JPH04118110A - Device for cooling continuous strip like sheet - Google Patents

Device for cooling continuous strip like sheet

Info

Publication number
JPH04118110A
JPH04118110A JP23699390A JP23699390A JPH04118110A JP H04118110 A JPH04118110 A JP H04118110A JP 23699390 A JP23699390 A JP 23699390A JP 23699390 A JP23699390 A JP 23699390A JP H04118110 A JPH04118110 A JP H04118110A
Authority
JP
Japan
Prior art keywords
continuous strip
cooling
sheet
low
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23699390A
Other languages
Japanese (ja)
Other versions
JPH0651206B2 (en
Inventor
Toshio Kojika
小鹿 敏夫
Satoshi Nagakubo
長久保 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sojitz Corp
Original Assignee
Nissho Iwai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissho Iwai Corp filed Critical Nissho Iwai Corp
Priority to JP2236993A priority Critical patent/JPH0651206B2/en
Publication of JPH04118110A publication Critical patent/JPH04118110A/en
Publication of JPH0651206B2 publication Critical patent/JPH0651206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To quicken the cooling of the continuous strip like sheet of high temperature and to reduce the number of nozzles by increasing greatly cooling capacity by giving the low frequency acoustic wave to the gas for cooling. CONSTITUTION:The continuous strip like sheet of hot temperature can be cooled in a short time without changing the speed of the conventional jet air for cooling to collide to the continuous strip like sheet, by giving the low frequency acoustic wave, making the local vibrating speed of the gas molecule faster as the acoustic wave vibration speed of high speed than the wind speed, increasing the coefficient of heat transmission. Therefore, the miniaturizing for the cooling device can be realized and also the capacity of the blower can be made small. And because the distance between the deflect rollers can be shortened, the height of the cooling tower becomes low. And the pressure of jetting air can be made low or the jetting volume can be reduced, so the collidising force of the little. Therefore, there is an effect for making the oscillating volume of the continuous strip like sheet little, etc.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は高温装置にて連続繰出しする帯状金属板の冷
却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a cooling device for a band-shaped metal plate that is continuously fed out in a high-temperature device.

〈従来技術〉 従来、例えば高温のストリップ(連続して繰出される帯
状薄手鋼板)の如き連続帯状板を冷却する場合、高温の
ストリップの両面をエヤーノズルより噴射する空気にて
冷却する方法が一般に行われている。
<Prior art> Conventionally, when cooling a continuous band-shaped plate such as a high-temperature strip (a thin steel plate in the form of a band that is continuously fed out), a method of cooling both sides of the high-temperature strip with air jetted from an air nozzle has generally been carried out. It is being said.

〈発明が解決しようとする課題〉 この方法によると、冷却装置の冷却能力を高めるために
は、空気の噴射圧力p (kg/ cm″)を高くして
、空気のストリップへの衝突速度V +(1+/5ec
)を速くし、空気とストリップ間の熱伝達係数KCkc
aQ/ z”h℃)を大きくしたり、ノズル開口部の面
積を大きくして空気の風1iQ(Nx’/■in)を多
くしたり、或はノズルの数を増加して風量Q(Hz3/
5in)を増加せしめて冷却能力を高めたりしているが
、これらの手段は、いづれも冷却装置が大型化して、そ
のコストが大きくなるという欠点があった。
<Problems to be Solved by the Invention> According to this method, in order to increase the cooling capacity of the cooling device, the air injection pressure p (kg/cm'') is increased to increase the impingement velocity V + of the air against the strip. (1+/5ec
), and the heat transfer coefficient KCkc between the air and the strip
aQ/z''h℃), increase the area of the nozzle opening to increase the air flow 1iQ (Nx'/■in), or increase the number of nozzles to increase the airflow Q (Hz3 /
5 inches) to increase the cooling capacity, but all of these methods have the drawback of increasing the size of the cooling device and increasing its cost.

また、空気の噴射圧力p (kg/ cm” )を高く
したり、風量Q (Nip’/ win)を多くするこ
とは、空気のストリップへの衝突力F(&9)が大きく
なり、且つストリップ両面への空気の流れを全く対称。
In addition, increasing the air injection pressure p (kg/cm") or increasing the air volume Q (Nip'/win) increases the impact force F (&9) of the air on the strip, and Totally symmetrical air flow to.

