JPH0411947A - Production of fuel absorber - Google Patents

Production of fuel absorber

Info

Publication number
JPH0411947A
JPH0411947A JP2114373A JP11437390A JPH0411947A JP H0411947 A JPH0411947 A JP H0411947A JP 2114373 A JP2114373 A JP 2114373A JP 11437390 A JP11437390 A JP 11437390A JP H0411947 A JPH0411947 A JP H0411947A
Authority
JP
Japan
Prior art keywords
fuel
carrier
thermoplastic resin
resin powder
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2114373A
Other languages
Japanese (ja)
Other versions
JP2549572B2 (en
Inventor
Hiroshi Ito
浩史 伊藤
Koji Sasaki
佐々木 鴻治
Tadaoki Okumoto
奥本 忠興
Takashi Ota
隆 太田
Mitsumasa Matsushita
光正 松下
Norio Sato
紀夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyoda Gosei Co Ltd
Priority to JP2114373A priority Critical patent/JP2549572B2/en
Priority to US07/687,470 priority patent/US5174938A/en
Priority to EP91106706A priority patent/EP0455143A1/en
Priority to DE69123060T priority patent/DE69123060T2/en
Priority to EP93118099A priority patent/EP0585975B1/en
Priority to CA002041287A priority patent/CA2041287A1/en
Publication of JPH0411947A publication Critical patent/JPH0411947A/en
Priority to US07/953,805 priority patent/US5348929A/en
Application granted granted Critical
Publication of JP2549572B2 publication Critical patent/JP2549572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To obtain a fuel absorber having superior durability and evaporated fuel capturing ability by allowing a polymer to react with thermoplastic resin powder in the presence of a cross-linking agent, coating a thermoplastic carrier with the resulting polymer gel contg. the resin powder and heating the gel. CONSTITUTION:An org. high molecular compd. having fuel capturing function such as polyisoprene or polybutadiene is dissolved in a solvent such as toluene or benzene and thermoplastic resin powder for a binder such as PP or PE powder is added to the resulting soln. and mixed. A reaction is allowed to take place in the presence of a cross-linking agent such as benzoyl peroxide. After the end of the reaction, polymer gel 5 contg. the thermoplastic resin powder 52 is collected. A thermoplastic carrier 60 such as PP or PE is coated with the gel 50 and this gel 50 is dried and heated to a temp. at which the powder 52 melt-sticks together and the surface of the carrier 60 melts. Fine particles of the polymer are stuck together by the powder and also stuck to the carrier.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は1燃料蒸発防止装置に用いる燃料吸収体の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a fuel absorber used in a fuel evaporation prevention device.

[従来技術〕 自動車の燃料タンク内に、給油ガンにより燃料を供給す
る際には、比較的多くの燃料が莫発する。
[Prior Art] When a fuel gun is used to supply fuel into a fuel tank of an automobile, a relatively large amount of fuel is released.

また、自動車の走行時、停止時いずれにおいても燃料タ
ンク、気化器フロート室内の燃料が一部気化する。
Additionally, a portion of the fuel in the fuel tank and the float chamber of the carburetor evaporates both when the vehicle is running and when it is stopped.

そこで、これら蒸発燃料を大気中に漏らさないようにす
るため、これらタンク等に、燃料吸収体を充填したキャ
ニスタ(燃料蒸発防止装置)が連結されている。この燃
料吸収体は、1発燃料を捕捉するためのものである。ま
た、自動車に限らず燃料貯蔵タンク等からの蒸発燃料、
更には漏洩した燃料液を捕捉するため、同様に燃料吸収
体を充填した燃料蒸発防止装置が用いられている。
Therefore, in order to prevent these evaporated fuels from leaking into the atmosphere, canisters (fuel evaporation prevention devices) filled with a fuel absorber are connected to these tanks and the like. This fuel absorber is for capturing single shot fuel. In addition, evaporated fuel from fuel storage tanks, etc. is not limited to automobiles,
Further, in order to capture leaked fuel liquid, a fuel evaporation prevention device similarly filled with a fuel absorber is used.

そして、上記燃料吸収体としては、従来活性炭が用いら
れている。活性炭に吸着された燃料は。
Activated carbon has conventionally been used as the fuel absorber. The fuel adsorbed on activated carbon.

パージ(離脱)時に活性炭から放出される。そのため、
活性炭は燃料の吸着、離脱を繰り返して使用される(後
述する第3回参照)。
Released from activated carbon during purge. Therefore,
Activated carbon is used by repeatedly adsorbing and desorbing fuel (see Part 3 below).

[解決しようとする課題] しかしながら、上記活性炭を用いたキャニスタでは し
ばしば、蒸発燃料をlj!捉しきれず、蒸発燃料が大気
に放出されてしまうことが起こる。
[Problem to be solved] However, canisters using the above-mentioned activated carbon often reduce the amount of evaporated fuel to lj! In some cases, the vaporized fuel is not captured and is released into the atmosphere.

この原因を調査したところ、活性炭は、液状のガソリン
と接触した場合に、活性炭のガソリン茶気捕捉能が著し
く低下することが明らかとなった。
When the cause of this was investigated, it was revealed that when activated carbon comes into contact with liquid gasoline, the ability of activated carbon to capture gasoline brown air is significantly reduced.

更に、活性炭が液状のガソリンと接触する原因はキャニ
スタにつながっている配管及びキャニスタ上部の壁面に
凝縮した液状のガソリンが、活性炭に触れるためである
ことが分かった。
Furthermore, it has been found that the reason why the activated carbon comes into contact with liquid gasoline is that the liquid gasoline that has condensed on the piping connected to the canister and the wall surface above the canister comes into contact with the activated carbon.

なお、前記のようなガソリン茶気の凝縮は、特に外気温
が高く、燃料タンク或いは気化器においてガソリンの蒸
気圧が非常に高い時に、その周辺の配管及びキャニスタ
上部の空間で起こる。
The above-mentioned condensation of gasoline vapor occurs in the surrounding pipes and the space above the canister, especially when the outside temperature is high and the vapor pressure of gasoline in the fuel tank or vaporizer is very high.

また、活性炭の茶気捕捉能(ワーキングキャパシティ)
低下のもう1つの要因は、活性炭に吸着された芸発燃料
分子のうち、炭素原子数が4又は5以下の小さな分子は
キャニスタのパージ工程中に容易に離脱するのに反し、
それより大きな分子は離脱し難いことである。また、そ
のため、キャニスタの使用時間が増加するにつれて蒸気
捕捉能が減少するという点である。
In addition, activated carbon's ability to capture brown energy (working capacity)
Another reason for the decline is that among the fuel molecules adsorbed on activated carbon, small molecules with less than 4 or 5 carbon atoms are easily released during the canister purging process;
Molecules larger than this are difficult to release. Also, therefore, the vapor trapping capacity decreases as the time of use of the canister increases.

また、活性炭に代えてポリプロピレン、スチレン−ブタ
ジェン共重合体等の有機高分子を燃料吸収体として用い
ることも提案されている(特開平1−67222.特開
平1−227861)。しかし1核燃料吸収体は燃料の
吸収、離脱のサイクル(吸脱サイクル)を繰り返す間に
燃料吸収能力が低下する。
It has also been proposed to use organic polymers such as polypropylene and styrene-butadiene copolymers as fuel absorbers in place of activated carbon (Japanese Unexamined Patent Publications No. 1-67222 and No. 1-227861). However, a nuclear fuel absorber's fuel absorption capacity decreases while repeating a cycle of fuel absorption and desorption (adsorption/desorption cycle).

