JPH0411965A - Controlling method for ultrasonic wave atomizer - Google Patents
Controlling method for ultrasonic wave atomizerInfo
- Publication number
- JPH0411965A JPH0411965A JP11155690A JP11155690A JPH0411965A JP H0411965 A JPH0411965 A JP H0411965A JP 11155690 A JP11155690 A JP 11155690A JP 11155690 A JP11155690 A JP 11155690A JP H0411965 A JPH0411965 A JP H0411965A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- ultrasonic
- ultrasonic wave
- amplitude
- atomization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 13
- 239000007788 liquid Substances 0.000 claims abstract description 50
- 238000000889 atomisation Methods 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims description 14
- 239000007921 spray Substances 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 4
- 230000010355 oscillation Effects 0.000 abstract description 3
- 239000000446 fuel Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
- B05B17/0623—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
Landscapes
- Fuel-Injection Apparatus (AREA)
- Air Humidification (AREA)
- Special Spraying Apparatus (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、一般に、供給される液体燃料の如き液体物質
(本明細書では、液体物質とは液体燃料の如き液体は勿
論のこと、懸濁溶液等の液状物をも含むものとして用い
る。)を超音波振動を利用して霧化するための超音波霧
化装置の制御方法に関し、特に、 (イ)自動車、船外
機、携帯用動力装置、民生用ヒートポンプ装置の駆動装
置等に用いられる内燃機関、 (ロ)ガスタービン用燃
料噴射ノズル、 (ハ)工業用、営業用及び家庭用のボ
イラ、加熱炉、暖房用バーナ、 (ニ)工業用液体噴霧
器、例えば食品、医薬品、農薬、肥料等の液状物の乾燥
を目的とする乾燥用噴霧器、調温、調湿用スプレー 焼
粉用噴霧器(セラミック造粒)、噴霧塗装装置、反応促
進器、及び(ホ)工業用以外の液体噴霧器、例えば、農
薬散布器、消毒液散布器等に好適に用いられる超音波霧
化装置の制御方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention generally relates to a liquid substance such as a liquid fuel that is supplied (in this specification, liquid substance refers to a liquid such as a liquid fuel, or Regarding the control method of an ultrasonic atomization device for atomizing liquids (including liquid substances such as turbid solutions) using ultrasonic vibration, in particular, (a) automobiles, outboard motors, portable (b) Fuel injection nozzles for gas turbines, (c) Boilers, heating furnaces, and heating burners for industrial, commercial, and domestic use; ) Industrial liquid sprayers, such as drying sprayers for drying liquid materials such as food, pharmaceuticals, agricultural chemicals, fertilizers, etc., temperature and humidity control sprays, baked powder sprayers (ceramic granulation), spray coating equipment, reaction The present invention relates to an accelerator, and (e) a method for controlling an ultrasonic atomizer suitable for use in non-industrial liquid atomizers, such as pesticide sprayers, disinfectant sprayers, etc.
[従来の技術]
超音波霧化装置は、例えば電気/音響変換素子や高周波
発振器のごとき超音波振動発生手段によって駆動され、
供給される液体物質を霧化する超音波振動子ホーンを具
備するものであるが、前記液体物質を霧化するに際して
、噴霧流量の大小、液滴の粒径の大小等の超音波振動子
ホーンの霧化特性の良、不良が、前記超音波霧化装置が
使用される機器、装置の性能に種々の影響を及ぼすもの
である。例えば、燃焼装置においては、前記超音波振動
子ホーンにおける霧化特性が悪いと、適確な空燃比制御
が行えなかったり、燃焼状態が悪化して排気ガス中に含
まれる炭化水素や一酸化炭素の量が増大したり、ススの
量も増大するという不具合を生じることになる。[Prior Art] An ultrasonic atomizer is driven by an ultrasonic vibration generating means such as an electric/acoustic transducer or a high frequency oscillator,
The device is equipped with an ultrasonic vibrator horn that atomizes the supplied liquid substance, and when atomizing the liquid substance, the ultrasonic vibrator horn adjusts the size of the spray flow rate, the size of the droplets, etc. The quality of the atomization characteristics of the ultrasonic atomization device has various effects on the performance of equipment and equipment in which the ultrasonic atomization device is used. For example, in a combustion device, if the atomization characteristics of the ultrasonic vibrator horn are poor, accurate air-fuel ratio control may not be possible, or the combustion state may deteriorate, causing hydrocarbons and carbon monoxide contained in the exhaust gas to be removed. This results in problems such as an increase in the amount of soot and an increase in the amount of soot.
