JPH04119838A - Polycarbonate resin laminate - Google Patents

Polycarbonate resin laminate

Info

Publication number
JPH04119838A
JPH04119838A JP24005090A JP24005090A JPH04119838A JP H04119838 A JPH04119838 A JP H04119838A JP 24005090 A JP24005090 A JP 24005090A JP 24005090 A JP24005090 A JP 24005090A JP H04119838 A JPH04119838 A JP H04119838A
Authority
JP
Japan
Prior art keywords
acrylic resin
laminated part
laminated
thickness
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24005090A
Other languages
Japanese (ja)
Inventor
Tadashi Kamei
亀井 忠
Hiroyuki Hirano
弘幸 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24005090A priority Critical patent/JPH04119838A/en
Publication of JPH04119838A publication Critical patent/JPH04119838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To enhance weatherability and recycling properties by performing the co-extrusion of an acrylic resin so that the thickness of a laminated part is 1-10mum and the ratio of the laminated part becomes 0.5% or less of the whole of a molded product and adding an ultraviolet absorber to the acrylic resin of the laminated part in specific concentration. CONSTITUTION:An acrylic resin is subjected to co-extrusion so as to be laminated to the surface of a polycarbonate resin so that the thickness of a laminated part becomes 1-10mum and the ratio of the laminated part becomes 0.5% or less of the whole of a molded product and the acrylic resin of the laminated part contains an ultraviolet absorber in concn. satisfying formula, that is, thickness (mum) of the laminated part x ultraviolet ray absorbent concn. (%)=0.5-50. As the acrylic resin used in the laminated part, a general grade acrylic resin and an impact-resistant acrylic resin are suitable. The ultraviolet absorber is selected from a benzotriazole type, a 2-hydroxybenzophnone type and phenyl salicylate type ultraviolet absorbers. By this method, weatherability can be improved and recycling properties at the time of manufacturing can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐候性及び生産時のリサイクル性に優れた透明
ポリカーボネート樹脂積層体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transparent polycarbonate resin laminate having excellent weather resistance and recyclability during production.

〔従来の技術〕[Conventional technology]

ポリカーボネート樹脂は耐衝撃性、耐熱性、難燃性、透
明性などの特性が優れていることからグレージング、温
室、アーケード等の建築用資材や腰板、防音壁等の道路
用資材、風防、看板、カーブミラー等の成形雑貨用資材
等に広く用いられて来ており、今後も用途の拡大が期待
されている。
Polycarbonate resin has excellent properties such as impact resistance, heat resistance, flame retardancy, and transparency, so it is used as construction materials for glazing, greenhouses, arcades, etc., road materials such as wainscoting, soundproof walls, windshields, signboards, etc. It has been widely used as a material for molded miscellaneous goods such as curved mirrors, and its applications are expected to expand in the future.

これらの用途の中で特に屋外で用いられるものについて
は耐候性に優れていることが必要であるが、一般にポリ
カーボネート樹脂の耐候性はアクリル樹脂等の同じ透明
性樹脂に比べて優れておらず長期間、屋外に暴露される
ことで黄変や失透が発生する。この為、ポリカーボネー
トの耐候性を改良する為の検討がいろいろなされて来て
いるが、その1つの方法として、ポリカーボネートにア
クリル樹脂を被覆する手法が用いられる(特公昭47−
19119号公報、特開昭55−59929号公報)。
Among these uses, especially those used outdoors, it is necessary to have excellent weather resistance, but in general, polycarbonate resin's weather resistance is not as good as that of the same transparent resin such as acrylic resin, and it has to be used for a long time. Yellowing and devitrification occur when exposed outdoors for a period of time. For this reason, various studies have been made to improve the weather resistance of polycarbonate, and one method is to coat polycarbonate with an acrylic resin (Japanese Patent Publication No. 47-1988).
19119, JP-A-55-59929).

しかしながら、これらの技術では確かに黄変、失透等の
耐候性は改良されるが反面、表面を硬いアクリル樹脂で
被覆することからポリカーボネートの持つ耐衝撃強度の
低下が見られ、まだ改良が不十分である。又これらでは
二つの異なる樹脂を用いることから、シート等の成形品
を生産する際、発生する耳部等のリサイクル品の再生が
できず、これをリサイクルした場合製品に濁りを生せし
めるとともに透明感が失なわれ、実用上問題となる。従
って生産時のロスが大きく自ずとコストアップにもつな
がっている。
However, although these technologies do improve weather resistance such as yellowing and devitrification, on the other hand, since the surface is coated with hard acrylic resin, the impact resistance strength of polycarbonate is reduced, and improvements are still needed. It is enough. In addition, since these products use two different resins, when producing molded products such as sheets, it is not possible to recycle recycled products such as edges that are generated, and when recycled, the product becomes cloudy and loses its transparency. is lost, which poses a practical problem. Therefore, there is a large loss during production, which naturally leads to an increase in costs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の問題はポリカーボネート樹脂が持つ本来の特長
である耐衝撃等の優れた特長を保持しながら該樹脂が有
していた上記の耐候性の問題を解決すると共に、生産時
のリサイクル性も可能にするところにある。
The problem of the present invention is to solve the above-mentioned weather resistance problem of polycarbonate resin while retaining its original characteristics such as impact resistance, and also to enable recyclability during production. There is a place to do it.

