JPH04119225A - Slide bearing - Google Patents

Slide bearing

Info

Publication number
JPH04119225A
JPH04119225A JP23494790A JP23494790A JPH04119225A JP H04119225 A JPH04119225 A JP H04119225A JP 23494790 A JP23494790 A JP 23494790A JP 23494790 A JP23494790 A JP 23494790A JP H04119225 A JPH04119225 A JP H04119225A
Authority
JP
Japan
Prior art keywords
cylinder
outer cylinder
intermediate cylinder
thermal expansion
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23494790A
Other languages
Japanese (ja)
Inventor
Tomihisa Kawakami
川上 富久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23494790A priority Critical patent/JPH04119225A/en
Publication of JPH04119225A publication Critical patent/JPH04119225A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent relative rotation between members and avoid decrease of bearing function so as to extend the service life of bearing by pressure inserting an inner cylinder brought into face contact with a rotary shaft on its inner circumferential face in an intermediate cylinder, constructing a three- layered structure where an outer cylinder is shrinkage fitted to this intermediate cylinder, while setting properly the Young's modulas of the inner cylinder. CONSTITUTION:A sliding bearing 1 has a three-layered structure of an inner cylinder 3 made of ceramics such as silicon carbonate or silicone nitride to be bought into slide contact with a rotary shaft 2 on its inner face, an intermediate cylinder 4 into which the inner cylinder 3 is presure fitted and an outer cylinder 5 shrinkage fitted to the intermediate cylinder 4. The thermal expansion coefficients of inner, intermediate and outer cylinder alpha1, alpha2, alpha3 have a relation of alpha2>alpha3>alpha1 while the Young's moduli E1, E2, E3 thereof have a relation of E2>E3>E1. A thermal expansion absorbing groove 6 of the intermediate cylinder 4 is formed at the inner circumference 5a of the outer cylinder 5, that is the shrinkage fitted face 5a.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1例えば室軸ポンプの軸受のように、揚水運転
時には自揚水によって潤滑および冷却がなされ、またド
ライ運転時においては、自揚水による潤滑および冷却が
遮断された状態で主軸(回転軸)を軸支することができ
るすべり軸受に係り、特に、ドライ運転時の摩擦熱など
の外因によって軸受が昇温しても、軸受機能が低下しな
いようになされたすべり軸受に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides 1 for example bearings of indoor shaft pumps, which are lubricated and cooled by self-pumped water during pumping operation, and are lubricated and cooled by self-pumped water during dry operation. Regarding sliding bearings that can support the main shaft (rotating shaft) with lubrication and cooling cut off, the bearing function deteriorates even if the bearing temperature rises due to external factors such as frictional heat during dry operation. This relates to a sliding bearing designed to prevent

[従来の技術] 室軸ポンプの軸受のように、自揚水によって潤滑および
冷却がなされた状態で主軸を軸支して安定運転するとと
もに、ドライ運転時においては、自揚水による潤滑およ
び冷却が遮断された状態で主軸を軸支して安定運転させ
る軸受として、一般に、第2図に示すセラミック軸受が
採用されている。
[Conventional technology] Like the bearings of indoor shaft pumps, the main shaft is pivotally supported while being lubricated and cooled by self-pumped water for stable operation, and during dry operation, the lubrication and cooling by self-pumped water are cut off. A ceramic bearing shown in FIG. 2 is generally used as a bearing that supports the main shaft in a stable state and allows stable operation.

このすべり軸受は、リング状またはセグメント状のセラ
ミックス製の内筒lOにステンレス製の外筒(シェル)
2を焼ばめして固定することによって円筒状軸受体が構
成されている。
This sliding bearing consists of a ring-shaped or segment-shaped ceramic inner cylinder lO and a stainless steel outer cylinder (shell).
A cylindrical bearing body is constructed by shrink-fitting and fixing 2.