この原因は次のように考えられる。1次粒子の強度、1
次粒子同士の結合力(2次粒子の強度)が弱いため、吸
収時の膨潤と離脱時の収縮の繰り返し、さらには振動等
により1次粒子の破壊、2次粒子の崩壊が起こる。この
様に微細化された粒子は飛散し易く吸収側の偏りの原因
となり、吸収能が低下する。また2粒子が微細化される
と、空隙率が低下するため、膨潤時に目詰まりが生し易
くなり、吸収能が低下する。
The reason for this is thought to be as follows. Intensity of primary particles, 1
Since the binding force between the primary particles (strength of the secondary particles) is weak, swelling during absorption and contraction during separation occur repeatedly, and furthermore, due to vibration, etc., the primary particles are destroyed and the secondary particles collapse. Such fine particles are easily scattered and cause a bias on the absorption side, resulting in a decrease in absorption capacity. Furthermore, when the two particles are made finer, the porosity decreases, so clogging occurs more easily during swelling, and the absorption capacity decreases.

本発明は、かかる従来の問題点に鑑み、上記吸脱サイク
ルに対する耐久性に優れ、かつ蒸発燃料捕捉能力に優れ
た燃料吸収体の製造方法を提供しようとするものである
In view of these conventional problems, it is an object of the present invention to provide a method for manufacturing a fuel absorber that has excellent durability against the above-mentioned adsorption/desorption cycle and has an excellent ability to capture evaporated fuel.

〔課題の解決手段〕[Means for solving problems]

本発明は、燃料捕捉機能を有する有機高分子化合物を溶
媒に溶解し、その溶液にバインダー用の熱可塑性樹脂パ
ウダーを添加混合し、その後前記有機高分子化合物反応
用の架橋剤存在下で反応を行い1反応終了後上記熱可塑
性樹脂パウダーを含む高分子ゲルを採取し、これを熱可
塑性担体に塗布し、乾燥後、前記熱可塑性樹脂パウダー
が互いに融着する温度で、かつ上記熱可塑性担体の表面
の融着温度に加熱して、担体付きの燃料吸収体を得るこ
とを特徴とする燃料吸収体の製造方法にある。
The present invention involves dissolving an organic polymer compound having a fuel trapping function in a solvent, adding and mixing a thermoplastic resin powder for a binder to the solution, and then reacting the organic polymer compound in the presence of a crosslinking agent for reaction. After completing one reaction, collect the polymer gel containing the thermoplastic resin powder, apply it to a thermoplastic carrier, dry it, and apply it to the thermoplastic carrier at a temperature at which the thermoplastic resin powders fuse together. A method for manufacturing a fuel absorber, characterized in that a fuel absorber with a carrier is obtained by heating to a surface fusion temperature.

本発明において、燃料捕捉機能を有する有機高分子化合
物とは、蒸発燃料(漏洩した燃料液も含む)を捕捉する
機能を存し、少なくとも、ゲルを生じせしめる程度に架
橋可能な有機高分子化合物をいう。また1 ここに捕捉
機能とは、燃料に溶解又は燃料によって膨潤する性質を
いう。
In the present invention, an organic polymer compound having a fuel trapping function refers to an organic polymer compound that has a function of trapping evaporated fuel (including leaked fuel liquid) and is at least crosslinkable to the extent of forming a gel. say. In addition, 1. The capture function here refers to the property of being dissolved in or swollen by fuel.

また、上記反応とは、上記有機高分子化合物の架橋およ
び/または重合反応を含む、あらゆる化学反応をいう。
Moreover, the above-mentioned reaction refers to any chemical reaction including crosslinking and/or polymerization reaction of the above-mentioned organic polymer compound.

また、これらの反応は1通常の重合方法1例えば、8濁
重合、乳化重合、溶液重合等のいずれを用いても良い。
Further, these reactions may be carried out using any of the usual polymerization methods such as turbid polymerization, emulsion polymerization, and solution polymerization.

そして、後述のごとく、懸濁重合、乳化重合の場合には
、高分子ゲル微粒体が得られ、一方溶液重合の場合には
、高分子ゲル体が得られる。
As described later, in the case of suspension polymerization and emulsion polymerization, polymer gel particles are obtained, while in the case of solution polymerization, a polymer gel body is obtained.

前記性質を有する有機高分子化合物としては例えば、ポ
リイソプレン、ポリブタジェン、ポリイソブチレン、ポ
リスチレン、ポリノルポル不ンボリシロキサン、エチレ
ン−プロピレン−ジエン系共重合体、スチレン−ブタジ
ェン系共重合体エチレン−プロピレン系共重合体、イソ
ブチレンイソプレン系共重合体、ブタンエン−アクリロ
ニトリル系共重合体、エチレン−酢酸ビニル系共重合体
、アクリル系重合体、ポリエピクロルヒドリン、スチレ
ン−イソプレン系共重合体を用いる。
Examples of organic polymer compounds having the above properties include polyisoprene, polybutadiene, polyisobutylene, polystyrene, polynorporinpolysiloxane, ethylene-propylene-diene copolymer, styrene-butadiene copolymer, ethylene-propylene copolymer, etc. Polymers, isobutylene isoprene copolymers, butanene-acrylonitrile copolymers, ethylene-vinyl acetate copolymers, acrylic polymers, polyepichlorohydrin, and styrene-isoprene copolymers are used.

また、これらの有機高分子化合物を反応させる際に用い
る溶媒としては、トルエン、ヘンゼンキンレン ジメチ
ルヘンゼン、トリメチルヘンゼン ソク口ヘキサン、ペ
ンタン、ヘキサン、ヘプタン、塩化メチレン、クロロホ
ルム、四塩化炭素トリクロロエチレンなどがある。
In addition, solvents used when reacting these organic polymer compounds include toluene, dimethyl hexane, trimethyl hexane, pentane, hexane, heptane, methylene chloride, chloroform, carbon tetrachloride trichloroethylene, etc. .

また、有機高分子化合物と溶媒との割合は、有機高分子
化合物2〜30%(重量比、以下間し)溶媒は70〜9
8%とすることが好ましい。
The ratio of the organic polymer compound to the solvent is 2 to 30% (by weight) and 70 to 9% of the solvent.
It is preferably 8%.

また、上記バインダー用の熱可塑性樹脂パウダーとして
は PP  PE  PBT  PET、POM ナイ
ロン等の結晶性樹脂などがある。該熱可塑性樹脂パウダ
ーは、後述するごとく中間粒状物を互いに融着するため
の接合剤とするものであり上記の有機高分子化合物の反
応には関与せず、あるいは、少なくとも融着性を損なわ
ない程度にしか、架橋しないものである。また、該熱可
塑性樹脂パウダーは有機高分子化合物と共に溶媒中に加
えるが、該熱可塑性樹脂パウダーは溶媒には完全に2容
解しないものを用いる。
Further, the thermoplastic resin powder for the binder includes crystalline resins such as PP, PE, PBT, PET, POM, and nylon. The thermoplastic resin powder is used as a bonding agent to fuse the intermediate particles together, as described below, and does not participate in the reaction of the organic polymer compound described above, or at least does not impair the fusion properties. It crosslinks only to a certain extent. Further, the thermoplastic resin powder is added to the solvent together with the organic polymer compound, but the thermoplastic resin powder used is one that is not completely soluble in the solvent.

また、該熱可塑性樹脂パウダーは、有機高分子化合物に
対して20〜70重量%添加する。20%未満ではバイ
ンダーとしての効果が少なく、70%を越えると熱可塑
性樹脂パウダーが多くなりすぎて、燃料吸収能力が低下
するおそれがある。
Further, the thermoplastic resin powder is added in an amount of 20 to 70% by weight based on the organic polymer compound. If it is less than 20%, it will not be effective as a binder, and if it exceeds 70%, there will be too much thermoplastic resin powder, which may reduce the fuel absorption capacity.

また、熱可塑性樹脂パウダーの粒子径としては0.01
〜1000μmのものを用いることが好ましい。
In addition, the particle size of the thermoplastic resin powder is 0.01
It is preferable to use one having a diameter of 1000 μm.