〔課題を解決する為の手段〕[Means to solve problems]

本発明者らは上記課題を解決する為に鋭意研究した結果
、紫外線吸収剤を含む極く薄いアクリル樹脂層を特定の
割合でポリカーボネート樹脂に積層することにより課題
を解決することに成功し本発明に至った。即ち本発明は
ポリカーボネート樹脂の表面に積層部の厚みが1〜10
μmで、積層品の割合が成形品全体の0.5%以下とな
るように、アクリル樹脂を共押出しし、且つ積層部の7
クリル樹脂には、積層部の厚み(μTrL)×紫外線吸
収剤II度(%)=0.5〜50を満足するI!度の紫
外線吸収剤を含むことを特徴とする、耐候性及びリサイ
クル性に優れた透明ポリカーボネート樹脂積層体を提供
するものである。
As a result of intensive research to solve the above problem, the present inventors succeeded in solving the problem by laminating an extremely thin acrylic resin layer containing an ultraviolet absorber on a polycarbonate resin at a specific ratio, and the present invention was developed. reached. That is, in the present invention, the thickness of the laminated portion on the surface of the polycarbonate resin is 1 to 10
The acrylic resin is coextruded so that the ratio of the laminated product is 0.5% or less of the entire molded product in μm, and
The krylic resin has I! which satisfies the following: thickness of laminated part (μTrL) x ultraviolet absorber II degree (%) = 0.5 to 50. The present invention provides a transparent polycarbonate resin laminate with excellent weather resistance and recyclability, which is characterized by containing a high degree of ultraviolet absorber.

アクリル樹脂は一般に耐候性に優れた樹脂として知られ
ており、樹脂の耐候性を改善する為に樹脂表面をアクリ
ル樹脂で被覆する技術は前述した通り公知である。これ
らの公知の技術では被覆する方法はフィルムのラミネー
ト、ラッカーのコーティング、共押出し等が用いられて
いるかラミネート及び共押出しでは通常50μm前後の
被覆厚みで行なわれておりこの場合積層された成形品の
耐衝撃強度は積層をしないものに比べて低下しデュポン
衝撃試験等での強度評価では割れたり、微少クレーズに
よる白化か認められたりして問題となる。一方、ラッカ
ーのコーティングでは10μm程度の薄い被膜を表面に
形成させることができるが溶剤を取扱う為にポリカーボ
ネートにクラックが入ったり、52備的にも犬がかりな
ものが必要となって実用上問題もある。
Acrylic resin is generally known as a resin with excellent weather resistance, and as described above, the technique of coating the resin surface with acrylic resin in order to improve the weather resistance of the resin is well known. In these known techniques, coating methods include film lamination, lacquer coating, coextrusion, etc. In lamination and coextrusion, the coating thickness is usually around 50 μm, and in this case, the coating thickness of the laminated molded product is The impact resistance strength is lower than that of non-laminated materials, and when strength is evaluated using the DuPont impact test, cracking or whitening due to minute crazes is observed, which poses problems. On the other hand, with lacquer coating, it is possible to form a thin film of about 10 μm on the surface, but there are practical problems such as cracks in the polycarbonate due to the handling of solvents, and the need for special preparations. be.

これに対して本発明者らはポリカーボネートとアクリル
樹脂の共押出し積層シートを研究する中で以下の重要な
点を見い出し本発明を完成した。
In contrast, the present inventors discovered the following important points while researching coextruded laminate sheets of polycarbonate and acrylic resin and completed the present invention.