[発明が解決しようとする課111 ところが、前記従来のすべり軸受では、熱膨張係数の小
さい内筒10に熱膨張係数の大きい外筒20を焼ばめし
た2層構造になっているから、ドライ運転時の摩擦熱に
よって昇温すると、外筒20が内筒よりも高い比率で膨
張することになり、外筒20による内筒lOの保持力が
小さくなる。
[Issue to be Solved by the Invention 111 However, the conventional sliding bearing has a two-layer structure in which the outer cylinder 20, which has a large coefficient of thermal expansion, is shrink-fitted to the inner cylinder 10, which has a small coefficient of thermal expansion. When the temperature rises due to frictional heat during operation, the outer cylinder 20 expands at a higher rate than the inner cylinder, and the holding force of the outer cylinder 20 on the inner cylinder IO becomes smaller.

したがって、両者10.20の間に相対回転が生じて軸
受機能を低下させることになる。
Therefore, relative rotation occurs between the two 10.20, which deteriorates the bearing function.

具体的には、焼ばめ応力が両者10.20の限界許容値
に達するような大きい冷却収縮代(以下、単に収縮代と
いう)をもって焼ばめされていたとしても、内筒10お
よび外筒20が100℃程度に昇温することで、収縮代
の消失がみられ、外筒20による内筒10の保持力がき
わめて小さくなって両者10.20間に相対回転を生じ
、軸受機能を低下させることが確認されている。
Specifically, even if the shrink fit is performed with a large cooling shrinkage allowance (hereinafter simply referred to as shrinkage allowance) such that the shrink fit stress reaches the limit tolerance value of 10.20, the inner cylinder 10 and the outer cylinder When the temperature of 20 rises to about 100°C, the shrinkage allowance disappears, and the holding force of the inner cylinder 10 by the outer cylinder 20 becomes extremely small, causing relative rotation between the two 10 and 20, which deteriorates the bearing function. It has been confirmed that

本発明は、このような事情に鑑みなされたもので、ドラ
イ運転時の摩擦熱などの外因によって昇温したとしても
、大きい保持力を確保することにより部材間の相対回転
が防止され、軸受機能の低下を回避して、延命化を達成
できるすべり軸受の提供を目的とする。
The present invention was developed in view of these circumstances, and even if the temperature rises due to external causes such as frictional heat during dry operation, by ensuring a large holding force, relative rotation between members is prevented, and the bearing function is maintained. The purpose of the present invention is to provide a sliding bearing that can prolong its life by avoiding a decrease in

[課題を解決するための手段] 前記目的を達成するために、本発明は、内周面が回転軸
と面接触する内筒を中間筒に圧入し、この中間筒に外筒
が焼ばめされた3暦に構成されるとともに、内筒の熱膨
張係数αl 、中間筒の熱膨張係数α2 、外筒の熱膨
張係数α3の関係がα2〉α3〉α1に設定され、かつ
内筒のヤング率E、中間筒のヤング率E2  、外筒の
ヤング率E3の関係がE2 <E3 <E、に設定され
ているものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention press-fits an inner cylinder whose inner peripheral surface is in surface contact with a rotating shaft into an intermediate cylinder, and shrink-fits an outer cylinder to the intermediate cylinder. In addition, the relationship among the thermal expansion coefficient αl of the inner cylinder, the thermal expansion coefficient α2 of the intermediate cylinder, and the thermal expansion coefficient α3 of the outer cylinder is set to α2>α3>α1, and the Young The relationship among the modulus E, the Young's modulus E2 of the intermediate cylinder, and the Young's modulus E3 of the outer cylinder is set to satisfy E2 < E3 < E.

また、外筒の焼ばめ面に中間筒の熱膨張吸収用溝を形成
する場合もある。
In some cases, grooves for absorbing thermal expansion of the intermediate cylinder are formed on the shrink-fitting surface of the outer cylinder.

[作用] 本発明によれば、ドライ運転時の摩擦熱などの外因によ
って、内筒、中間筒および外筒がそれぞれ昇温すると、
熱膨張率の最も高い中間筒の拡径が、これよりも熱膨張
率が低くヤング率の大きい外筒によって抑えられる。
[Function] According to the present invention, when the temperature of the inner cylinder, intermediate cylinder, and outer cylinder increases due to external causes such as frictional heat during dry operation,
The diameter expansion of the intermediate cylinder, which has the highest coefficient of thermal expansion, is suppressed by the outer cylinder, which has a lower coefficient of thermal expansion and a larger Young's modulus.