均一とすることは実際上不可能であるため、上述の空気
のストリップへの衝突力F(&9)が大きくなる程、そ
のアンバランス力ΔF(kg)の絶対値も大きくなるた
めストリップの振れ量δ(II)が大きくなる欠点があ
る。
Since it is practically impossible to make it uniform, the greater the above-mentioned impact force F (&9) of the air on the strip, the greater the absolute value of the unbalanced force ΔF (kg), so the amount of deflection of the strip. There is a drawback that δ(II) becomes large.

このため、ストリップの振れ量が大きくなると、ストリ
ップがノズルオリイフィスの先端部や、その他ガイドな
どに接触して、ストリップ表面に擦り疵が発生するおそ
れがあり、これを避けるためにノズルオリイフィスの先
端とストリップとの間隙C(Ill)を大きくすると、
噴射エヤーかストリップに衝突する速度V + (x/
 see )が低下し、従って冷却効果が低下する欠点
があり、これをカバーするためには、益々エヤーの噴射
圧力p Ckg/ C1”)を高くしたり、風量Q (
N13/ i+in)を多くする必要があり、冷却装置
の一層の大型化を必要とした。
Therefore, if the deflection of the strip increases, there is a risk that the strip will come into contact with the tip of the nozzle orifice or other guides, causing scratches on the strip surface. When the gap C (Ill) between the tip and the strip is increased,
The velocity at which the blast air impinges on the strip V + (x/
There is a drawback that the air pressure (see ) decreases, and therefore the cooling effect decreases.
N13/i+in) needed to be increased, which necessitated an even larger cooling device.

これにより、実際上、空気噴射によるストリップの冷却
効果にはおのづ上限界を生じて、ストリップ冷却能力を
大きくするためには、ノズルの本数を増加して冷却帯の
長さを長くした大型冷却装置とせざるを得なかった。
As a result, in practice, there is an upper limit to the strip cooling effect of air injection, and in order to increase the strip cooling capacity, it is necessary to increase the number of nozzles and increase the length of the cooling zone. I had no choice but to use it as a device.

〈課題を解決するための手段〉 本発明は、これらの種々の欠点を改善し、上記連続帯状
板の冷却装置において、最大周波数的50Hzの低周波
音波を冷却用気体に与えることにより、冷却用気体と連
続帯状板の如き被冷却体との間の熱伝達を促進させるこ
とにより、冷却能力を向上させるようにしたのである。
<Means for Solving the Problems> The present invention improves these various drawbacks, and in the continuous strip plate cooling device described above, the cooling gas is improved by applying low frequency sound waves with a maximum frequency of 50 Hz to the cooling gas. The cooling capacity is improved by promoting heat transfer between the gas and the object to be cooled, such as a continuous strip.

一般に気体と固体間の熱伝達係数K (kca(1/ 
x”h℃)は気体と固体間の相対的速度V(i+/5e
e)が大きくなる程、増大することは良く知られている
Generally, the heat transfer coefficient K (kca(1/
x”h℃) is the relative velocity between gas and solid V(i+/5e
It is well known that the larger e) is, the larger it is.

本発明は従来の冷却用ノズル群より噴射されるエヤーに
低周波音波を与え、エヤーと連続帯状板間の熱伝達を促
進、向上させるものである。
The present invention applies low frequency sound waves to the air injected from a conventional cooling nozzle group to promote and improve heat transfer between the air and the continuous strip plate.

即ち、本発明によれば、従来の冷却用噴射エヤーが連続
帯状板に衝突する速度V 、 (1/ 5ee)を変え
ることなく、低周波音波を与えることにより、風速V 
r (z/ 5ec)より高速の音波振動速度V、(z
/5ee)として気体分子の局部的振動速度を速くし、
熱伝達係数K (kcal/ x″h℃)を増大せしめ
、短時間で高温の連続帯状板を冷却することができる。
That is, according to the present invention, the wind speed V can be increased by applying low frequency sound waves without changing the speed V, (1/5ee) at which the conventional cooling jet air collides with the continuous strip plate.
The acoustic vibration velocity V, (z
/5ee) to increase the local vibration speed of gas molecules,
By increasing the heat transfer coefficient K (kcal/x″h°C), it is possible to cool a high-temperature continuous strip plate in a short time.