即ち、第一にアクリル樹脂をポリカーボネート樹脂と共
押出しすることで1〜10μmという極く薄いアクリル
樹脂の被膜をポリカーボネート表面に均一に又確実に積
層させることができることを見つけた。第二(は耐候性
の改善は被覆したアクリル樹脂の厚みとそのアクリル樹
脂に含まれる紫外線吸収剤の濃度を適切に選択すれば可
能であることがわかった。すなわち上記のように1〜1
0μmという極く薄いアクリル樹脂の被覆であってもそ
こに含まれる紫外線吸収剤の濃度が濃ければ耐候性の向
上には効果的であるということである。又次いで第三に
はこのようにアクリル樹脂の薄い被膜がポリカーボネー
ト積層成形品の全体の0.5%以下であれば同積層成形
品をリサイクルで、再び押出機で混練りしても相溶性が
悪いとされるポリカーボネートとアクリル樹脂であって
も実質的に透明性の低下は小さく実用上殆ど無視できる
ものが得られることがわかった。このことはアクリル樹
脂とポリカーボネート樹脂の積層品を生産する際、不可
能とされていたサイクルの問題を解決し大幅な生産性の
向上とコストダウンを与える画期的な技術である。
That is, we have found that, first, by coextruding an acrylic resin with a polycarbonate resin, it is possible to uniformly and reliably laminate an extremely thin acrylic resin coating of 1 to 10 μm on the polycarbonate surface. Second, it was found that weather resistance could be improved by appropriately selecting the thickness of the coated acrylic resin and the concentration of the ultraviolet absorber contained in the acrylic resin.
Even if the acrylic resin coating is as thin as 0 μm, it is effective in improving weather resistance if the concentration of the ultraviolet absorber contained therein is high. Thirdly, if the thin film of acrylic resin is less than 0.5% of the total weight of the polycarbonate laminate molded product, the laminate molded product can be recycled and kneaded in an extruder again to ensure compatibility. It has been found that even with polycarbonate and acrylic resin, which are considered to be bad, the decrease in transparency is so small that it can be practically ignored. This is a revolutionary technology that solves the problem of cycles that were considered impossible when producing acrylic resin and polycarbonate resin laminates, significantly improving productivity and reducing costs.

以上このような三つの従来にない新しい技術の組み合わ
せで初めて前記したポリカーボネート樹脂の課題を解決
することに成功した。
By combining these three new and unprecedented technologies, we succeeded in solving the above-mentioned problems with polycarbonate resin for the first time.

次に本発明の構成要件について詳しく説明する。Next, the constituent elements of the present invention will be explained in detail.

本発明で用いるポリカーボネート樹脂はビスフェノール
Aで代表される二価のフェノール系化合物から誘導され
る重合体が用いられる。
The polycarbonate resin used in the present invention is a polymer derived from a divalent phenol compound represented by bisphenol A.

本発明で積層体の積層部に用いるアクリル樹脂は一般グ
レードアクリル樹脂及び耐衝撃性アクリル樹脂が適して
いる。ここで一般グレードアクリル樹脂とは、炭素数(
以下Cと略す)1〜4のアルキル基を有するアルキルメ
タクリレート単位を有するアクリル樹脂であり、押出し
、その地熱加工時の安定性の点からC1〜C4のアルキ
ル基を有するアルキルアクリレートを20重量%以内共
重合させたものが好ましい。
General grade acrylic resins and impact-resistant acrylic resins are suitable for the acrylic resin used in the laminated portion of the laminate in the present invention. Here, general grade acrylic resin refers to the number of carbon atoms (
(hereinafter abbreviated as C) is an acrylic resin having an alkyl methacrylate unit having 1 to 4 alkyl groups, and from the viewpoint of stability during extrusion and geothermal processing, the content of alkyl acrylate having C1 to C4 alkyl groups is within 20% by weight. A copolymerized one is preferred.

なお、上記のC−04のアルキル基を有するアルキルメ
タクリレートの例としてはメチルメタクリレート、エチ
ルメタクリレート、プロピルメタクリレート、ブチルメ
タクリレート等があり、これらの中では物性上、メチル
及びエチルメタクリレートが最も好ましい。
Examples of the alkyl methacrylate having the C-04 alkyl group include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, and among these, methyl and ethyl methacrylate are most preferred in terms of physical properties.

又、C1〜C4のアルキル基を有するアルキルアクリレ
ートとしてはメチルアクリレート、エチルアクリレート
、プロピルアクリレート、ブチルアクリレート等があげ
られる。
Further, examples of the alkyl acrylate having a C1 to C4 alkyl group include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and the like.

又、耐衝撃性アクリル樹脂とはメタクリル酸メチルを主
成分とする連続樹脂相中に常温でゴム状を示す弾性体を
粒子状で不連続的に5〜70重量%分散させたもの等で
ある。
In addition, impact-resistant acrylic resin is one in which 5 to 70% by weight of an elastic material that is rubber-like at room temperature is dispersed discontinuously in the form of particles in a continuous resin phase mainly composed of methyl methacrylate. .