中間筒の膨張拡径が抑えられることによって、縮径方向
への反力を生じ、この反力で内筒を締付ける。つまり昇
温時でも焼ばめ後の冷却収縮力にほぼ等しい締付力によ
って中間筒が内筒を締付けるように設計し得るので、中
間筒による内筒の保持力が低下しないから、熱膨張率が
低く、膨張拡径の小さい特性を有する材料で内筒が形成
されていても、中間筒との相対回転が防止されることに
なる。
By suppressing expansion and diameter expansion of the intermediate cylinder, a reaction force is generated in the diameter reduction direction, and this reaction force tightens the inner cylinder. In other words, even when the temperature rises, the intermediate cylinder can be designed to tighten the inner cylinder with a tightening force that is approximately equal to the cooling shrinkage force after shrink fitting, so the holding force of the inner cylinder by the intermediate cylinder does not decrease, so the thermal expansion coefficient Even if the inner cylinder is made of a material that has a property of low expansion and diameter expansion, relative rotation with the intermediate cylinder will be prevented.

また、前記中間筒の膨張拡径を外筒によって抑えること
で、焼ばめ後の冷却収縮力にほぼ等しい締付力によって
外筒が中間筒を締付けるように設計し得るので、外筒に
よる中間筒の保持力が低下しないから、外筒と中間筒と
の相対回転も防止されることになる。
In addition, by suppressing the expansion and expansion of the intermediate cylinder with the outer cylinder, it is possible to design the outer cylinder to tighten the intermediate cylinder with a tightening force that is approximately equal to the cooling contraction force after shrink fitting. Since the holding force of the cylinder does not decrease, relative rotation between the outer cylinder and the intermediate cylinder is also prevented.

そして、外筒の焼ばめ面に熱膨張吸収用溝を形成するこ
とによって、高温時における中間筒の過剰膨張を吸収し
て過大応力の発生を防止するように働くことになる。
By forming a thermal expansion absorbing groove on the shrink-fitting surface of the outer cylinder, excessive expansion of the intermediate cylinder at high temperatures is absorbed and the generation of excessive stress is prevented.

[実施例] 以下1本発明の実施例を図面に基づいて説明する。[Example] An embodiment of the present invention will be described below based on the drawings.

第1図は本発明の一実施例を示す半裁縦断面図であり、
この図において、すべり軸受lは、内周面が回転軸2と
すべり接触(面接触)する炭化ケイ素もしくは窒化ケイ
素などのセラミックス製の内筒3と、この内@3を圧入
した1例えばジュラルミン製の中間筒4および該中間v
I4に焼ばめされた1例えばステンレス製の外筒5から
なる3層構造になっている。
FIG. 1 is a half-cut vertical cross-sectional view showing an embodiment of the present invention;
In this figure, the sliding bearing 1 includes an inner cylinder 3 made of ceramic such as silicon carbide or silicon nitride whose inner peripheral surface is in sliding contact (surface contact) with the rotating shaft 2, and a cylinder 3 made of duralumin, for example, into which the inner cylinder 3 is press-fitted. The intermediate cylinder 4 and the intermediate cylinder v
It has a three-layer structure consisting of an outer cylinder 5 made of stainless steel, for example, which is shrink-fitted to the I4.

したがって、内筒3の熱膨張係数αlと、中間筒4の熱
膨張係数α2および外筒5の熱膨張係数α3は、α2>
α3>α1の関係を有し、かつ内筒3のヤング率E1と
、中間筒4のヤング率E2および外筒5のヤング率E3
は、 E2 <E3 <Elの関係を有していることに
なる。
Therefore, the thermal expansion coefficient αl of the inner cylinder 3, the thermal expansion coefficient α2 of the intermediate cylinder 4, and the thermal expansion coefficient α3 of the outer cylinder 5 are α2>
They have the relationship α3>α1, and the Young's modulus E1 of the inner cylinder 3, the Young's modulus E2 of the intermediate cylinder 4, and the Young's modulus E3 of the outer cylinder 5.
has the relationship E2 < E3 < El.