従って、同じ高温連続帯状板を冷却する場合、本発明の
如く噴射エヤーに低周波音波を付与すれば、ノズルの数
を減少しても同一効果が得られるので、冷却装置の小型
化が実現できると共に、送風機の容量を小さくして済み
、省エネ効果を得られる利点がある。
Therefore, when cooling the same high-temperature continuous strip plate, if low-frequency sound waves are applied to the jet air as in the present invention, the same effect can be obtained even if the number of nozzles is reduced, and the cooling device can be made smaller. In addition, there is an advantage that the capacity of the blower can be reduced, resulting in an energy saving effect.

さらに冷却ゾーンが短くなると、例えば連続亜鉛メツキ
装置の如き高温連続帯状板を冷却する場合、第1図及び
第3図よりわかるようにデフレクトローラ−間の距離を
短くすることができ、従って、冷却タワーの高さを低く
することができるので、工場建屋の建設費も低減し得る
などの波及効果もある。
Moreover, if the cooling zone is shortened, the distance between the deflector rollers can be shortened, as can be seen from FIGS. Since the height of the cooling tower can be lowered, there are also ripple effects such as lower construction costs for factory buildings.

また、本発明のさらなる利点として、冷却用空気と連続
帯状板間の熱伝達係数K (kca(l/ x”h’c
 )が大きくなることから、噴射エヤー圧力p(kg/
C1t)ヲ低くシタリ、噴射量Q (Nx3/ lll
1n)を減少することができて、前述の噴射エヤーの連
続帯状板への衝突力F’(kg)を小さくすることがで
きる。従って、そのアンバランス力ΔF(&y)が小さ
くなるので、連続帯状板の振れ量δ(i+z)も小さく
なり、連続帯状板表面の擦り疵の発生防止に役立つと共
に、従来の、例えば連続亜鉛メツキ装置の如き、連続帯
状板処理設備をより高速のラインスピードにて操業する
ことができ、連続帯状板処理設備の能力を高め得る利点
もある。
Further, as a further advantage of the present invention, the heat transfer coefficient K (kca(l/ x"h'c
) increases, the injection air pressure p (kg/
C1t) Low and low injection amount Q (Nx3/ lll
1n) can be reduced, and the impact force F' (kg) of the above-mentioned injected air against the continuous strip plate can be reduced. Therefore, since the unbalanced force ΔF(&y) becomes smaller, the amount of deflection δ(i+z) of the continuous strip plate also becomes smaller, which helps to prevent scratches on the surface of the continuous strip plate and prevents the conventional method such as continuous galvanizing. There is also the advantage that continuous strip processing equipment, such as the apparatus, can be operated at higher line speeds, increasing the capacity of continuous strip processing equipment.

以上冷却気体をエヤーにて説明したが、気体はエヤーに
限らず如何なる気体(蒸気を含む)にも適用し得ること
は勿論である。
Although the cooling gas has been explained above using air, it goes without saying that the gas is not limited to air and can be applied to any gas (including steam).

さらに上述の例では、連続帯状板の冷却について説明し
たが、気体として加熱気体(蒸気を含む)を使用すれば
連続帯状板の乾燥に応用することも可能である。
Further, in the above example, cooling of a continuous strip plate was explained, but if heated gas (including steam) is used as the gas, it can also be applied to drying a continuous strip plate.

なお連続帯状板としてストリップを例に説明したが、連
続帯状板としては、ストリップ、紙、布。
Although the explanation has been given using a strip as an example of a continuous band-like plate, continuous band-like plates can also be strips, paper, or cloth.

フィルム、ビニールシートなどいかなる薄板の連続帯状
板にも利用しうるしのである。
It can be used for continuous strips of any kind of thin plate, such as films and vinyl sheets.

〈実施例〉 以下添附の図面に従ってさらに詳細にこの発明について
説明する。
<Example> The present invention will be described in more detail below with reference to the accompanying drawings.

第1図は従来の連続帯状板用冷却装置の構成を示すもの
である。連続帯状板lは2本のデフレクトローラ−2,
2′間を矢印方向に移動しながら、ノズル3から出る噴
射エヤーにて両面より冷却される。
FIG. 1 shows the configuration of a conventional cooling device for continuous strip plates. The continuous strip plate l has two deflection rollers 2,
While moving between 2' in the direction of the arrow, it is cooled from both sides by the jetted air from the nozzle 3.