次に、架橋剤としては、ヘンジイル・パーオキサイド、
ラウロイル・パーオキサイド等のジアシル・パーオキサ
イド類、2.4.、l)リメチル・ヘンチル−2−ハイ
ドロパーオキサイド等のハイドロパーオキサイド類、ジ
クミル・パーオキサイド等のジアルキル・パーオキサイ
ド!、  1. 1ジーt−ブチル・パーオキシ−3,
3,5−トリメチル・シクロヘキサン等のパーオキシケ
タール類、t−ブチル・バーオキノーネオデカノエート
等のアルキルパーエステル類、ビス(4−Lブチル・ン
クロヘキンル)パーオキシ・ジカルボネート等のパーカ
ーボネート類、メチル・エチル・ケトンパーオキサイド
等のケトンパーオキサイド類等のパーオキサイド系架橋
剤がある。
Next, as a crosslinking agent, hengeyl peroxide,
Diacyl peroxides such as lauroyl peroxide, 2.4. , l) Hydroperoxides such as lymethyl hentyl-2-hydroperoxide, dialkyl peroxides such as dicumyl peroxide! , 1. 1 di-t-butyl peroxy-3,
Peroxy ketals such as 3,5-trimethyl cyclohexane, alkyl peresters such as t-butyl peroquinone neodecanoate, percarbonates such as bis(4-L butyl cyclohexyl) peroxy dicarbonate, There are peroxide-based crosslinking agents such as ketone peroxides such as methyl, ethyl, and ketone peroxide.

また、イオウ、イオウ化合物、アミン化合物エボキソ化
合物、カルボキソ化合物等の通常船釣に用いられている
架橋剤も用いることができる。また、好ましくは、燃料
捕捉機能を有する有機高分子化合物に対して5架橋可能
であり、かつバインダー用の熱可塑性樹脂に対し、架橋
しない架橋剤を用いることが望ましい。
Furthermore, crosslinking agents commonly used in boat fishing, such as sulfur, sulfur compounds, amine compounds, eboxo compounds, and carboxo compounds, can also be used. Further, it is preferable to use a crosslinking agent that is capable of crosslinking the organic polymer compound having a fuel trapping function and does not crosslink the thermoplastic resin for the binder.

また1反応が不充分な場合には、架橋助剤を添加する。If one reaction is insufficient, a crosslinking aid is added.

かかる架橋助剤としては、パーオキサイド系架橋剤に対
しては、テトラハイドロ・フルフリル・メタクリレート
、エチレン・ジメタクリレート1.3−ブチレン・ジメ
タクリレート、ポリエチレングリコール・ジメタクリレ
ート、2−2ビス(4−メタクリロキシ・シェドキン・
フェニル)プロパン、アルミニウム・メタクリレートカ
ルシウム・ジメタクリレート トリアリル・インノアヌ
レート、ジアリル・フタレート、ジビニル・ヘンゼン 
P−キノン・ジオキンム 12ポリブタンエン、g黄な
どがある。
Such crosslinking aids for peroxide crosslinking agents include tetrahydrofurfuryl methacrylate, ethylene dimethacrylate, 1,3-butylene dimethacrylate, polyethylene glycol dimethacrylate, 2-2bis(4- Methacryloxy Shedkin
phenyl) propane, aluminum methacrylate calcium dimethacrylate triallyl innoanurate, diallyl phthalate, divinyl hanzene
P-quinone dioquine 12 Polybutanene, g yellow, etc.

一方、上記パーオキサイド系以外の架橋剤に対しては、
−船釣に使用される架橋助剤を用いることかできる。
On the other hand, for crosslinking agents other than the above peroxide type,
- A crosslinking aid used for boat fishing can be used.

また、架橋剤は有機高分子化合物に対して1〜20%、
架橋助剤は同しく0〜20%添加する。
In addition, the crosslinking agent is 1 to 20% of the organic polymer compound,
The crosslinking aid is also added in an amount of 0 to 20%.

また、上記反応を行うに先立って、有機高分子化合物溶
液は、脱酸素処理しておくことが好ましい。かかる脱酸
素処理方法としては、上記有機高分子化合物溶液中に1
例えば窒素(N2)ガスをバブリングする方法がある。
Further, it is preferable that the organic polymer compound solution is subjected to a deoxidation treatment before performing the above reaction. As such a deoxidation treatment method, 1 is added to the organic polymer compound solution.
For example, there is a method of bubbling nitrogen (N2) gas.

また、溶液の入った容器を真空排気後、NZガスを充て
んする操作を繰り返す方法もある。これにより2反応溶
液中より、溶存酸素を放出させる。
There is also a method of repeating the operation of evacuating the container containing the solution and then filling it with NZ gas. This causes dissolved oxygen to be released from the two reaction solutions.

次に g濁重合、乳化重合の場合には1次のように分散
剤を含有させた溶液を用いて反応を行う。
Next, in the case of turbid polymerization or emulsion polymerization, a reaction is carried out using a solution containing a dispersant as described below.

即ち、有機高分子化合物と架橋剤とを含む上記溶液を1
分散剤含有溶液中に、W!拌しながら添加して2分散液
を作る。そして、架橋剤がほぼ完全に分解するまで加熱
、攪拌を続けて1反応させる。
That is, the above solution containing an organic polymer compound and a crosslinking agent is
In the dispersant-containing solution, W! Add with stirring to make two dispersions. Then, heating and stirring are continued until the crosslinking agent is almost completely decomposed to cause one reaction.

上記分散剤としては、ポリビニルアルコール(PVA)
、ゼラチン、トラガカントゴム、アラビアゴム、デンプ
ン、メチルセルロース、カルボキシメチルセルロース、
ポリアクリル酸塩、アルカリセッケン、有機アミンセッ
ケン、及び高級アルコールの硫黄エステル、トウイーン
類の非イオン活性剤等の合成表面活性剤、タンパク質、
植物ゴム、アルギン酸塩、サポニン等がある。
As the dispersant, polyvinyl alcohol (PVA)
, gelatin, gum tragacanth, gum arabic, starch, methylcellulose, carboxymethylcellulose,
Synthetic surfactants such as polyacrylates, alkaline soaps, organic amine soaps, sulfur esters of higher alcohols, nonionic surfactants such as Tweens, proteins,
These include vegetable gum, alginate, saponin, etc.

また1分散側含有溶液についても上記と同様に脱酸素処
理を行っておくことが好ましい。また該溶液の溶媒とし
ては2通常、水を用いる。また。
Further, it is preferable that the solution containing one dispersion side is also subjected to deoxidation treatment in the same manner as above. Furthermore, water is usually used as the solvent for the solution. Also.

該溶液中の分散剤の濃度は、1〜5%程度である。The concentration of the dispersant in the solution is about 1 to 5%.

反応終了後、冷却すると反応によって得られたポリマー
と、溶液とが上下に分離する。そこで上方のポリマー相
を採取することにより、生クリーム状のペーストを得る
。これが高分子ゲル微粒体である。該高分子ゲル微粒体
は1粒径IO〜1100pの微粒状ポリマーと、付着、
混合バインダー用の熱可塑性樹脂パウダーと2溶媒及び
分散剤等を含んでいる。
After the reaction is completed, when it is cooled, the polymer obtained by the reaction and the solution are separated into upper and lower parts. By collecting the upper polymer phase, a fresh cream-like paste is obtained. This is the polymer gel fine particles. The polymer gel microparticles are made of a microparticle polymer with a particle size of IO to 1100p, adhering to it,
Contains thermoplastic resin powder for mixed binder, 2 solvents, dispersant, etc.

次に、上記熱可塑性樹脂パウダーが含まれている高分子
ゲル微粒体を1熱可塑性担体の表面に塗布し2次いで乾
燥する。これにより1多数の上記微粒状ポリマーが上記
熱可塑性樹脂パウダーによって軽く付着され、かつこれ
らが上記熱可塑性担体表面に付着された中間体を得る。
Next, polymer gel fine particles containing the thermoplastic resin powder are applied to the surface of the thermoplastic carrier and then dried. As a result, an intermediate body is obtained in which a large number of the finely divided polymers are lightly adhered to the thermoplastic resin powder, and these are adhered to the surface of the thermoplastic carrier.