そして、外筒5の内周面5a、つまり焼ばめ面5aに中
間筒4の熱膨張吸収用溝6が形成される場合もある。
Thermal expansion absorbing grooves 6 of the intermediate cylinder 4 may be formed on the inner circumferential surface 5a of the outer cylinder 5, that is, the shrink fit surface 5a.

このような構成であれば、ドライ運転時の摩擦熱などの
外因によって、内筒3.中間筒4および外筒5がそれぞ
れ昇温した場合には、[中間筒4〉外筒5〉内筒3」の
関係を有して膨張拡径することになる。
With such a configuration, the inner cylinder 3. When the temperature of the intermediate cylinder 4 and the outer cylinder 5 rises, they expand and expand in diameter with the relationship: [intermediate cylinder 4>outer cylinder 5>inner cylinder 3''.

しかし、中間筒4の膨張拡径は、これよりも熱膨張率の
低い外筒5によって抑えられる。そのために、中間筒4
にE2 <E3 <Elの関係によって縮径方向への反
力が生じ、この反力で内筒3を締付けることになる。
However, the expansion and diameter expansion of the intermediate cylinder 4 is suppressed by the outer cylinder 5 having a lower coefficient of thermal expansion than this. For this purpose, the intermediate cylinder 4
Due to the relationship E2 < E3 < El, a reaction force is generated in the diameter reduction direction, and the inner cylinder 3 is tightened by this reaction force.

即ち、昇温時でも収縮代が消失せず、焼ばめ後の冷却収
縮力にほぼ等しい締付力によって中間筒4が内筒3を締
付けることになる。
That is, the shrinkage allowance does not disappear even when the temperature rises, and the intermediate cylinder 4 tightens the inner cylinder 3 with a tightening force that is approximately equal to the cooling shrinkage force after shrink fitting.

そのために、高い保持力で内筒3が保持されるので、セ
ラミックスのように熱膨張率が低く、膨張拡径の小さい
特性を有する材料によって内筒3が形成されていても、
中間筒4との相対回転が防止されるから、軸受機能の低
下を回避して、すべり軸受lの延命化を達成することが
できる。
Therefore, the inner cylinder 3 is held with a high holding force, so even if the inner cylinder 3 is made of a material such as ceramics, which has a low coefficient of thermal expansion and a characteristic of small expansion and diameter expansion,
Since relative rotation with the intermediate cylinder 4 is prevented, deterioration of the bearing function can be avoided and the life of the sliding bearing 1 can be extended.

また、中間筒4の膨張拡径を外筒5によって抑えること
で、焼ばめ後の冷却収縮力にほぼ等しい締付力によって
外筒5が中間筒4を締付けることになる。したがって、
外筒5により高い保持力で中間筒4が保持されるので、
外筒5と中間筒4との相対回転が防止されることになり
、この点からも軸受機能の低下を回避して、すべり軸受
lの延命化を達成することができる。
Further, by suppressing expansion and diameter expansion of the intermediate cylinder 4 by the outer cylinder 5, the outer cylinder 5 tightens the intermediate cylinder 4 with a tightening force that is approximately equal to the cooling contraction force after shrink fitting. therefore,
Since the intermediate cylinder 4 is held with a high holding force by the outer cylinder 5,
Relative rotation between the outer cylinder 5 and the intermediate cylinder 4 is prevented, and from this point as well, deterioration in bearing function can be avoided and the life of the slide bearing 1 can be extended.