この不具合を解消するために、特公昭52−8935号
公報および特公昭59−38107号公報に示されるよ
うに、超音波振動子ホーンの軸心に沿う断面形状が、先
端に向かって拡径形の形状とし、超音波振動子ホーンの
霧化特性を改善したものが知られている。さらに、本発
明者等は、特開昭64−851f35号公報に示される
ように、拡径形の振動子ホーンの大径部に中空部を形成
し、超音波振動発生手段を大型化しなくても高振幅で且
つ振幅を低下させずに駆動できると共に、霧化面積が制
約を受けることなく従って霧化された液滴の粒径を微細
化でき、最大霧化量を増大させるものを提案している。In order to solve this problem, as shown in Japanese Patent Publication No. 52-8935 and Japanese Patent Publication No. 59-38107, the cross-sectional shape of the ultrasonic transducer horn along the axis is expanded toward the tip. An ultrasonic transducer horn with improved atomization characteristics is known. Furthermore, as shown in Japanese Patent Application Laid-Open No. 64-851f35, the present inventors formed a hollow part in the large diameter part of the enlarged diameter vibrator horn, thereby eliminating the need to increase the size of the ultrasonic vibration generating means. We have proposed a method that can be driven with high amplitude without reducing the amplitude, and can also reduce the particle size of atomized droplets without restrictions on the atomization area, increasing the maximum amount of atomization. ing.
[発明が解決しようとする課題]
ところで、液体を超音波振動により霧化する場合、一般
に、液体の温度を高くすればするほど、また、振幅を小
さくすればするほど、霧化される液滴の粒径を微細化で
きることが知られている。[Problems to be Solved by the Invention] By the way, when a liquid is atomized by ultrasonic vibration, generally speaking, the higher the temperature of the liquid and the smaller the amplitude, the more droplets are atomized. It is known that the grain size can be made finer.
しかしながら、本発明者等が実験を行ったところ、第2
図のB線に示すように、燃料温度が高くなるに従い平均
粒径は小さくなるものの、燃料温度が所定値11以上に
なると、逆に平均粒径が増大する特性を有することが判
明した。However, when the inventors conducted experiments, the second
As shown by line B in the figure, it was found that as the fuel temperature increases, the average particle size decreases, but when the fuel temperature reaches a predetermined value of 11 or higher, the average particle size conversely increases.
また、第3図に示すように、超音波振動の振幅が小さい
場合の方が、振幅が大きい場合よりも霧化液滴の平均粒
径が微小になるが、その反面、噴霧処理量が小さくなる
という特性ををし、小さな振幅で処理量を増大させると
、図のA点で処理限界に達して霧化が不可能になるとい
うことが判明した。Furthermore, as shown in Figure 3, when the amplitude of ultrasonic vibration is small, the average particle size of the atomized droplets is smaller than when the amplitude is large, but on the other hand, the amount of atomized liquid is small. It has been found that if the processing amount is increased with a small amplitude, the processing limit will be reached at point A in the figure and atomization will become impossible.
本発明は、上記問題を解決するものであって、噴霧処理
量に見合った最適の振幅で超音波振動を付与させ、小噴
霧量から大噴霧量まで霧化特性を最良性能にすることが
できる超音波霧化装置の制御方法を提供することを目的
とする。The present invention solves the above-mentioned problems by applying ultrasonic vibrations at an optimal amplitude commensurate with the amount of spray to be processed, and making it possible to achieve the best performance in atomization characteristics from small to large spray volumes. The present invention aims to provide a method for controlling an ultrasonic atomization device.