そして、その後、これらを熱可塑性樹脂パウダーの融着
温度以上で、かつ上記熱可塑性担体の表面の融着温度(
溶融温度)以上に加熱する。これにより、微粒状ポリマ
ーが、互いに熱可塑性樹脂パウダーによって融着される
と共に熱可塑性担体にも融着されてなる。担体付き燃料
吸収体が得られる。
Then, these are heated at a temperature higher than the fusion temperature of the thermoplastic resin powder and the fusion temperature of the surface of the thermoplastic carrier (
(melting temperature) or higher. As a result, the fine particulate polymers are fused to each other by the thermoplastic resin powder and also to the thermoplastic carrier. A fuel absorber with a carrier is obtained.

この燃料吸収体は、担体とバインダーの両者が加熱融着
された結合構造も有するため、衝撃等に対する強度が高
い、また、熱可塑性樹脂からなる担体は1通常、たわみ
性があるので、壊れ難い。
This fuel absorber also has a bonding structure in which both the carrier and binder are heat-fused, so it has high strength against impact, etc. Also, the carrier made of thermoplastic resin is usually flexible, so it is difficult to break. .

更に、第1図、第2図に示すように、微粒状ポリマー5
0はバインダーによって孔隙性の結合構造を取るので1
通気性が向上し、燃料吸収効率が高くなる。
Furthermore, as shown in FIGS. 1 and 2, fine particulate polymer 5
0 is 1 because the binder takes a porous bond structure.
Improved air permeability and higher fuel absorption efficiency.

一方、溶液重合の場合には、有機高分子化合物溶液に架
橋剤を添加後反応を行う。この場合5分散剤は用いない
。そして1反応終了後、上記熱可星性樹脂パウダーが混
在している高分子ゲル体を得る。このものは、上記と同
様に、上記熱可塑性担体に塗布する。その後上記と同様
に乾燥、加熱し、融着させる。
On the other hand, in the case of solution polymerization, the reaction is performed after adding a crosslinking agent to the organic polymer compound solution. In this case, no dispersant 5 is used. After one reaction is completed, a polymer gel containing the thermoplastic resin powder is obtained. This is applied to the thermoplastic carrier in the same manner as above. Thereafter, it is dried, heated, and fused in the same manner as above.

上記熱可塑性担体の形状おしては1粒状体、板状体1布
、網、糸などがある。また、熱可塑性担体の材質として
は、PP  PE  PBT  PETPOM、ナイロ
ン等の結晶性樹脂などの熱可塑性樹脂がある。
The shape of the thermoplastic carrier may be one particle, one plate, one cloth, a net, or a thread. Further, as the material of the thermoplastic carrier, there are thermoplastic resins such as PP PE PBT PETPOM and crystalline resins such as nylon.

また、熱可塑性担体は前記熱可塑性樹脂パウダーと同材
質、又はこれとほぼ近似した融着温度を有する材質のも
のを用いることが好ましい。
Further, it is preferable to use a thermoplastic carrier made of the same material as the thermoplastic resin powder, or a material having a fusing temperature almost similar thereto.

また1該熱可塑性担体は、芯材部と表層部の2層とから
なり5表層部には上記熱可塑性担体樹脂を用いる構成と
することもできる。このとき、芯材部としては1表層部
よりも融点の高いPE  PP、PBT、PET、PO
M、ナイロン、ポリイミド、ポリスルホン、ポリエーテ
ルスルホン、ポリアミドイミド、ポリフェニレンオキサ
イド PPS等の熱可塑性樹脂、或いはフェノール系 
メラミン系、エポキシ系、ポリイミド系、ユリア系。
Further, the thermoplastic carrier 1 may be composed of two layers, a core portion and a surface layer portion, and the above-mentioned thermoplastic carrier resin may be used for the 5 surface layer portion. At this time, the core material is PEPP, PBT, PET, PO, which has a higher melting point than the surface layer.
M, nylon, polyimide, polysulfone, polyethersulfone, polyamideimide, polyphenylene oxide, thermoplastic resin such as PPS, or phenol type
Melamine-based, epoxy-based, polyimide-based, urea-based.

不飽和ポリエステル系、ジアリルフタレート系シリコー
ン系、ポリウレタン系熱硬化性樹脂等の合成樹脂を用い
る。或いは金属、セラミ・7クス等を用いる。
Synthetic resins such as unsaturated polyester, diallyl phthalate silicone, and polyurethane thermosetting resins are used. Alternatively, use metal, ceramic, 7x, etc.

また、高分子ゲル微粒体(以下、高分子ゲル体も同様)
を担体に塗布する方法としては、熱可塑性担体を高分子
ゲル微粒体の中に浸漬して引き上げる浸漬法がある。ま
た、水又は溶媒に、上記熱可塑性樹脂パウダーを含む生
クリーム状の上記高分子ゲル微粒体を希釈又は希釈する
ことなく、スプレーガン等により、熱可塑性担体上に吹
き付ける方法がある。更に、ロールに上記高分子ゲル微
粒体を付着させて熱可塑性担体に塗布するロールコータ
法もある。
In addition, polymer gel fine particles (hereinafter referred to as polymer gel)
As a method for coating the carrier, there is a dipping method in which the thermoplastic carrier is immersed in polymer gel particles and pulled up. Alternatively, there is a method in which the above-mentioned fresh cream-like polymer gel particles containing the above-mentioned thermoplastic resin powder are diluted or sprayed onto a thermoplastic carrier using a spray gun or the like without being diluted in water or a solvent. Furthermore, there is also a roll coater method in which the polymer gel particles are attached to a roll and coated onto a thermoplastic carrier.

また1上記方法においては、熱可塑性樹脂パウダーを当
初より添加せず1反応後採取した高分子ゲル微粒体に熱
可塑性樹脂パウダーを添加混合し次いでこれを前記と同
様に熱可塑性担体に塗布し乾燥後前記加熱を行う方法も
ある。この場合、有機高分子化合物の反応は、懸濁重合
又は乳化重合により行う。
In addition, in the above method, the thermoplastic resin powder is not added from the beginning, but the thermoplastic resin powder is added to and mixed with the polymer gel particles collected after one reaction, and then this is applied to the thermoplastic carrier in the same manner as above and dried. There is also a method in which the heating is performed afterward. In this case, the reaction of the organic polymer compound is carried out by suspension polymerization or emulsion polymerization.

即ち、この方法は、燃料捕捉機能を有する有機高分子化
合物を溶媒に熔解し、その後溶液を別途準備した分散剤
含有溶液中に攪拌しながら添加して前記、有機高分子化
合物反応用の架橋剤の存在下で反応を行い1反応終了後
高分子ゲル微粒体を採取し1次いで咳高分子ゲル微粒体
に熱可塑性樹脂パウダーを添加混合し、その後上記方法
と同様に熱可塑性担体に塗布し、乾燥後、前記融着温度
に加熱する方法である。
That is, in this method, an organic polymer compound having a fuel trapping function is dissolved in a solvent, and then the solution is added to a separately prepared dispersant-containing solution with stirring to obtain the crosslinking agent for the organic polymer compound reaction. The reaction was carried out in the presence of 1 reaction, and after the completion of one reaction, the polymer gel fine particles were collected, and then a thermoplastic resin powder was added and mixed with the cough polymer gel fine particles, and then applied to a thermoplastic carrier in the same manner as in the above method, This is a method of heating to the above-mentioned fusion temperature after drying.

また、上記のごとくして得た担体付きの燃#4吸収体は
、基本的には熱可塑性担体の形状と同様であるが、これ
を更に所望する形状1例えばハニカム状、板状、フィル
ム状等にすることもできる。
The fuel #4 absorber with a carrier obtained as described above has basically the same shape as the thermoplastic carrier, but it can be further shaped into a desired shape such as a honeycomb shape, a plate shape, a film shape, etc. etc. can also be made.

しかし、厚みが大きくなると9表面だけが膨潤して、中
の方まで吸収が進まず、吸収能力が低下するおそれがあ
る。したがって、燃料吸収体は直径或いは厚みを5薗以
下としておくことが好ましい。
However, when the thickness increases, only the surface swells, and absorption does not proceed to the inside, which may reduce absorption capacity. Therefore, it is preferable that the diameter or thickness of the fuel absorber is 5 mm or less.