このエヤーは送風機5より配管6を経て、分配箱7を介
してノズル3またはノズル群4より連続帯状板lに噴射
するようになっている。
This air passes through a pipe 6 from a blower 5, passes through a distribution box 7, and is injected from a nozzle 3 or a nozzle group 4 onto the continuous strip plate l.

このノズル群4は、連続帯状板lのラインスピードが速
い程、また冷却する連続帯状板lの温度が高い場合程、
多くのノズル3が必要になり、従って、デフレクトロー
ラ−2,2′間の距離り、が長くなる。
This nozzle group 4 operates as if the line speed of the continuous strip plate l is faster and the temperature of the continuous strip plate l to be cooled is higher.
A large number of nozzles 3 are required, and therefore the distance between the deflecting rollers 2, 2' becomes long.

このことは、連続帯状板用処理設備が種類によっては工
場建屋の屋根より高くなる結果を招き、建屋に対してこ
の部分のみタワーを増設しなければならないという事態
を生ずる。
Depending on the type of continuous strip processing equipment, this results in the equipment being higher than the roof of the factory building, resulting in a situation where a tower must be added to the building only in this area.

例えば連続亜鉛メツキ装置の設備においては、一般に第
1図のり、が建屋の屋根の高さよりも高く、従って、こ
の部分にタワーを設けている例が多い。
For example, in continuous galvanizing equipment, the height of the roof in FIG. 1 is generally higher than the height of the roof of the building, and therefore a tower is often installed in this area.

第2図は、ノズル3の詳細図、即ち、ノズルヘッダー8
及びノズルオリイフィス9より噴射するエヤーと連続帯
状板1との関係を示しており、噴射エヤーはノズルより
離れるにつれて幅広く拡散し、噴射エヤー速度V+(1
/5ec)はノズル開口部より離れるにつれて遅くなる
ことは一般に知られている事柄である。
FIG. 2 is a detailed view of the nozzle 3, namely the nozzle header 8.
and shows the relationship between the air injected from the nozzle orifice 9 and the continuous strip plate 1, and the injected air spreads widely as it moves away from the nozzle, and the injected air velocity V + (1
/5ec) is generally known to become slower as the distance from the nozzle opening increases.

このため、単に冷却効果のことのみを考えればノズルオ
リイフィス9と連続帯状板1間の距離g(aria)は
小さい程良いことになるが、連続帯状板lはノズル間方
向に振れながらラインの矢印方向に移動するので、連続
帯状板の表面に擦り疵が発生しないようにするためには
、プラント(連続帯状板処理装置)の種類に応じて、最
小限必要な間隙Q(WX)が存在しなければならないこ
とは前述の通りである。
Therefore, if we consider only the cooling effect, the smaller the distance g (aria) between the nozzle orifice 9 and the continuous strip plate 1, the better; however, the continuous strip plate l swings in the direction between the nozzles and Since it moves in the direction of the arrow, there is a minimum required gap Q (WX) depending on the type of plant (continuous strip processing equipment) to prevent scratches from occurring on the surface of the continuous strip. What you need to do is as described above.

第3図は従来の連続帯状板用冷却装置に、本発明の低周
波音波発生装置10を付設した装置を示す。
FIG. 3 shows an apparatus in which a low frequency sound generator 10 of the present invention is attached to a conventional cooling apparatus for continuous strip plates.

即ち、ノズル3またはノズル群4をケーシングで覆い、
この部分に低周波音波を与えるのである。
That is, the nozzle 3 or the nozzle group 4 is covered with a casing,
Low-frequency sound waves are applied to this area.

本発明の方式によると、従来の方式に較べて冷却効果が
高いので、ノズル群4が第1図に示す従来方式より少な
くて済み、従って、デフレクトローラ−2,2′間の距
離を従来のh+(zz)からり、(xm)に短縮するこ
とができるので前述のタワーの高さを低くしたり、場合
によっては建屋天井内にデフレクトローラ−2′を収納
設置することも可能となる利点がある。
According to the method of the present invention, the cooling effect is higher than that of the conventional method, so the number of nozzle groups 4 is smaller than that of the conventional method shown in FIG. Since h + (zz) can be shortened to (xm), it is possible to lower the height of the tower mentioned above, and in some cases, it is also possible to store and install the deflector roller 2' in the ceiling of the building. There are some advantages.