本発明は、上記問題を解決するものであって、液体を加
熱することにより噴霧処理量を増大させると共に、噴霧
処理量に見合った最適の振幅で超音波振動を付与させ、
霧化特性を最良性能にすることができる超音波霧化装置
の制御方法を提供することを目的とする。The present invention solves the above problems by increasing the amount of spray treatment by heating the liquid, and applying ultrasonic vibration with an optimal amplitude commensurate with the amount of spray treatment.
It is an object of the present invention to provide a method of controlling an ultrasonic atomizer that can optimize atomization characteristics.
[課題を解決するための手段]
そのために本発明の超音波霧化装置の制御方法は、超音
波振動部材10と、該超音波振動部材10に超音波振動
を付与せしめる超音波発生手段13と、前記超音波振動
部材10の霧化部12に液体を供給する液体供給弁と、
該液体を加熱する液体加熱手段30と、液体の温度を検
出する温度検出手段31とを備え、前記液体の温度が所
定値以上の場合に前記超音波振動部材10の振幅を低下
させることを特徴とする。[Means for Solving the Problems] For this purpose, the method for controlling an ultrasonic atomization device of the present invention includes: an ultrasonic vibrating member 10; an ultrasonic generator 13 for applying ultrasonic vibration to the ultrasonic vibrating member 10; , a liquid supply valve that supplies liquid to the atomization section 12 of the ultrasonic vibration member 10;
It is characterized by comprising a liquid heating means 30 that heats the liquid and a temperature detection means 31 that detects the temperature of the liquid, and reduces the amplitude of the ultrasonic vibration member 10 when the temperature of the liquid is equal to or higher than a predetermined value. shall be.
なお、上記構成に付加した番号は図面と対比させるため
のものであり、これにより本発明の構成が何ら限定され
るものではない。Note that the numbers added to the above configurations are for comparison with the drawings, and the configurations of the present invention are not limited thereby.
[作用コ
本発明においては、第2図に示すように、燃料温度が高
くなるに従い平均粒径は小さくなるが、振幅がそのまま
で燃料温度が所定値11以上になると、B線に示す如く
逆に平均粒径が増大してしまうため、燃料温度が所定値
11以上になると振幅を小さくすることにより、C線に
示す如く平均粒径を小さくさせることができる。[Function] In the present invention, as shown in Fig. 2, the average particle size becomes smaller as the fuel temperature increases, but if the fuel temperature reaches a predetermined value of 11 or more while the amplitude remains unchanged, the average particle size becomes smaller as shown in line B. Since the average particle size increases when the fuel temperature reaches a predetermined value of 11 or higher, by reducing the amplitude, the average particle size can be reduced as shown by line C.
[実施例コ 以下、本発明の実施例を図面を参照しつつ説明する。[Example code] Embodiments of the present invention will be described below with reference to the drawings.
第4図は本発明に用いられる超音波霧化装置の1実施例
を示す断面図である。FIG. 4 is a sectional view showing one embodiment of the ultrasonic atomization device used in the present invention.
超音波霧化装置11は、超音波振動部材10、振動部材
嵌合孔21、液体供給弁嵌合孔22および液体供給路2
3が形成された支持部材24を有している。超音波振動
部材10の一端側には霧化部12が形成され、他端側に
は電気・音響変換素子13が設けられている。なお、霧
化部12の形状は、丸型形状、バット型形状等周知の形
状が採用される。The ultrasonic atomization device 11 includes an ultrasonic vibration member 10, a vibration member fitting hole 21, a liquid supply valve fitting hole 22, and a liquid supply path 2.
It has a support member 24 having a number 3 formed thereon. An atomizing section 12 is formed at one end of the ultrasonic vibration member 10, and an electric/acoustic conversion element 13 is provided at the other end. Note that the shape of the atomizing portion 12 may be a well-known shape such as a round shape or a bat shape.
振動部材嵌合孔21には、アウターシリンダ25が嵌合
され、さらにその内周にインナーシリンダ26が螺合さ
れ、これらアウターシリンダ25とインナーシリンダ2
6との間に環状液体通路27を形成している。超音波振
動部材10は、アウターシリンダ25の内周に0リング
28を介して固定部材29により固定されている。An outer cylinder 25 is fitted into the vibration member fitting hole 21, and an inner cylinder 26 is further screwed onto the inner periphery of the outer cylinder 25.