また2本発明にかかる燃料吸収体は、蒸発燃料の捕捉(
吸収)によって膨潤するが、燃料に対しては不溶である
。それ故、−旦捕捉した燃料をパージ(離脱)すること
により、再生でき、その使用を繰り返すことができる。
In addition, the fuel absorber according to the present invention captures evaporated fuel (
(absorption), but is insoluble in fuel. Therefore, by purging the captured fuel, it can be regenerated and its use can be repeated.

なお1本発明の燃料吸収体は、自動車用キャニスタに限
らず、ボイラー用燃料タンクなど種々の燃料蒸発防止装
置に用いることができる。
Note that the fuel absorber of the present invention can be used not only for automobile canisters but also for various fuel evaporation prevention devices such as boiler fuel tanks.

[作用および効果] 本発明においては、上記製造方法によって得られた燃料
吸収体が、前記′4ir41g高分子化合物を母体とす
るものであるため、蒸発燃料に対しで高い捕捉能力を存
している。この高い捕捉能力は、この有機高分子化合物
がガソリン等の燃料を吸収して膨潤しようとする力に基
づくものである。これは上記を機高分子化合物と蒸発燃
料との親和力が大きいためである。
[Operations and Effects] In the present invention, since the fuel absorber obtained by the above manufacturing method is based on the above-mentioned '4ir41g polymer compound, it has a high trapping ability for evaporated fuel. . This high trapping ability is based on the ability of this organic polymer compound to absorb fuel such as gasoline and swell. This is due to the high affinity between the above-mentioned polymeric compound and the evaporated fuel.

また、該燃料吸収体は、上記熱可塑性樹脂パウダーによ
って1微粒状ポリマーが互いに結合されているため、全
体の強度が向上する。
In addition, since the fuel absorber has one particulate polymer bonded to each other by the thermoplastic resin powder, the overall strength is improved.

また、上記燃料吸収体は、熱可塑性担体が骨格となるの
で、その全体の強度が高い、そして、該熱可塑性担体は
その材料である熱可塑性樹脂等によって、上記微粒状ポ
リマーを融着しているので両者の結合も強い。
In addition, since the fuel absorber has a thermoplastic carrier as its skeleton, its overall strength is high, and the thermoplastic carrier is made by fusing the fine particulate polymer with its material, such as a thermoplastic resin. Therefore, the bond between the two is strong.

それ故、燃料捕捉、放出という前記吸脱サイクルに対す
る耐久性に優れている。
Therefore, it has excellent durability against the adsorption/desorption cycle of fuel capture and release.

また、バインダーとして熱可塑性樹脂のパウダを用いる
ので、上記微粒状ポリマーの表面に均一に熱可塑性樹脂
を付着させることができ、またバインダーの添加も行い
易い。
Further, since thermoplastic resin powder is used as the binder, the thermoplastic resin can be uniformly adhered to the surface of the finely divided polymer, and the binder can be easily added.

また、上記有機高分子化合物は2反応によって互いりこ
化学的に結合されているため、得られた燃料吸収体は、
立体構造を有する。それ故5全体が柔軟性に冨み、また
燃料捕捉能力も高い。
In addition, since the above organic polymer compounds are chemically bonded to each other through two reactions, the obtained fuel absorber is
It has a three-dimensional structure. Therefore, the entire structure 5 is highly flexible and has a high fuel trapping ability.

また、該熱可塑性担体の表面に微粒状ポリマー層が設け
であるため、該微粒状ポリマー層はその体積に対する表
面積の割合が大きい。それ故、微粒状ポリマーの単位重
量当たりの燃料吸収能力が高い。
Further, since the fine particulate polymer layer is provided on the surface of the thermoplastic carrier, the fine particulate polymer layer has a large surface area ratio to its volume. Therefore, the fuel absorption capacity per unit weight of the particulate polymer is high.

なお、蒸発燃料を吸収することにより膨潤した燃料吸収
体は、燃料蒸発防止装置内をパージする工程で捕捉して
いた燃料を放出し、芸発燃料吸収能力が復′活し、継続
して使用することができる。
The fuel absorber, which swells by absorbing evaporated fuel, releases the trapped fuel during the process of purging the inside of the fuel evaporation prevention device, and its fuel absorption capacity is restored, allowing continued use. can do.

このように1本発明によれば1燃料の吸脱サイクルに対
する耐久性に優れ、また蒸発燃料捕捉能力に優れた燃料
吸収体の製造方法を提供することができる。
As described above, according to the present invention, it is possible to provide a method for manufacturing a fuel absorber that has excellent durability against one fuel adsorption/desorption cycle and has an excellent ability to capture evaporated fuel.

〔実施例〕〔Example〕

第1実施例 本発明の実施例にかかる燃料吸収体の製造方法につき、
第1図を用いて説明する。
First Example Regarding the method for manufacturing a fuel absorber according to an example of the present invention,
This will be explained using FIG.

まず、燃料捕捉機能を有する有機高分子化合物として 
エチレン−プロピレン−エチリデンノルボルネンポリマ
ー(日本合成ゴム■EP33゜エチレン−プロピレン−
ジエン系共重合体)20gをトルエンに溶解し、10%
(重量比、以下同じ))8液とする(ン容液量200g
)。
First, as an organic polymer compound with fuel capture function,
Ethylene-propylene-ethylidene norbornene polymer (Japan Synthetic Rubber EP33゜ethylene-propylene-
Diene copolymer) 20g was dissolved in toluene, 10%
(Weight ratio, same below)) 8 liquids (liquid volume 200g)
).

更に、該溶液に、バインダー用の熱可塑性樹脂パウダー
として、PE樹脂を13g、上記溶液に加えて混合した
(溶液量213g)。上記熱可塑性樹脂パウダーの粒子
径は、約30μmであった。
Further, 13 g of PE resin was added to the above solution as a thermoplastic resin powder for a binder and mixed (solution amount: 213 g). The particle size of the thermoplastic resin powder was about 30 μm.

この溶液に、架橋剤としてのヘンシイルバーオキサイド
を純品(100%)換算で、前記ポリマー100部(重
量部、以下同し)に対して20部を添加、溶解した。更
に、架橋助剤としてのジビニルヘンゼンを、前記ポリマ
ー100部に対し20部添加、熔解した。このようにし
て調整したポリマー溶液にN2ガスをバブリングし、?
各法中の溶存酸素を除去する脱酸素処理を行った。
To this solution, 20 parts of Hensil peroxide as a crosslinking agent was added and dissolved in terms of pure product (100%) based on 100 parts (parts by weight, hereinafter the same) of the polymer. Further, 20 parts of divinylhenzene as a crosslinking aid was added to 100 parts of the polymer and dissolved. Bubbling N2 gas into the polymer solution prepared in this way,
Deoxygenation treatment was performed to remove dissolved oxygen in each method.

一方2耐圧仕様の容器に2分散剤としてのポリビニルア
ルコール(PVA)(重合度500.ケン化度86,5
〜89モル%)の1%水?8液を準備する(溶液量64
0g)。そして、該耐圧容器の上部に分散攪拌機を固定
し、容器をシールした。
On the other hand, put polyvinyl alcohol (PVA) as a dispersant (polymerization degree 500, saponification degree 86.5) into a pressure-resistant container.
~89 mol%) of 1% water? Prepare 8 liquids (solution amount 64
0g). Then, a dispersion stirrer was fixed to the top of the pressure container, and the container was sealed.

次いで、該耐圧容器内を真空排気した後、N2ガスを充
填する操作を3回行い、PVA水?tjH中の溶存酸素
を除去する脱酸素処理を行った。
Next, after evacuating the inside of the pressure-resistant container, the operation of filling it with N2 gas was performed three times, and the PVA water? Deoxygenation treatment was performed to remove dissolved oxygen in tjH.

その後、耐圧容器内のPVA水溶液中に前記の脱酸素処
理したポリマー溶液を流し込みながら上記分散攪拌機で
高速攪拌し5分散液を作った。
Thereafter, the deoxidized polymer solution was poured into a PVA aqueous solution in a pressure-resistant container and stirred at high speed using the dispersion stirrer to prepare 5 dispersions.