ここで、常温でゴム状を示す弾性体とは、例えばアクリ
ル酸エステル系重合体及びエチレン−酢酸ビニル共重合
体等のゴム状弾性体等をいう。又、アクリル酸エステル
系重合体の具体例としてはブチルアクリレート、2−エ
チルへキシルアクリレート等を主成分とするものがあり
、その代表例としてはブチルアクリレート等のアリキル
アクリレートとスチレンのグラフト化ゴム弾性成分とメ
チルメタクリレート及び又はメチルメタクリレートとア
ルキルアクリレートの共重合体からなる硬質樹脂層とが
コアーシェル構造で多層を形成している粒子状の弾性体
がある。
Here, the elastic body exhibiting a rubber-like state at room temperature refers to, for example, a rubber-like elastic body such as an acrylic acid ester polymer and an ethylene-vinyl acetate copolymer. Further, specific examples of acrylic ester polymers include those containing butyl acrylate, 2-ethylhexyl acrylate, etc. as main components, and a typical example thereof is a grafted rubber of alkyl acrylate such as butyl acrylate and styrene. There is a particulate elastic body in which an elastic component and a hard resin layer made of methyl methacrylate or a copolymer of methyl methacrylate and alkyl acrylate form a multilayer core-shell structure.

又本発明で用いられる紫外線吸収剤はベンゾトリアゾー
ル系、2−ヒドロキシベンゾフェノン系、またはサリチ
ル酸フェニルエステル系紫外線吸収剤等から選ばれる。
Further, the ultraviolet absorber used in the present invention is selected from benzotriazole-based, 2-hydroxybenzophenone-based, or salicylic acid phenyl ester-based ultraviolet absorbers.

ベンゾトリアゾール系紫外線吸収剤としては2− (5
−メチル−2−ヒドロキシフェニル)ベンゾトリアゾー
ル、2− 〔2−ヒドロキシ−3,5−ビス(α、α−
ジメチルベンジル)フェニル〕 −2H−ベンゾトリア
ゾール、2− (3,5−ジ−t−ブチル−2−ヒドロ
キシフェニル)ベンゾトリアゾール、2−(3−t−ブ
チル−5−メチル−2−ヒドロキシフェニル)5−クロ
ロベンゾトリアゾール、2− (3,5−ジ−t−ブチ
ル−2−ヒドロキシフェニル)−5=クロロベンゾトリ
アゾール、2− (3,5−ジ−t−アミル−2−ヒド
ロキシフェニル)ベンゾトリアゾール、2−(2’  
−ヒドロキシ−5′ −t−オクチルフェニル)ベンゾ
トリアゾール等が例示でき、2−ヒドロキシベンゾフェ
ノン系紫外線吸収剤としては2−ヒドロキシ−4−メト
キシベンゾフェノン、2−ヒドロキシ−4−オクトキシ
ベンゾフェノン、2,4−ジヒドロキシベンゾフェノン
、2−ヒドロキシ−4−メトキシ−4′ −クロルベン
ゾフェノン、2,2−ジヒドロキシ−4−メトキシベン
ゾフェノン、2,2−ジヒドロキシ4.4′  −ジメ
トキシベンゾフェノン等が例示でき、又、サリチル酸フ
ェニルエステル紫外線吸収剤としてはパラ−t−ブチル
フェニルサリチル酸エステル、パラ−オクチルフェニル
サリチル酸エステル等が例示できる。
As a benzotriazole ultraviolet absorber, 2-(5
-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis(α,α-
dimethylbenzyl)phenyl] -2H-benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-(3-t-butyl-5-methyl-2-hydroxyphenyl) 5-chlorobenzotriazole, 2-(3,5-di-t-butyl-2-hydroxyphenyl)-5=chlorobenzotriazole, 2-(3,5-di-t-amyl-2-hydroxyphenyl)benzo Triazole, 2-(2'
-Hydroxy-5'-t-octylphenyl)benzotriazole etc., and examples of 2-hydroxybenzophenone ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,4 Examples include -dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, 2,2-dihydroxy-4-methoxybenzophenone, 2,2-dihydroxy-4,4'-dimethoxybenzophenone, and phenyl salicylate. Examples of ester ultraviolet absorbers include para-t-butylphenyl salicylic acid ester and para-octylphenyl salicylic acid ester.

これらの紫外線吸収剤は後で述べる積層体の積層部の厚
みに応じて決められた範囲の濃度で予めアクリル樹脂と
混合させておく必要がある。その濃度はポリカーボネー
トの耐候性を改善する為に下記に示す関係を満足する必
要がある。
It is necessary to mix these ultraviolet absorbers with the acrylic resin in advance at a concentration within a predetermined range depending on the thickness of the laminated portion of the laminated body, which will be described later. Its concentration needs to satisfy the relationship shown below in order to improve the weather resistance of polycarbonate.

積層部の厚み(μm) X 紫外線吸収剤濃度(%”) = 0.5〜50であり好
ましくは上記積が3〜30の範囲である。
Thickness of laminated portion (μm) x ultraviolet absorber concentration (%”) = 0.5 to 50, and preferably the product is in the range of 3 to 30.

上記の積層部の厚み(μm)と紫外線吸収剤濃度(%)
の積が0.5以下の場合は耐候性改善の効果が小さく又
該積が50以上の場合は積層体表面に若干の着色があら
れれたりして透明体としては好ましくない。
Thickness of the above laminated part (μm) and ultraviolet absorber concentration (%)
If the product is less than 0.5, the effect of improving weather resistance is small, and if the product is more than 50, the surface of the laminate may be slightly colored, making it undesirable as a transparent body.