さらに、外筒5の焼ばめ面5aに形成した熱膨張吸収用
溝6は、高温時における中間筒4の過剰膨張を吸収する
ことができるから、内筒3.中間筒4および外筒5のそ
れぞれに過大応力が発生して、すべり軸受1が破壊され
るような不都合を防止できる。つまり、外筒5の焼ばめ
面5aに熱膨張吸収用溝6を形成することで、すべり軸
受lの高温破壊を防止して延命化の達成に寄与する。
Furthermore, the thermal expansion absorbing grooves 6 formed in the shrink fit surface 5a of the outer cylinder 5 can absorb excessive expansion of the intermediate cylinder 4 at high temperatures. It is possible to prevent problems such as excessive stress occurring in each of the intermediate cylinder 4 and the outer cylinder 5, causing the sliding bearing 1 to be destroyed. That is, by forming the thermal expansion absorbing groove 6 on the shrink-fitting surface 5a of the outer cylinder 5, high-temperature destruction of the sliding bearing 1 can be prevented and life extension can be achieved.

[発明の効果] 本発明は、前述のように構成されているので、以下に記
載されるような効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.

即ち、ドライ運転時の摩擦熱などの外因によって、内筒
、中間筒および外筒がそれぞれ昇温しても、大きい保持
力によって中間筒が内筒を保持し、かつ外筒が中間筒を
保持するので、3部材間の相対回転が防止され、軸受機
能の低下を回避して、すべり軸受の延命化を達成できる
In other words, even if the temperature of the inner cylinder, intermediate cylinder, and outer cylinder increases due to external factors such as frictional heat during dry operation, the intermediate cylinder will hold the inner cylinder due to the large holding force, and the outer cylinder will hold the intermediate cylinder. Therefore, relative rotation between the three members is prevented, deterioration of the bearing function is avoided, and the life of the sliding bearing can be extended.

また、熱膨張吸収用溝によって、すべり軸受の高温破壊
を防止して延命化達成に寄与することもできる。
Furthermore, the thermal expansion absorbing grooves can also prevent high-temperature destruction of the sliding bearing and contribute to extending its life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す半裁縦断面図、第2図
は従来例の半裁縦断面図である。 1・・・すべり軸受 2・・・回転軸 3・・・内筒 4・・・中間筒 5・・・外筒 5a・・・外筒の焼ばめ面 6・・・中間筒の熱膨張吸収用溝 特許出願人      株式会社 クボタ代 理 人 
     弁理士 鈴江 孝−第 図 第 図
FIG. 1 is a half-cut longitudinal sectional view showing an embodiment of the present invention, and FIG. 2 is a half-cut longitudinal sectional view of a conventional example. 1... Sliding bearing 2... Rotating shaft 3... Inner cylinder 4... Intermediate cylinder 5... Outer cylinder 5a... Shrink fit surface of outer cylinder 6... Thermal expansion of intermediate cylinder Absorption groove patent applicant Kubota Co., Ltd. Agent
Patent Attorney Takashi Suzue - Figure Figure

Claims (2)

【特許請求の範囲】[Claims] (1)内周面が回転軸と面接触する内筒を中間筒に圧入
し、この中間筒に外筒が焼ばめされた3層に構成される
とともに、内筒の熱膨張係数α_1、中間筒の熱膨張係
数α_2、外筒の熱膨張係数α_3の関係がα_2>α
_3>α_1に設定され、かつ内筒のヤング率E_1、
中間筒のヤング率E_2、外筒のヤング率E_5の関係
がE_2<E_3<E_1に設定されていることを特徴
とするすべり軸受。
(1) The inner cylinder, whose inner peripheral surface is in surface contact with the rotating shaft, is press-fitted into the intermediate cylinder, and the outer cylinder is shrink-fitted to the intermediate cylinder to form a three-layer structure. The relationship between the thermal expansion coefficient α_2 of the intermediate cylinder and the thermal expansion coefficient α_3 of the outer cylinder is α_2>α.
_3>α_1, and Young's modulus of the inner cylinder E_1,
A sliding bearing characterized in that the relationship between the Young's modulus E_2 of the intermediate cylinder and the Young's modulus E_5 of the outer cylinder is set to E_2<E_3<E_1.
(2)前記外筒の焼ばめ面に中間筒の熱膨張吸収用溝が
形成されている請求項1に記載のすべり軸受。
(2) The sliding bearing according to claim 1, wherein a thermal expansion absorbing groove of the intermediate cylinder is formed on the shrink-fitting surface of the outer cylinder.
JP23494790A 1990-09-04 1990-09-04 Slide bearing Pending JPH04119225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23494790A JPH04119225A (en) 1990-09-04 1990-09-04 Slide bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23494790A JPH04119225A (en) 1990-09-04 1990-09-04 Slide bearing