また、ポリマー溶液の流入終了後、耐圧容器内を前記と
同様に脱酸素処理し、撹拌を15分続けた。
Further, after the polymer solution had finished flowing in, the inside of the pressure-resistant container was subjected to deoxidation treatment in the same manner as described above, and stirring was continued for 15 minutes.

次に、上記分散攪拌機を簡易型のプロペラ攪拌機に取り
換え、上記耐圧容器内の反応液を、92°Cまで昇温し
ながら120〜300rpmT:攪拌した。92°Cに
到達した後、更に6時間上記攪拌を続け、その後酸化防
止剤(重合禁止剤)の20%トルエン溶液を反応液に添
加し1反応を中止した。
Next, the dispersion stirrer was replaced with a simple propeller stirrer, and the reaction solution in the pressure vessel was stirred at 120 to 300 rpm while raising the temperature to 92°C. After reaching 92°C, the stirring was continued for another 6 hours, and then a 20% toluene solution of an antioxidant (polymerization inhibitor) was added to the reaction solution to stop one reaction.

反応終了後、氷水にて耐圧容器を冷却し、室温に3時間
放置した。これにより1下層に生クリーム状の高分子ゲ
ル微粒体が2下層に水溶液か分離する。そこで、上層の
高分子ゲル微粒体を採取する。これにより、上記有機高
分子化合物が反応して生成した微粒状ポリマーと、その
表面に付着している熱可塑性樹脂パウダーとからなる高
分子ゲル微粒体を得た。
After the reaction was completed, the pressure container was cooled with ice water and left at room temperature for 3 hours. As a result, the fresh cream-like polymer gel particles are separated in the lower layer 1 and the aqueous solution in the lower layer 2. Therefore, the upper layer of polymer gel particles is collected. Thereby, polymer gel fine particles were obtained, which were composed of fine polymer particles produced by the reaction of the organic polymer compound and thermoplastic resin powder adhering to the surface of the polymer particles.

その後、これを熱可塑性担体の表面に塗布した。This was then applied to the surface of the thermoplastic carrier.

核熱可塑性担体としては、PE材料の直径的1゜5閣の
粒状体を用いた。また、上記塗布は、浸漬の方法を用い
た。
Granules of PE material with a diameter of 1.5 mm were used as the core thermoplastic carrier. Further, the above coating was performed using a dipping method.

更に、該中間体を、上記熱可塑性樹脂パウダーとしての
PE樹脂が融着する温度(150°C)以上で、かつ熱
可塑性担体としてのPE樹脂の融着温度(150°C)
以上に、3分間加熱した。これにより2本発明にかかる
2粒状の燃料吸収体が得られた。この燃料吸収体を試料
No、 lとする。
Furthermore, the intermediate is heated at a temperature higher than the temperature at which the PE resin as the thermoplastic resin powder fuses (150°C), and at a temperature at which the PE resin as the thermoplastic carrier fuses (150°C).
The mixture was heated for 3 minutes as described above. As a result, two granular fuel absorbers according to the present invention were obtained. This fuel absorber is designated as sample No. 1.

このようにして製造された燃料吸収体は、第1図にモデ
ル的に示すごとく、前記有機高分子化合物の架橋反応に
より生成した微粒状ポリマー50と、その周囲に付着す
るようにして存在している熱可塑性樹脂パウダー層52
と、これらを担持している熱可塑性担体60とからなっ
ている。
As shown in the model in FIG. 1, the fuel absorber manufactured in this way includes fine particulate polymer 50 produced by the crosslinking reaction of the organic polymer compound and the particulate polymer 50 attached to the surroundings thereof. thermoplastic resin powder layer 52
and a thermoplastic carrier 60 supporting them.

即ち、熱可塑性樹脂パウダー層52が融着してバインダ
ーとなり、各微粒状ポリマー50を接合し、またこれら
は熱可塑性担体60の表面5二結合されて、担体付きの
燃料吸収体5を構成している。
That is, the thermoplastic resin powder layer 52 is fused to become a binder, which joins each particulate polymer 50, and these are bonded to the surface 5 of the thermoplastic carrier 60 to constitute the fuel absorber 5 with a carrier. ing.

そして、上記微粒状ポリマー50と熱可塑性担体60と
の間は、熱可塑性担体60と熱可塑性樹脂パウダー層5
2とが互いに融着し合っている。
Then, between the fine particulate polymer 50 and the thermoplastic carrier 60, the thermoplastic carrier 60 and the thermoplastic resin powder layer 5
2 are fused together.

第2実施例 上記第1実施例において、熱可塑性樹脂パウタ−は当初
から添加せず1反応後採取した生クリーム状の高分子ゲ
ル微粒体に該熱可塑性樹脂パウダーを添加、混合した。
Second Example In the first example above, the thermoplastic resin powder was not added from the beginning, but the thermoplastic resin powder was added and mixed with the fresh cream-like polymer gel fine particles collected after one reaction.

そして、これを熱可塑性担体に塗布した。This was then applied to a thermoplastic carrier.

上記熱可塑性担体は、第2図に示すごとく、芯材部62
と1表層部63とよりなる粒状の熱可塑性担体6を用い
た。ここに芯材部62としてはPP材を1表層部63と
してはPE材を用いた。芯材部62は、直径約0.8圓
1表層部63は厚み約0.1+nmである。
The thermoplastic carrier has a core portion 62 as shown in FIG.
A granular thermoplastic carrier 6 consisting of a surface layer 63 and a surface layer 63 was used. Here, the core portion 62 was made of PP material, and the surface layer portion 63 was made of PE material. The core portion 62 has a diameter of approximately 0.8 mm and the surface layer portion 63 has a thickness of approximately 0.1+nm.

有機高分子化合物に対する熱可塑性樹脂パウダーの添加
割合は、第1実施例と同様であった。
The addition ratio of the thermoplastic resin powder to the organic polymer compound was the same as in the first example.

次いで、上記のごとく、熱可塑性担体に塗布したものを
、上記熱可塑性樹脂パウダー及び熱可塑性担体の表層部
63における各融着温度以上の150°Cに加熱して9
本発明にかかる担体付き燃料吸収体を得た。その他は1
第1実施例と同様である。
Next, as described above, the material coated on the thermoplastic carrier is heated to 150° C., which is higher than the melting temperature of the thermoplastic resin powder and the surface layer portion 63 of the thermoplastic carrier.
A fuel absorbent with a carrier according to the present invention was obtained. Others are 1
This is the same as the first embodiment.

このようにして得た燃料吸収体は、第2図に示すごとく
、芯材部62と表層部63とからなる熱可塑性担体6の
表面に、微粒状ポリマー50が融着されてなるものであ
る。そして、各微粒状ポリマー50はその表面の熱可塑
性パウダー52によって融着されている。この燃料吸収
体を試料2とする。
The thus obtained fuel absorber is, as shown in FIG. 2, in which fine particulate polymer 50 is fused to the surface of a thermoplastic carrier 6 consisting of a core portion 62 and a surface layer portion 63. . Each particulate polymer 50 is fused with thermoplastic powder 52 on its surface. This fuel absorber will be referred to as Sample 2.

第3実施例 上記第1.第2実施例において得た。試料No、 12
の燃料吸収体について、その特性を測定した。
Third Embodiment The first example above. Obtained in the second example. Sample No. 12
The characteristics of the fuel absorber were measured.

即ち、まず燃料の吸脱サイクル耐久性に関しては、燃料
吸収体を100メツシユステンレス金網容器に入れ、こ
れらをトルエン中に24時間浸漬した。そして、取り出
した直後の燃料吸収体について上方より荷重を加え、粉
砕された時点での粉砕荷重(gf)を測定した。
That is, first, regarding the fuel adsorption/desorption cycle durability, the fuel absorbers were placed in a 100 mesh stainless wire mesh container and immersed in toluene for 24 hours. Then, a load was applied from above to the fuel absorber immediately after it was taken out, and the crushing load (gf) at the time of crushing was measured.