次に本発明での共押出しによる積層体の形成であるが、
これは通常2台以上の押出機を使って行なわれる。ポリ
カーボネート樹脂層(コア層)は40mmφ、 60m
mφ、 90mmφ、  115+amφ等の押出機で
、一方積層部(カバー層)にあたる紫外線吸収剤を含ん
だアクリル樹脂は前記の押出機よりも小さい20mmφ
、 30mmφ、40關φ等の押出機で行なわれる。
Next, regarding the formation of a laminate by coextrusion in the present invention,
This is usually done using two or more extruders. Polycarbonate resin layer (core layer) is 40mmφ, 60m
mφ, 90mmφ, 115+amφ, etc., while the acrylic resin containing ultraviolet absorber, which is the laminated part (cover layer), is 20mmφ, which is smaller than the extruder described above.
, 30mmφ, 40mmφ, etc. extruder.

積層用ダイはフィードブロック又はマルチマニホールド
方式が用いられ積層体全体の厚みは押出量、ダイリップ
開度、ポリッシングロールのクリアランス等で調整され
、又、積層部の厚みはコア層、カバー層の2台の押出機
の押出量を調整することで任意に得ることができる。又
、本発明のように積層部の厚みが極く薄い場合は、カバ
ー層用の押出機出口で樹脂を一部系外に放出させる等の
手段も実施する上では都合が良い。又、押出量の安定化
をはかる為にコア層、カバー層共にギヤポンプでダイに
溶融樹脂を送り込むことが好ましい。
The lamination die uses a feed block or multi-manifold system, and the overall thickness of the laminated body is adjusted by the extrusion amount, die lip opening, polishing roll clearance, etc., and the thickness of the laminated part is controlled by two machines, one for the core layer and one for the cover layer. It can be obtained arbitrarily by adjusting the extrusion rate of the extruder. Furthermore, when the thickness of the laminated portion is extremely thin as in the present invention, it is convenient to take measures such as releasing a portion of the resin out of the system at the exit of the extruder for the cover layer. Further, in order to stabilize the extrusion amount, it is preferable to feed the molten resin into the die for both the core layer and the cover layer using a gear pump.

本発明では前にも述べたが積層部の厚みが重要であり積
層部の厚みが1〜10μm(好ましくは2〜5μm)で
、且つ、積層部の割合が成形品全体の0.5%以下であ
ることが必要である。本発明の共押出しでの成形品はシ
ート状、フィルム状のもので片面又は両面に積層部が施
こされたものを云う。積層部の厚みが1μm未満ではア
クリル樹脂をポリカーボネート樹脂に安定して積層させ
ることが難しく、その為耐候性改善の効果を確実なもの
とすることができず、又厚みが10μmを越えると積層
体の耐衝撃性の低下、特に積層部の反対側からの衝撃に
対して割れ、ミクロクラック等の発生があられれやす(
なり好ましくない。又積層部の成形品全体に占める割合
が0.5%を越えるとリサイクルした場合、アクリル樹
脂とポリカーボネート樹脂の相溶性の悪さから混練りに
より透明感に低下が見られ問題となる。分散、相溶性が
それ程良くないアクリル樹脂とポリカーボネート樹脂の
混合においてアクリル樹脂の割合が少なければ少ない程
混練り後の透明性は良好となり、実用上問題とならない
割合は0.5%以下であることがわかった。
As mentioned before, the thickness of the laminated part is important in the present invention, and the thickness of the laminated part is 1 to 10 μm (preferably 2 to 5 μm), and the proportion of the laminated part is 0.5% or less of the entire molded product. It is necessary that The molded product produced by coextrusion according to the present invention is a sheet-like or film-like product having a laminated portion on one or both sides. If the thickness of the laminated part is less than 1 μm, it is difficult to stably laminate the acrylic resin to the polycarbonate resin, and therefore the effect of improving weather resistance cannot be ensured, and if the thickness exceeds 10 μm, the laminate The impact resistance of the laminate decreases, and cracks and micro-cracks are more likely to occur, especially when exposed to impact from the opposite side of the laminated part (
I don't like it. If the proportion of the laminated part in the entire molded product exceeds 0.5%, a problem arises when the molded product is recycled, as the transparency deteriorates during kneading due to poor compatibility between the acrylic resin and the polycarbonate resin. When mixing acrylic resin and polycarbonate resin, whose dispersion and compatibility are not very good, the lower the proportion of acrylic resin, the better the transparency after kneading, and the proportion that does not pose a problem in practice should be 0.5% or less. I understand.