6, an annular liquid passage 27 is formed therebetween. The ultrasonic vibration member 10 is fixed to the inner circumference of the outer cylinder 25 by a fixing member 29 via an O-ring 28.
液体供給弁嵌合孔22は、液体供給路23を介して環状
液体通路27に連通され、環状液体通路27の先端から
超音波振動部材10の霧化部12に液体を供給するよう
になっている。液体供給路23内には、液体加熱用のグ
ロープラグ30および温度センサ31が配置されている
。The liquid supply valve fitting hole 22 communicates with the annular liquid passage 27 via the liquid supply path 23, and supplies liquid from the tip of the annular liquid passage 27 to the atomizing section 12 of the ultrasonic vibrating member 10. There is. A glow plug 30 for heating the liquid and a temperature sensor 31 are arranged within the liquid supply path 23 .
上記構成からなる超音波霧化装置11においては、液体
供給弁9から供給される液体は、グロープラグ30によ
り加熱され、超音波振動部材10の霧化部12において
微細液滴に霧化される。In the ultrasonic atomizer 11 having the above configuration, the liquid supplied from the liquid supply valve 9 is heated by the glow plug 30 and atomized into fine droplets in the atomization section 12 of the ultrasonic vibrating member 10. .
次に第1図ないし第3図により本発明の制御方法の1実
施例について説明する。Next, one embodiment of the control method of the present invention will be described with reference to FIGS. 1 to 3.
第1図において、10.31は前記超音波振動部材およ
び温度センサ、1は液体供給量を検出する流量センサ、
2は電子制御装置、3は振幅設定回路、4は最適振幅値
記憶手段、5は高周波発振回路である。前記振幅設定回
路3においては、温度センサ31および流量センサ1で
検出された信号にもとづいて最適振幅値記憶手段4に記
憶されている最適振幅値を読み込み、これを高周波発振
回路5に出力するものである。In FIG. 1, 10.31 is the ultrasonic vibration member and the temperature sensor, 1 is a flow rate sensor that detects the amount of liquid supplied;
2 is an electronic control device, 3 is an amplitude setting circuit, 4 is an optimum amplitude value storage means, and 5 is a high frequency oscillation circuit. The amplitude setting circuit 3 reads the optimum amplitude value stored in the optimum amplitude value storage means 4 based on the signals detected by the temperature sensor 31 and the flow rate sensor 1, and outputs it to the high frequency oscillation circuit 5. It is.
第2図は、第4図の超音波霧化装置に液体として灯油を
供給した場合の燃料温度と平均粒径の関係を示し、図示
B線は振幅が20μrrh C線は振幅が10μmの
場合を示す。Figure 2 shows the relationship between fuel temperature and average particle size when kerosene is supplied as a liquid to the ultrasonic atomizer shown in Figure 4. Line B shows the case where the amplitude is 20 μrrh, and line C shows the case where the amplitude is 10 μm. show.
図に示すように、燃料温度が高くなるに従い平均粒径は
小さくなるが、振幅がそのままで燃料温度が所定値T1
以上になると、B線に示す如く逆に平均粒径が増大して
しまうため、燃料温度が所定値T1以上になると振幅を
小さくすることにより、C線に示す如く平均粒径を小さ
くさせることができる。この所定の温度TIおよび振幅
値を前記最適振幅値記憶手段4に記憶し、温度センサ3
1により検出される燃料温度が所定値以上になると、振
幅を下げるように制御する。As shown in the figure, as the fuel temperature increases, the average particle size decreases, but the amplitude remains the same and the fuel temperature remains at the predetermined value T1.
If the temperature exceeds this value, the average particle size will increase as shown in line B. Therefore, when the fuel temperature exceeds the predetermined value T1, it is possible to reduce the average particle size as shown in line C by reducing the amplitude. can. This predetermined temperature TI and amplitude value are stored in the optimum amplitude value storage means 4, and the temperature sensor 3
When the fuel temperature detected by 1 becomes equal to or higher than a predetermined value, the amplitude is controlled to be lowered.