また、燃料吸収体の燃料捕捉能力についてはまず試料を
約0.2g(熱可塑性担体0.1gを含む)、上記と同
様の金網容器(重量■)中に入れ秤量する。このときの
1重量をWとする。そして、各試料を金網容器と共に、
燃料としてのトルエン中に浸漬し、第1表に示す時間毎
に取り出して各重量Yを秤量する。
As for the fuel capture ability of the fuel absorber, first about 0.2 g of a sample (including 0.1 g of thermoplastic carrier) is placed in a wire mesh container (weight: ■) similar to the above and weighed. One weight at this time is assumed to be W. Then, each sample was placed in a wire mesh container.
It is immersed in toluene as a fuel, taken out at intervals shown in Table 1, and its weight Y is weighed.

そして、下式により、各時間毎の燃料吸収層(%)を算
出した。
Then, the fuel absorption layer (%) for each hour was calculated using the following formula.

測定結果を第1表に示す。The measurement results are shown in Table 1.

また、比較のため、第1実施例において、バインダーと
しての熱可塑性樹脂パウダーは添加することなく反応を
行い、生クリーム状の高分子ゲル微粒体を採取した。そ
して、熱可塑性担体に塗布することなく、造粒して燃料
吸収体を得fこ。これを、試料No、CIとする。また
、その測定結果を第1表に併示した。
For comparison, in Example 1, the reaction was carried out without adding thermoplastic resin powder as a binder, and fresh cream-like polymer gel particles were collected. Then, it is granulated to obtain a fuel absorber without applying it to a thermoplastic carrier. This is designated as sample No. CI. The measurement results are also shown in Table 1.

第1表より知られるごとく5本発明にかかる燃料吸収体
(試料Nα1.2)は、いずれも比較試料NαC1に比
して、高い粉砕荷重を示している。これはバインダーと
しての熱可塑性樹脂パウダーによって 各微粒状ポリマ
ーが結合され、またこれらは熱可塑性担体の融着によっ
ても結合されて熱量吸収体全体として強度が高いためで
ある。
As can be seen from Table 1, all of the fuel absorbers according to the present invention (sample Nα1.2) exhibit a higher crushing load than the comparative sample NαC1. This is because each particulate polymer is bonded by the thermoplastic resin powder as a binder, and these particles are also bonded by the fusion of the thermoplastic carrier, giving the heat absorber as a whole a high strength.

それ故1本発明の燃料吸収体は燃料の吸脱サイクルに対
しても優れた耐久性を発揮する。
Therefore, the fuel absorber of the present invention exhibits excellent durability against fuel adsorption and desorption cycles.

また、燃料捕捉性能に関しても、高い吸収度を発揮する
ことが分る。
Furthermore, regarding the fuel trapping performance, it can be seen that it exhibits a high degree of absorption.

これに対して、バインダーとしての熱可塑性樹脂パウダ
ー、及び熱可塑性担体を用いていない比較試料C1は、
吸収度は非常に高いものの、微粒状ポリマーが熱可塑性
担体更には熱可塑性担体によって結合されていないため
、燃料吸収時の粉砕荷重がかなり低い。それ故、吸脱サ
イクルの耐久性が悪い。
On the other hand, comparative sample C1, which does not use thermoplastic resin powder as a binder and thermoplastic carrier,
Although the absorption is very high, the crushing load during fuel absorption is quite low because the particulate polymer is not bound by a thermoplastic carrier or even a thermoplastic carrier. Therefore, the durability of the adsorption/desorption cycle is poor.

第4実施例 本発明の燃料吸収体を自動車用キャニスタに使用した例
につき、第3図により説明する。
Fourth Embodiment An example in which the fuel absorber of the present invention is used in an automobile canister will be explained with reference to FIG.

木キャニスタ1は、同図に示すごとく、燃料吸収体を収
容する容器である本体10と、該本体lO内の吸収室2
に充填した燃料吸収体20とからなる。
As shown in the figure, the wooden canister 1 includes a main body 10, which is a container for accommodating a fuel absorber, and an absorption chamber 2 in the main body IO.
The fuel absorber 20 is filled with a fuel absorber 20.

本体10は1円筒状をなし、その上端に設けた蓋体11
及び底面に設けた底板12を有する。また、蓋体11に
は、吸収室2の中央付近まで先端部141を挿入した第
2導入パイプ14.同様に挿入した第1導入パイプ13
.及びパージ用パイプ16を固定する。
The main body 10 has a cylindrical shape, and a lid 11 is provided at the upper end of the main body 10.
and a bottom plate 12 provided on the bottom surface. In addition, a second introduction pipe 14 with a tip 141 inserted into the lid 11 up to the vicinity of the center of the absorption chamber 2. The first introduction pipe 13 inserted in the same way
.. and fix the purge pipe 16.

上記第1導入パイプ13は気化器フロート室81の上方
空間に連通し、第2導入バイブ14は燃料タンク82に
連通している。また、パージ用パイプ16はパージポー
ト85に連通している。また、底板12にはパージ空気
パイプ15を開口させる。上記の各パイプは、それぞれ
バルブ131142.151.161を有する。
The first introduction pipe 13 communicates with the space above the carburetor float chamber 81, and the second introduction vibe 14 communicates with the fuel tank 82. Further, the purge pipe 16 communicates with a purge port 85. Further, a purge air pipe 15 is opened in the bottom plate 12. Each of the above pipes has a respective valve 131142.151.161.

また1本体10内において1吸収室2の下方には多孔板
17を、上方には多孔板18を配設する。
Further, within one main body 10, a perforated plate 17 is disposed below one absorption chamber 2, and a perforated plate 18 is disposed above one absorption chamber 2.

また、多孔板17はスプリング101により上方へ、多
孔板18はスプリング102により下方へ押圧されてい
る。なお、同図において8はガソリンである。
Further, the perforated plate 17 is pressed upward by a spring 101, and the perforated plate 18 is pressed downward by a spring 102. In addition, in the same figure, 8 is gasoline.

しかして、このキャニスタ1による蕉発燃料の捕捉は、
上記のごとく、気化器フロート室81又は燃料タンク8
2において蒸発したガソリン蒸気が、第1又は第2導入
パイプ13.14より、キャニスタ1内の吸収室2内に
入り込み、燃料吸収体20と接触して、これに吸収され
る。この吸収の際には、上記導入パイプ13.14の弁
131142は開かれており、パージ用パイプ16の弁
161、パージ空気バイブ15の弁151は閉しられて
いる。
However, the capture of the fuel from the fire by this canister 1 is as follows.
As mentioned above, the carburetor float chamber 81 or the fuel tank 8
Gasoline vapor evaporated in step 2 enters the absorption chamber 2 in the canister 1 through the first or second introduction pipe 13, 14, contacts the fuel absorber 20, and is absorbed therein. During this absorption, the valve 131142 of the introduction pipe 13.14 is opened, and the valve 161 of the purge pipe 16 and the valve 151 of the purge air vibe 15 are closed.

上記の吸収は、前記燃料吸収体20がガソリンを捕捉し
膨潤することにより生ずる。
The above absorption occurs when the fuel absorber 20 traps gasoline and swells.

そして、これらの燃料吸収体が多くのガソリン蒸気を吸
収した時点においては、燃料吸収体の再生を行う。また
、繰り返し使用後は、蓋体11を取り外して新しい燃料
吸収体と交換する。
When these fuel absorbers have absorbed a large amount of gasoline vapor, the fuel absorbers are regenerated. After repeated use, the lid 11 is removed and replaced with a new fuel absorber.

上記の再生は、上記答弁131.142,151.16
1の開閉を、上記吸収時とは逆にして。
The above reproduction is based on the above answer 131.142, 151.16.
Open and close 1 in the opposite direction to the above for absorption.

