasma treatment system
JP7302094B2 (en) Plasma processing equipment
JP2920852B2 (en) Microwave plasma device
JPH07122396A (en) Microwave introducing apparatus for plasma apparatus
JPH07263185A (en) Plasma treatment device and plasma treatment method