第3図は、最適振幅値WBと噴霧処理量Qの関係を示し
ている。第2図の方法で振幅を低下させた場合、処理量
を増大させると、図のA点で処理限界に達して霧化が不
可能になる。そこで、噴霧処理量QをQ11Q2、Q3
と増大させるときに、最適振幅値WBを18μmからそ
れぞれ20.22.24μmというように増大させるこ
とにより、噴霧処理量Qの変化に応じて最小粒径が得ら
れるような最適振幅値WBを設定するようにする。そし
てこの関係をテーブルまたはマツプとして前記最適振幅
値記憶手段4に記憶するものである。FIG. 3 shows the relationship between the optimum amplitude value WB and the spray processing amount Q. When the amplitude is lowered using the method shown in FIG. 2, if the throughput is increased, the processing limit is reached at point A in the diagram, and atomization becomes impossible. Therefore, the spray processing amount Q is Q11Q2, Q3
By increasing the optimum amplitude value WB from 18 μm to 20, 22, and 24 μm, respectively, the optimum amplitude value WB is set such that the minimum particle size can be obtained according to the change in the spray throughput Q. I'll do what I do. This relationship is then stored in the optimum amplitude value storage means 4 as a table or map.
なお、上記実施例においては、最適振幅値WBを噴霧処
理量Qの変化に応じて段階的に変化させているが、最適
振幅値WBを噴霧処理量Qの変化に応じて連続的に変化
させるようにしてもよい。In addition, in the above embodiment, the optimum amplitude value WB is changed stepwise according to the change in the spray throughput Q, but the optimum amplitude value WB is changed continuously according to the change in the spray throughput Q. You can do it like this.
[発明の効果コ
以上のように本発明によれば、液体を加熱することによ
り噴霧処理量を増大させると共に、噴霧処理量に見合っ
た最適の振幅で超音波振動を付与させ、霧化特性を最良
性能にすることができる。[Effects of the Invention] As described above, according to the present invention, the amount of atomization can be increased by heating the liquid, and the atomization characteristics can be improved by applying ultrasonic vibration with an optimum amplitude commensurate with the amount of atomization. can achieve the best performance.
また、処理量に応じた最適振幅値を設定させるため、超
音波振動部材のパワーロスの低減効果が期待できる。Furthermore, since the optimum amplitude value is set according to the processing amount, it is expected that the power loss of the ultrasonic vibrating member will be reduced.
第1図は本発明の超音波霧化装置の制御方法の1実施例
を示す構成図、第2図および第3図は制御方法を説明す
るための霧化特性を示す図、第4図は本発明に用いられ
る超音波霧化装置の1実施例を示す断面図である。
1・・・流量検出手段、3・・・振幅設定回路、4川最
適振幅値記憶手段、
・・・超音波霧化装置、
10・・・超音波振動部材、
12・・・霧化部、
13・・・超音波
発生手段、
30・・・液体加熱手段、
1・・・温度検出
手段。
出
願
人FIG. 1 is a block diagram showing one embodiment of the method of controlling an ultrasonic atomizer of the present invention, FIGS. 2 and 3 are diagrams showing atomization characteristics for explaining the control method, and FIG. 1 is a sectional view showing one embodiment of an ultrasonic atomization device used in the present invention. DESCRIPTION OF SYMBOLS 1... Flow rate detection means, 3... Amplitude setting circuit, 4 river optimum amplitude value storage means,... Ultrasonic atomization device, 10... Ultrasonic vibration member, 12... Atomization part, 13...Ultrasonic generation means, 30...Liquid heating means, 1...Temperature detection means. applicant
Claims (2)
動を付与せしめる超音波発生手段と、前記超音波振動部
材の霧化部に液体を供給する液体供給弁と、該液体を加
熱する液体加熱手段と、液体の温度を検出する温度検出
手段とを備え、前記液体の温度が所定値以上の場合に前
記超音波振動部材の振幅を低下させることを特徴とする
超音波霧化装置の制御方法。(1) An ultrasonic vibrating member, an ultrasonic generating means for applying ultrasonic vibration to the ultrasonic vibrating member, a liquid supply valve that supplies liquid to the atomization section of the ultrasonic vibrating member, and heating the liquid. an ultrasonic atomizer comprising: a liquid heating means for detecting the temperature of the liquid; and a temperature detecting means for detecting the temperature of the liquid, the apparatus reducing the amplitude of the ultrasonic vibrating member when the temperature of the liquid is equal to or higher than a predetermined value. control method.