又、本発明ではリサイクルが可能な透明ポリカーボネー
ト積層体についてであり、積層体の全光線透過率が30
%以上でくもり度(ヘーズ値)が10%以下のものを云
う。全光線透過率が30%未満では光線の透過が著しく
小さく、又ヘーズ値が10%を越えると白濁感が強く問
題である。
Further, the present invention relates to a recyclable transparent polycarbonate laminate, and the total light transmittance of the laminate is 30.
% or more and the degree of haze (haze value) is 10% or less. When the total light transmittance is less than 30%, the transmission of light is extremely small, and when the haze value exceeds 10%, a cloudy feeling becomes strong, which is a problem.

本発明の積層シートはコア層、カバー層に有機系、無機
系の染料、顔料を配合し透明、半透明にすることができ
る。又、コア層、カバー層には押出機内での熱安゛定性
の為に各種の酸化防止剤を添加することは好ましい。更
にコア層であるポリカーボネート層に前記の紫外線吸収
剤を加えておくこともできる。又、積層部のアクリル樹
脂には市販の帯電防止剤を加えて最終製品に帯電防止機
能を付与させることも可能である。
The laminated sheet of the present invention can be made transparent or translucent by incorporating organic or inorganic dyes or pigments into the core layer and cover layer. Further, it is preferable to add various antioxidants to the core layer and cover layer for thermal stability within the extruder. Furthermore, the above-mentioned ultraviolet absorber can also be added to the polycarbonate layer which is the core layer. Furthermore, it is also possible to add a commercially available antistatic agent to the acrylic resin in the laminated portion to impart an antistatic function to the final product.

〔実 施 例〕〔Example〕

以下実施例、比較例で本発明を具体的に説明する。なお
、各実施例、比較例で用いた評価及び試験方法は次の通
りである。
The present invention will be specifically explained below using Examples and Comparative Examples. The evaluation and test methods used in each example and comparative example are as follows.

(1)積層部の膜厚評価 ポリカーボネートの表面に積層されたアクリル樹脂層の
厚みはたとえば光干渉計を利用したTOPWAVE L
ayer Gauge  (兼松産業機械)等で測定で
きる。
(1) Film thickness evaluation of the laminated part The thickness of the acrylic resin layer laminated on the surface of the polycarbonate can be measured using, for example, TOPWAVE L using an optical interferometer.
It can be measured with ayer Gauge (Kanematsu Sangyo Kikai), etc.

(2)光学的特性の評価 JIS K7105に基づいて試料の全光線透過率及び
ヘーズを、又JIS K7103に基づいてサンプルの
黄色度を測定した。
(2) Evaluation of optical properties The total light transmittance and haze of the sample were measured based on JIS K7105, and the yellowness of the sample was measured based on JIS K7103.

(3)耐衝撃性の評価 落球衝撃試験を採用し、装置は銖東洋精機製作所製のデ
ュポン式衝撃試験機を用い、重さ5 kgの荷重を先端
曲面Rが1/4インチのミサイルに高さ1mから積層部
を下面にした試料に向けて落下させ、試料の割れ、微少
クラックによるくもりを目視で観察評価した。
(3) Evaluation of impact resistance A falling ball impact test was adopted, and a DuPont impact tester manufactured by Toyo Seiki Seisakusho was used to apply a load of 5 kg to a missile with a tip curved radius of 1/4 inch. The sample was dropped from a height of 1 m toward the sample with the laminated portion facing downward, and the sample was visually observed and evaluated for cracks and cloudiness due to microcracks.

(4)耐候性の評価 スガ試験機銖のサンシャインウェザオメータ(以下SW
OMと略す)で63℃雨あり100OHR照射後のサン
プルの黄変度をJIS K7103の方法で測定した。
(4) Evaluation of weather resistance using Suga Test Instruments Sunshine Weatherometer (SW
The degree of yellowing of the sample after irradiation at 63° C. with rain and 100 OHR was measured using the method of JIS K7103.