なお低周波音波は、例えば特公昭58−55834号公
報の如き低周波音波発生器にて付与することができる。
Note that the low frequency sound waves can be applied by a low frequency sound wave generator such as that disclosed in Japanese Patent Publication No. 58-55834, for example.

勿論この方式に限らずモーターによる回転運動や磁力を
利用してピストンを往復運動させて低周波音波を発生さ
せるなど、低周波音波発生器の形式は別に問わないもの
である。
Of course, the method is not limited to this method, and the type of low-frequency sound wave generator is not particularly limited, such as generating low-frequency sound waves by reciprocating a piston using rotational movement by a motor or magnetic force.

第4図は第3図のA−A矢視断面図であり、従来のノズ
ル3と低周波音波発生器W10の詳細構造及びノズル3
による噴射エヤー速度Vr(x/5ec)と、低周波音
波による低周波音波振動速度V、(x/5ee)の動き
との関係を示すものである。
FIG. 4 is a cross-sectional view taken along the line A-A in FIG.
This figure shows the relationship between the injected air velocity Vr (x/5ec) and the movement of the low frequency sound vibration velocity V, (x/5ee) caused by the low frequency sound wave.

即ち、低周波音波発生源11及び低周波音波の効果をよ
り効果的にするための共鳴管12とノズル3及びノズル
群4を覆う冷却箱13を示している。
That is, it shows a low frequency sound wave generation source 11, a resonance tube 12 for making the effect of the low frequency sound waves more effective, and a cooling box 13 that covers the nozzle 3 and nozzle group 4.

第1図に示す如く、送風機5から配管6を経て、分配箱
7を介してノズル3またはノズル群4より噴射されたエ
ヤーに低周波音波発生源11にて発生せしめた低周波音
波を低周波音波の波長の174の長さの共鳴管12を設
けることによりその共振現象を活用し、エヤーの低周波
音波振動速度vt(it/5ee)を増大し、連続帯状
板lとエヤー間の熱伝達を一層高めるものである。
As shown in FIG. 1, low-frequency sound waves generated by a low-frequency sound generation source 11 are applied to the air injected from the nozzle 3 or nozzle group 4 via the distribution box 7 through the pipe 6 from the blower 5. By providing a resonance tube 12 with a length of 174 times the wavelength of the sound wave, the resonance phenomenon is utilized to increase the low-frequency sound vibration velocity vt (it/5ee) of the air, and to improve the heat transfer between the continuous strip l and the air. This will further enhance the

第5図は低周波音波発生装置10′を分配箱7に設置し
た場合を示す。
FIG. 5 shows a case where the low frequency sound wave generator 10' is installed in the distribution box 7.

第6図は低周波音波発生装置10′を配管6に設置した
場合を示す。
FIG. 6 shows a case where the low frequency sound wave generator 10' is installed in the pipe 6.

第4.5.6図の如く、低周波音波発生装置10は設備
構造に応じて、取付方法を選択することができる。この
ことは、特に既存設備に低周波音波発生装置10.10
′を追加取付して改造する場合に、取付が容易であるこ
とを示している。
As shown in FIG. 4.5.6, the mounting method for the low frequency sound wave generator 10 can be selected depending on the equipment structure. This is especially true for existing equipment with low frequency sound generators 10.10.
This indicates that it is easy to install when modifying by adding .

〈発明の効果〉 本発明は以上のようにして、高温連続帯状板の冷却装置
において、各ノズルより噴射する冷却用の気体に低周波
音波を与えて冷却能力を飛躍的に増進させたので、高温
連続帯状板の冷却が促進されるために、ノズル数を減少
させることができるという効果を、生ずる。
<Effects of the Invention> As described above, the present invention dramatically increases the cooling capacity of a high-temperature continuous strip plate cooling device by applying low-frequency sound waves to the cooling gas injected from each nozzle. Since the cooling of the high-temperature continuous strip is promoted, the effect is that the number of nozzles can be reduced.

また冷却装置を小型化して送風機の容量を小さくするこ
とができる。さらに冷却ゾーンを短縮し得て、冷却タワ
ーの高さを低くして工場建屋の建設費を低減し得るとい
う波及効果も生ずる。
Furthermore, the cooling device can be downsized and the capacity of the blower can be reduced. Furthermore, the cooling zone can be shortened and the height of the cooling tower can be lowered, which has the ripple effect of reducing the construction cost of the factory building.

また、冷却用空気と連続帯状板間の熱伝達係数K (k
ca(1/ x’h’c )が大きくなるので、噴射エ
ヤー圧力p Ckg/ C1!” )を低くしたり、噴
射量Q(Nx”/5in)を減らして、噴射エヤーの連
続帯状板への衝突力FCkg)を小さくすることができ
るため、連続帯状板の振れ量δ(II)を小にして表面
の擦り疵の生ずることが防止されるという効果を生ずる
Also, the heat transfer coefficient K (k
Since ca (1/x'h'c) increases, the injection air pressure p Ckg/C1! ) or by reducing the injection amount Q(Nx''/5in), the collision force of the injected air against the continuous strip plate FCkg) can be reduced, so the deflection amount δ(II) of the continuous strip plate can be reduced. This has the effect of reducing surface scratches and preventing scratches on the surface.

また連続帯状板のラインスピードをより高速にして操業
能率を向上させることができるという効果を生ずる。
It also has the effect of increasing the line speed of the continuous strip plate to improve operational efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の連続帯状板用冷却装置の構成を示す正面
図及び同、側面図、第2図は同、ノズル部分の拡大図、
第3図は本発明の実施例装置を示す正面図及び同、側面
図、第4図は第3図工面図のA−A線断面図、第5図は
低周波音波発生器を分配管に付設した例を示す正面図及
び同、側面図、第6図は低周波音波発生器を配管部分に
設けた例を示す正面図及び同、側面図、lは連続帯状板
、2.2′はデフレクトローラ−3はノズル、4はノズ
ル群、5は送風機、6は配管、7は分配箱、8はノズル
ヘッダー 9はノズルオリイフィス、10゜10′は低
周波音波発生器である。 第3g 環4把 l 第50 第6!21 平成2年12月10日
Figure 1 is a front view and side view showing the configuration of a conventional cooling device for continuous strip plates; Figure 2 is an enlarged view of the nozzle portion;
Fig. 3 is a front view and a side view showing an embodiment of the present invention, Fig. 4 is a sectional view taken along line A-A of Fig. 3, and Fig. 5 is a low-frequency sonic generator installed in a distribution pipe. Figure 6 is a front view and side view showing an example in which a low-frequency sonic generator is installed in a piping section, l is a continuous strip plate, 2.2' is a Deflect roller 3 is a nozzle, 4 is a nozzle group, 5 is a blower, 6 is piping, 7 is a distribution box, 8 is a nozzle header, 9 is a nozzle orifice, and 10° 10' is a low frequency sonic generator. 3rd g Ring 4th 50th 6!21 December 10, 1990

Claims (3)

【特許請求の範囲】[Claims] (1)高温にて繰出す連続帯状板の表裏両面を繰出し通
路を挟んで設ける複数のノズルより噴射する気体にて冷
却する装置において、該冷却用の噴射気体に低周波音波
発生器により発生させた低周波音波を与えることを特徴
とする連続帯状板用冷却装置。
(1) In a device that cools both the front and back sides of a continuous strip plate that is fed out at high temperature with gas injected from a plurality of nozzles provided across a feeding path, the cooling injected gas is generated by a low-frequency sonic generator. A cooling device for a continuous strip plate characterized by applying low frequency sound waves.
(2)噴射用気体の送風管または分配管に低周波音波発
生器を付設して、ノズルより低周波音波が与えられた気
体を噴射するようにしたことを特徴とする請求項(1)
記載の連続帯状板用冷却装置。
(2) Claim (1) characterized in that a low-frequency sonic generator is attached to the blast pipe or distribution pipe of the gas for injection, and the gas to which the low-frequency sonic waves have been applied is injected from the nozzle.
Cooling device for continuous strips as described.
(3)ノズルより高温気体を噴射して連続帯状板を乾燥
させることを特徴とする請求項(1)または(2)のい
ずれかに記載の連続帯状板用乾燥装置。
(3) The continuous strip plate drying device according to claim 1, wherein the continuous strip plate is dried by injecting high-temperature gas from a nozzle.
JP2236993A 1990-09-10 1990-09-10 Cooling device for continuous strips Expired - Lifetime JPH0651206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2236993A JPH0651206B2 (en) 1990-09-10 1990-09-10 Cooling device for continuous strips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2236993A JPH0651206B2 (en) 1990-09-10 1990-09-10 Cooling device for continuous strips

Publications (2)

Publication Number Publication Date
JPH04118110A true JPH04118110A (en) 1992-04-20
JPH0651206B2 JPH0651206B2 (en) 1994-07-06

Family

ID=17008802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2236993A Expired - Lifetime JPH0651206B2 (en) 1990-09-10 1990-09-10 Cooling device for continuous strips

Country Status (1)

Country Link
JP (1) JPH0651206B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265665A (en) * 2005-03-24 2006-10-05 Jfe Steel Kk Steel strip cooling unit
CN103567238A (en) * 2013-11-07 2014-02-12 杨海西 Steel plate cooling device
CN115244193A (en) * 2019-12-20 2022-10-25 昂登坦汽车工程有限责任公司 Method and device for cooling a hot object
CN116254407A (en) * 2023-03-21 2023-06-13 昆明华信金属材料制造有限公司 Air-cooled steel band cooling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222164B1 (en) * 2012-08-17 2013-01-14 김원식 Thermo vibro sound apparatus with adjustable wave length

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110425A (en) * 1990-08-30 1992-04-10 Kawasaki Steel Corp Heat-transfer tube device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110425A (en) * 1990-08-30 1992-04-10 Kawasaki Steel Corp Heat-transfer tube device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265665A (en) * 2005-03-24 2006-10-05 Jfe Steel Kk Steel strip cooling unit
JP4725718B2 (en) * 2005-03-24 2011-07-13 Jfeスチール株式会社 Steel strip cooling device
CN103567238A (en) * 2013-11-07 2014-02-12 杨海西 Steel plate cooling device
CN115244193A (en) * 2019-12-20 2022-10-25 昂登坦汽车工程有限责任公司 Method and device for cooling a hot object
CN116254407A (en) * 2023-03-21 2023-06-13 昆明华信金属材料制造有限公司 Air-cooled steel band cooling device

Also Published As

Publication number Publication date
JPH0651206B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
US2776230A (en) Method and apparatus for quenching pipe
JP2649180B2 (en) Positive-pressure floating web dryer using parallel jet flow
US4085522A (en) Method and apparatus for freely suspending moving webs of material
RU2010136833A (en) SYSTEM AND METHOD OF COOLING DURING STEEL ROLLING
JPH04118110A (en) Device for cooling continuous strip like sheet
US5697169A (en) Apparatus for cooling strip and associated method
US4794751A (en) Sealing of apparatus with continuous product transport
JP2009174777A (en) Drying and baking device and drying and baking method for coated steel
EP0169952A1 (en) Method and apparatus for fiberizing meltable materials
CN1022440C (en) Method and arrangement for enforced heat transmission between bodies and gases
JPH06500289A (en) Method and apparatus for maximizing the transfer of thermal energy contained in an oscillating or swept air jet to the plate surface
JPS59157364A (en) Improved apparatus and method for forming dry web
Petrie An experimental investigation of the noise produced by air jet impingement on flat plates
JP2789953B2 (en) CGL up-leg cooler
JPH07138657A (en) Method and apparatus for heat-treating continuously running metal belt material
Elwell et al. Dynamics of oscillating turbulent liquid sheets
Petrie An experimental investigation of jet screech by air jet impingement on solid boundaries
RU2037336C1 (en) Equipment for ultrasonic gas-flame spraying
KR20010006093A (en) Apparatus and method for cooling hot rolled steel rod
US2948990A (en) Tempering of sheet material
US825364A (en) Steam-turbine.
JPH08206724A (en) Scale stripping device
SU1480898A1 (en) Device for cleaning a surface
RU2721741C1 (en) Fan cooling tower
JPH0589445U (en) Gas wiping device