量の変化に応じて振幅を変化させるとともに最小粒径が
得られる最適振幅値により前記超音波振動部材に超音波
振動を付与せしめることを特徴とする請求項1に記載の
超音波霧化装置の制御方法。(2) A flow rate detection means for detecting the spray processing amount, and applying ultrasonic vibration to the ultrasonic vibration member using an optimum amplitude value that changes the amplitude according to the change in the spray processing amount and obtains the minimum particle size. The method for controlling an ultrasonic atomizer according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11155690A JPH0411965A (en) | 1990-04-26 | 1990-04-26 | Controlling method for ultrasonic wave atomizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11155690A JPH0411965A (en) | 1990-04-26 | 1990-04-26 | Controlling method for ultrasonic wave atomizer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0411965A true JPH0411965A (en) | 1992-01-16 |
Family
ID=14564385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11155690A Pending JPH0411965A (en) | 1990-04-26 | 1990-04-26 | Controlling method for ultrasonic wave atomizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0411965A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006051442A (en) * | 2004-08-11 | 2006-02-23 | Choonpa Jozosho Kk | Separation method of liquid and separation apparatus |
CN109847987A (en) * | 2019-02-13 | 2019-06-07 | 方兵 | A kind of amplitude transformer in ultrasonic humidifier |
WO2020209112A1 (en) * | 2019-04-09 | 2020-10-15 | 日本たばこ産業株式会社 | Aerosol supply device |
-
1990
- 1990-04-26 JP JP11155690A patent/JPH0411965A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006051442A (en) * | 2004-08-11 | 2006-02-23 | Choonpa Jozosho Kk | Separation method of liquid and separation apparatus |
CN109847987A (en) * | 2019-02-13 | 2019-06-07 | 方兵 | A kind of amplitude transformer in ultrasonic humidifier |
WO2020209112A1 (en) * | 2019-04-09 | 2020-10-15 | 日本たばこ産業株式会社 | Aerosol supply device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4659014A (en) | Ultrasonic spray nozzle and method | |
EP0242460A1 (en) | Monomer atomizer for vaporization | |
JPS61259781A (en) | Vibrator for ultrasonic pulverization having curved multistage edge part | |
JPS61259784A (en) | Vibrator for ultrasonic injection | |
JPH0256943B2 (en) | ||
JPS61259780A (en) | Vibrator for ultrasonic atomization | |
JPH04110057A (en) | Ultrasonic wave atomizer | |
JPH0411965A (en) | Controlling method for ultrasonic wave atomizer | |
JPH07269866A (en) | Fine particle fuel injection nozzle | |
JPH03249968A (en) | Method for controlling ultrasonic atomizer | |
JPH06190319A (en) | Ultrasonic atomizing apparatus | |
JPH03224658A (en) | Ultrasonic atomizer | |
JPH034954A (en) | Ultrasonic atomizing apparatus | |
JP2735325B2 (en) | Ultrasonic atomizer | |
JPH03109960A (en) | Ultrasonic atomizer | |
JPH0332764A (en) | Ultrasonic atomizing device | |
JPH034956A (en) | Ultrasonic atomizing apparatus | |
JPH06190320A (en) | Ultrasonic atomizing apparatus | |
JPH03174268A (en) | Ultrasonic atomizer | |
JPH0332761A (en) | Ultrasonic atomizing device | |
JPH03224654A (en) | Ultrasonic atomizer | |
JPH034955A (en) | Ultrasonic atomizing apparatus | |
JPH03224655A (en) | Ultrasonic atomizer | |
JPH0365263A (en) | Supersonic spraying device | |
JPH049109B2 (en) |