実施例1 比較例1〜2 積層部用アクリル樹脂の調製 アクリル樹脂として旭化成工業抹製デルペット■LP−
1(メチルメタクリレートとメチルアクリレートの共重
合体)、紫外線吸収剤として日本チバガイギー観製チ、
ビニa32g  (2−(2・ヒドロキシ−5’−t−
オクチルフェニル)ベンゾトリアゾール〕を3%量、更
に押出機内での熱分解を防ぐ為に日本チバガイギー棟製
イルガノックス■1076を0.2%量それぞれ秤量し
ブラベンダーで約2時間機械的に混合した。これを直径
40mm、 L / D −28の押出機を通してペレ
タイズした。(積層部用樹脂) コア層のポリカーボネート樹脂はバイエル社(西独)マ
クロロ類3103を用い直径90mm、 L/D=32
の押出機で、一方積層部としては上記で調製した紫外線
吸収剤入りのアクリル樹脂を用い直径30mm、 L 
/ D = 24の押出機を用いて共押出しを行なった
。ダイはマルチマニホールド式、リップ開度は3mmで
、積層体全体の厚みはダイ出口のポリッシングロールの
クリアランスで3.0mmの目標に調整し、積層部の厚
みは押出機の吐出量で調整を行なった。こうしてシート
幅80mmの2層シートを作製し得られた積層体は全体
の厚みが3.0mm。
Example 1 Comparative Examples 1 to 2 Preparation of acrylic resin for laminated parts As acrylic resin, Asahi Kasei Kogyo's Delpet LP-
1 (copolymer of methyl methacrylate and methyl acrylate), Nippon Ciba Geigy Kansei Co., Ltd. as an ultraviolet absorber,
Vinyl a 32g (2-(2.hydroxy-5'-t-
Octylphenyl) benzotriazole] was weighed out in an amount of 3%, and in order to prevent thermal decomposition in the extruder, Irganox ■ 1076 manufactured by Ciba Geigy, Japan, was weighed out in an amount of 0.2% and mixed mechanically in a Brabender for about 2 hours. . This was pelletized through a 40 mm diameter, L/D-28 extruder. (Resin for laminated parts) The polycarbonate resin of the core layer is Macroro 3103 manufactured by Bayer (West Germany), diameter 90 mm, L/D = 32.
An extruder with a diameter of 30 mm and an L
/D=24 extruder was used for coextrusion. The die is a multi-manifold type, the lip opening is 3 mm, the thickness of the entire laminate is adjusted to a target of 3.0 mm by the clearance of the polishing roll at the exit of the die, and the thickness of the laminate part is adjusted by the discharge rate of the extruder. Ta. In this way, a two-layer sheet with a sheet width of 80 mm was produced, and the resulting laminate had a total thickness of 3.0 mm.

積層部の厚みが5μmであった。この積層シートの光学
的特性、耐衝撃性、耐候性の評価結果を表−1に示す。
The thickness of the laminated portion was 5 μm. Table 1 shows the evaluation results of the optical properties, impact resistance, and weather resistance of this laminated sheet.

又、得られた積層シートの一部を粉砕し前記の共押出し
でコア層のポリカーボネート樹脂に30%の割合で混合
リサイクルし前記と同様にして積層シートを作製しその
光学的特性を測定し結果を表−1に示す。
In addition, a part of the obtained laminated sheet was pulverized and mixed and recycled at a ratio of 30% with the polycarbonate resin of the core layer by the above-mentioned coextrusion, and a laminated sheet was produced in the same manner as above, and its optical properties were measured. are shown in Table-1.

比較の為に実施例1でカバー層の押出機の押出量を上げ
て積層部の厚みを増し積層シート全体の厚みが3.0m
m、積層部の厚みが20μmである積層体を得た。この
積層シート及び実施例1と同様に30%リサイクルした
ものの積層シートの評価結果を表−1に示す。又、カバ
ー層の押出機を止めてポリカーボネート単体のシートも
作製し比較の為同時に評価した。
For comparison, in Example 1, the extrusion rate of the cover layer was increased to increase the thickness of the laminated part, and the total thickness of the laminated sheet was 3.0 m.
A laminate was obtained in which the thickness of the laminated portion was 20 μm. Table 1 shows the evaluation results of this laminated sheet and a laminated sheet that was 30% recycled in the same manner as in Example 1. In addition, the extruder for the cover layer was stopped, and a sheet made of polycarbonate alone was also produced and evaluated at the same time for comparison.

(以下余白) 実施例2〜4 比較例3〜4 カバー層の押LIBitを変えて積層部の厚みをいろい
ろ変えたサンプル(積層シート全体の厚み3.0+nm
)を作製し、又該サンプルを実施例1と同様にして30
%リサイクルしたサンプルをも作製しそれぞれ評価を行
ないその結果を表−2に示す。
(Leaves below) Examples 2 to 4 Comparative Examples 3 to 4 Samples in which the thickness of the laminated part was varied by changing the press LIBit of the cover layer (thickness of the entire laminated sheet was 3.0 + nm)
) was prepared, and the sample was prepared in the same manner as in Example 1 for 30 minutes.
% recycled samples were also prepared and evaluated, and the results are shown in Table 2.

実施例5〜6 比較例5〜6 実施例1においてカバー層に用いるアクリル樹脂中の紫
外線吸収剤の濃度を0.4%とした以外は全て実施例1
と同様にして各種の積層部厚みを有する積層シートを作
製し評価した。結果を表−3に示す。
Examples 5-6 Comparative Examples 5-6 All the same as Example 1 except that the concentration of the ultraviolet absorber in the acrylic resin used for the cover layer was 0.4% in Example 1.
Laminated sheets having various laminated portion thicknesses were produced and evaluated in the same manner as above. The results are shown in Table-3.

(以下余白) 〔発明の効果〕 本発明の透明ポリカーボネート樹脂積層体はポリカーボ
ネート樹脂が本来持っている耐衝撃性等の特長をそのま
ま保持しつつ、該樹脂の問題点であった耐候性の不充分
さを改善するとともに生産時のリサイクル性も可能にし
たという効果を有する。
(The following is a blank space) [Effects of the Invention] The transparent polycarbonate resin laminate of the present invention maintains the inherent characteristics of polycarbonate resin, such as impact resistance, while solving the problem of insufficient weather resistance of the resin. This has the effect of improving the quality and also making it possible to recycle during production.

Claims (1)

【特許請求の範囲】[Claims] 1、ポリカーボネート樹脂の表面に積層部の厚みが1〜
10μmで、積層部の割合が成形品全体の0.5%以下
となるようにアクリル樹脂を共押出しし、且つ積層部の
アクリル樹脂には、積層部の厚み(μm)×紫外線吸収
剤濃度(%)=0.5〜50を満足する濃度の紫外線吸
収剤を含むことを特徴とする、耐候性及びリサイクル性
に優れた透明ポリカーボネート樹脂積層体。
1. The thickness of the laminated part on the surface of polycarbonate resin is 1~
The acrylic resin is coextruded so that the ratio of the laminated part is 0.5% or less of the entire molded product at 10 μm, and the acrylic resin in the laminated part has a ratio of thickness of the laminated part (μm) x ultraviolet absorber concentration ( %) = 0.5 to 50. A transparent polycarbonate resin laminate having excellent weather resistance and recyclability, characterized by containing an ultraviolet absorber at a concentration satisfying %) = 0.5 to 50.
JP24005090A 1990-09-12 1990-09-12 Polycarbonate resin laminate Pending JPH04119838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24005090A JPH04119838A (en) 1990-09-12 1990-09-12 Polycarbonate resin laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24005090A JPH04119838A (en) 1990-09-12 1990-09-12 Polycarbonate resin laminate

Publications (1)

Publication Number Publication Date
JPH04119838A true JPH04119838A (en) 1992-04-21

Family

ID=17053734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24005090A Pending JPH04119838A (en) 1990-09-12 1990-09-12 Polycarbonate resin laminate

Country Status (1)

Country Link
JP (1) JPH04119838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187906A (en) * 1995-11-06 1997-07-22 Asahi Chem Ind Co Ltd Laminate
JP2012526670A (en) * 2009-05-12 2012-11-01 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Coextruded film with low temperature impact resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187906A (en) * 1995-11-06 1997-07-22 Asahi Chem Ind Co Ltd Laminate
JP3904262B2 (en) * 1995-11-06 2007-04-11 旭化成ケミカルズ株式会社 Laminate
JP2012526670A (en) * 2009-05-12 2012-11-01 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Coextruded film with low temperature impact resistance

Similar Documents

Publication Publication Date Title
JP4896290B2 (en) Multilayer film for impact resistance protection
EP1910464B1 (en) Multi-layer composition
EP2572879B1 (en) Synthetic resin laminate
JP6594404B2 (en) RESIN COMPOSITION, FILM AND METHOD FOR PRODUCING THEM, MOLDED ARTICLE, AND ARTICLE
US20130059139A1 (en) Transparent, weather-resistant barrier film having an improved barrier effect and scratch resistance properties
JPWO2016157908A1 (en) RESIN COMPOSITION AND PROCESS FOR PRODUCING THE SAME, MOLDED BODY, FILM AND ARTICLE
WO2015076398A1 (en) Acrylic resin film
JP2005047179A (en) Heat ray shielding resin sheet
KR101869574B1 (en) Photoluminescent resin composition and decorative sheet
WO2015041311A1 (en) Resin composition and molded article thereof
KR100428639B1 (en) Multi-layered transparent sheet for exterior
JPH04270652A (en) Highly weather-proof polycarbonate resin laminated sheet
JPH04119838A (en) Polycarbonate resin laminate
JP4449688B2 (en) Acrylic laminated film
JP2745318B2 (en) Impact-resistant acrylic resin laminated sheet with excellent weather resistance
JP2756832B2 (en) Acrylic resin laminated sheet for vending machine front panel
JPH0316730A (en) Fluorine resin colored film
JP3578192B2 (en) Heat ray shielding material
JP3944663B2 (en) Heat shield
JP2794435B2 (en) Impact-resistant acrylic resin laminated sheet
JP3059743B2 (en) Impact resistant acrylic resin laminated sheet with excellent optical properties and weather resistance
JP7241088B2 (en) Thermoplastic resin multilayer film, method for producing the same, and laminate
JP2984025B2 (en) Acrylic resin laminate with excellent weather resistance and impact resistance
JPH04361037A (en) Multilayer polycarbonate resin molded object
JPH085165B2 (en) Protective film and its coating