Publications (1)

Publication Number Publication Date
JPH04119225A true JPH04119225A (en) 1992-04-20

Family

ID=16978757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23494790A Pending JPH04119225A (en) 1990-09-04 1990-09-04 Slide bearing

Country Status (1)

Country Link
JP (1) JPH04119225A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170646A (en) * 1994-12-15 1996-07-02 Nippon Pillar Packing Co Ltd Holding structure for slide bearing
JP2008045537A (en) * 2006-08-10 2008-02-28 United Technol Corp <Utc> Ceramic shroud assembly and its assembling method
WO2011040164A1 (en) * 2009-09-29 2011-04-07 Ntn株式会社 Fluid dynamic bearing device
US8167546B2 (en) 2009-09-01 2012-05-01 United Technologies Corporation Ceramic turbine shroud support
JP2012520431A (en) * 2009-03-25 2012-09-06 イーグルブルクマン ジャーマニー ゲセルシャフト ミト ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Thermally isolated bearing device
US8328505B2 (en) 2006-08-10 2012-12-11 United Technologies Corporation Turbine shroud thermal distortion control
US11788616B2 (en) 2021-08-06 2023-10-17 Rolls-Royce Plc Journal bearing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170646A (en) * 1994-12-15 1996-07-02 Nippon Pillar Packing Co Ltd Holding structure for slide bearing
JP2008045537A (en) * 2006-08-10 2008-02-28 United Technol Corp <Utc> Ceramic shroud assembly and its assembling method
US8328505B2 (en) 2006-08-10 2012-12-11 United Technologies Corporation Turbine shroud thermal distortion control
US8801372B2 (en) 2006-08-10 2014-08-12 United Technologies Corporation Turbine shroud thermal distortion control
JP2012520431A (en) * 2009-03-25 2012-09-06 イーグルブルクマン ジャーマニー ゲセルシャフト ミト ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Thermally isolated bearing device
US8167546B2 (en) 2009-09-01 2012-05-01 United Technologies Corporation Ceramic turbine shroud support
WO2011040164A1 (en) * 2009-09-29 2011-04-07 Ntn株式会社 Fluid dynamic bearing device
US11788616B2 (en) 2021-08-06 2023-10-17 Rolls-Royce Plc Journal bearing

Similar Documents

Publication Publication Date Title
EP0894947B1 (en) Gas turbine interstage seal
JPH0235177B2 (en)
RU2002115064A (en) Turbomachine rotor assembly with two blades equipped with blades, separated by a spacer
JPH04119225A (en) Slide bearing
US3504917A (en) Seal for relatively rotatable parts
JP2603064B2 (en) Fixing device for ceramic bearings
JP2711434B2 (en) Slide bearing holding structure
US4384727A (en) Circumferential ring seal assembly
JPH05231423A (en) Thrust bearing of tilting pad type
JPH01249993A (en) Blower for high temperature gas
JP2000266041A (en) Ceramic bearing
JP2000266058A (en) Ceramic bearing
JPS6325373Y2 (en)
JP2001289328A (en) Sealing device
JPS6246718B2 (en)
JPS5814281Y2 (en) Seal ring shaft sealing device
JPH0730954Y2 (en) Loosening prevention structure in magnet pump
JPH1113894A (en) Mechanical seal
JPH05106633A (en) Dynamic pressure bearing
JPH0211609Y2 (en)
JPS63100293A (en) Swivel scroll supporting mechanism for scroll compressor
JPS6316936Y2 (en)
JP2597937B2 (en) bearing
JPS586079B2 (en) End cover seal structure
JPH04134963U (en) gas seal device