上記パージ空気バイブ15より空気を送入することによ
り行う。そして、上方のパージ用パイプ16より排ガス
をパーツポート85へ排出する。このとき、送入された
空気は、燃料吸収体に吸収されているガソリンを離脱さ
せ、上記のごとく排出する役目をする。
This is done by supplying air from the purge air vibrator 15. Then, exhaust gas is discharged from the upper purge pipe 16 to the parts port 85. At this time, the introduced air serves to separate the gasoline absorbed by the fuel absorber and discharge it as described above.

上記のごとく、吸収、再生の吸脱サイクルを行うことに
より、燃料吸収体を繰り返し使用し、蒸発燃料としての
ガソリン茶気を高能率で捕捉することができる。
By carrying out the adsorption/desorption cycle of absorption and regeneration as described above, the fuel absorber can be used repeatedly and gasoline brown vapor as evaporated fuel can be captured with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1実施例の担体付き燃料吸収体における微粒
状ポリマーの結合状態の説明図、第2図は第2実施例の
担体付き燃料吸収体における微粒状ポリマーの結合状態
の説明図、第3同は第4実施例におけるキャニスタの説
明図である。 101.キャニスク 20゜ 8゜ 5゜ 50゜ 52゜ 63゜ 3.吸収室。 0.燃料吸収体 0.ガソリン 1.燃料吸収体 1.微粒状ポリマー 9.熱可塑性樹脂パウダー層 60、、、熱可塑性担体 8.芯材部 11表層部 豊田合成株式会社 株式会社豊田中央研究所 代理人 弁理士  高 橋 祥 泰
FIG. 1 is an explanatory diagram of the bonding state of fine particulate polymers in the fuel absorber with a carrier of the first embodiment, FIG. 2 is an explanatory diagram of the bonding state of the fine particulate polymers in the fuel absorber with a carrier of the second embodiment, The third figure is an explanatory diagram of the canister in the fourth embodiment. 101. Canisk 20°8°5°50°52°63°3. absorption chamber. 0. Fuel absorber 0. Gasoline 1. Fuel absorber 1. Particulate polymer9. Thermoplastic resin powder layer 60, . . . Thermoplastic carrier 8. Core material part 11 surface layer Toyoda Gosei Co., Ltd. Toyota Central Research Institute Co., Ltd. Agent Patent attorney Yoshiyasu Takahashi

Claims (3)

【特許請求の範囲】[Claims] (1)燃料捕捉機能を有する有機高分子化合物を溶媒に
溶解し、その溶液にバインダー用の熱可塑性樹脂パウダ
ーを添加混合し、その後前記有機高分子化合物反応用の
架橋剤存在下で反応を行い、反応終了後上記熱可塑性樹
脂パウダーを含む高分子ゲルを採取し、これを熱可塑性
担体に塗布し、乾燥後、 前記熱可塑性樹脂パウダーが互いに融着する温度で、か
つ上記熱可塑性担体の表面の融着温度に加熱して、担体
付きの燃料吸収体を得ることを特徴とする燃料吸収体の
製造方法。
(1) An organic polymer compound having a fuel trapping function is dissolved in a solvent, a thermoplastic resin powder for a binder is added and mixed to the solution, and then a reaction is performed in the presence of a crosslinking agent for the reaction of the organic polymer compound. After completion of the reaction, collect the polymer gel containing the thermoplastic resin powder, apply it to a thermoplastic carrier, dry it, and apply it to the surface of the thermoplastic carrier at a temperature at which the thermoplastic resin powders fuse together. 1. A method for producing a fuel absorber, the method comprising heating the fuel absorber to a fusion temperature of 100 to obtain a fuel absorber with a carrier.
(2)燃料捕捉機能を有する有機高分子化合物を溶媒に
溶解し、その後溶液を別途準備した分散剤含有溶液中に
撹拌しながら添加して反応を行い、反応終了後高分子ゲ
ル微粒体を採取し、次いで該高分子ゲル微粒体に熱可塑
性樹脂パウダーを添加混合し、その後これを熱可塑性担
体に塗布し、乾燥後。 上記熱可塑性樹脂パウダーが融着する温度で、かつ上記
熱可塑性担体の表面の融着温度に加熱して、担体付きの
燃料吸収体を得ることを特徴とする燃料吸収体の製造方
法。
(2) Dissolve an organic polymer compound with a fuel capture function in a solvent, then add the solution to a separately prepared dispersant-containing solution while stirring to perform a reaction, and collect polymer gel particles after the reaction is complete. Next, a thermoplastic resin powder is added and mixed with the polymer gel fine particles, and then this is applied to a thermoplastic carrier and dried. A method for manufacturing a fuel absorber, which comprises heating the thermoplastic resin powder to a temperature at which the thermoplastic resin powder fuses and to a temperature at which the surface of the thermoplastic carrier fuses to obtain a fuel absorber with a carrier.
(3)第1又は第2請求項において、熱可塑性担体は芯
材部とその表面に設けた表層部とよりなり、該表層部は
、上記芯材部よりも低い融点を有していることを特徴と
する燃料吸収体の製造方法。
(3) In the first or second claim, the thermoplastic carrier consists of a core part and a surface layer part provided on the surface thereof, and the surface layer part has a lower melting point than the core part. A method for manufacturing a fuel absorber characterized by:
JP2114373A 1990-04-28 1990-04-30 Manufacturing method of fuel absorber Expired - Fee Related JP2549572B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2114373A JP2549572B2 (en) 1990-04-30 1990-04-30 Manufacturing method of fuel absorber
US07/687,470 US5174938A (en) 1990-04-28 1991-04-19 Process for producing fuel absorbent
DE69123060T DE69123060T2 (en) 1990-04-28 1991-04-25 Process for producing a fuel adsorbing material
EP93118099A EP0585975B1 (en) 1990-04-28 1991-04-25 Process for producing fuel absorbent
EP91106706A EP0455143A1 (en) 1990-04-28 1991-04-25 Process for producing fuel absorbent
CA002041287A CA2041287A1 (en) 1990-04-28 1991-04-26 Process for producing fuel absorbent
US07/953,805 US5348929A (en) 1990-04-28 1992-11-02 Fuel absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2114373A JP2549572B2 (en) 1990-04-30 1990-04-30 Manufacturing method of fuel absorber

Publications (2)

Publication Number Publication Date
JPH0411947A true JPH0411947A (en) 1992-01-16
JP2549572B2 JP2549572B2 (en) 1996-10-30

Family

ID=14636075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2114373A Expired - Fee Related JP2549572B2 (en) 1990-04-28 1990-04-30 Manufacturing method of fuel absorber

Country Status (1)

Country Link
JP (1) JP2549572B2 (en)

Also Published As

Publication number Publication date
JP2549572B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
EP0585975B1 (en) Process for producing fuel absorbent
KR20070100898A (en) Sorption-type heat exchange module and process for producing the same
JP4674199B2 (en) PSA equipment
JPH0411947A (en) Production of fuel absorber
US5418203A (en) Fuel absorbent and a process for making the fuel absorbent
JPH0830452B2 (en) Fuel evaporation prevention device
JP2549571B2 (en) Manufacturing method of fuel absorber
JP2592704B2 (en) Manufacturing method of fuel absorber
JPH0411944A (en) Production of fuel absorber
JP2592705B2 (en) Manufacturing method of fuel absorber
JPH0626646B2 (en) Fuel evaporation prevention device
JPH1157377A (en) Adsorbent-encapsulating porous vessel
KR20030029026A (en) High-molecular gelling agent precursor for electrolyte
JP2005325708A (en) Canister
JPH03130570A (en) Trapper and capture absorbing agent and unit for fuel or the like
KR20220110590A (en) air filter media
GB2305139A (en) Coated absorbent particles for a carbon dioxide scrubber system
JP2003178797A (en) Polymer gelling agent precursor for electrolyte
JPH05202818A (en) Evaporate fuel disposal device
WO2000024648A1 (en) Pouch assembly for moisture control
CN115364828B (en) Air purification material and air purification charcoal bag
EP0517257B1 (en) Fuel absorbent
MXPA04002252A (en) Consumable container comprising a filter.
JP4211551B2 (en) Aldehyde scavenger and aldehyde scavenger coating material
JPS6323346Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees