JPH04117409A - Continuous chlorination of paraffin - Google Patents
Continuous chlorination of paraffinInfo
- Publication number
- JPH04117409A JPH04117409A JP23605290A JP23605290A JPH04117409A JP H04117409 A JPH04117409 A JP H04117409A JP 23605290 A JP23605290 A JP 23605290A JP 23605290 A JP23605290 A JP 23605290A JP H04117409 A JPH04117409 A JP H04117409A
- Authority
- JP
- Japan
- Prior art keywords
- paraffin
- chlorine
- reaction
- wet film
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012188 paraffin wax Substances 0.000 title claims abstract description 95
- 238000005660 chlorination reaction Methods 0.000 title claims description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 106
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 42
- 239000000460 chlorine Substances 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000007789 gas Substances 0.000 claims abstract description 19
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000001816 cooling Methods 0.000 claims abstract description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 10
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims abstract description 6
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000003197 catalytic effect Effects 0.000 claims description 4
- 239000002904 solvent Substances 0.000 abstract description 11
- 230000005484 gravity Effects 0.000 abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 230000035987 intoxication Effects 0.000 abstract 1
- 231100000566 intoxication Toxicity 0.000 abstract 1
- 239000002912 waste gas Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000011941 photocatalyst Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 6
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229940057995 liquid paraffin Drugs 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000005297 pyrex Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 241001550224 Apha Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- -1 Hydrogen salt Chemical class 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 208000018747 cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome Diseases 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、光照射下にパラフィンを濡れ膜状態で塩素ガ
スと連続的に接触させることを特徴とするパラフィンの
塩素化法及びこの塩素化法を実施するのに好ましい装置
に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for chlorinating paraffin, which is characterized by continuously contacting paraffin with chlorine gas in a wet film state under irradiation with light, and a process for chlorinating this paraffin. The present invention relates to a preferred apparatus for carrying out the method.
(従来の技術)
塩素化パラフィンは電気絶縁性、耐火性が優れており、
船舶の防火塗料、帆布や天幕などのクロス防水兼防火加
工剤、ビニル樹脂の可塑剤、潤滑油(極圧潤滑油)など
に用いられる。塩素含有量40.45.50.65.7
0%のもが市販されている。(Conventional technology) Chlorinated paraffin has excellent electrical insulation and fire resistance.
It is used in fire-retardant coatings for ships, waterproof and fire-retardant coating agents for canvases, canopies, plasticizers for vinyl resins, lubricants (extreme pressure lubricants), etc. Chlorine content 40.45.50.65.7
0% is commercially available.
従来、塩素化パラフィンは液状のパラフィン中に塩素ガ
スを吹き込み塩素化することにより製造されていた。し
かし、この方法はバッチ式であるため効率が悪く、生産
量の調節も難しかった。Conventionally, chlorinated paraffin has been produced by blowing chlorine gas into liquid paraffin to chlorinate it. However, since this method is a batch method, it is inefficient and difficult to control the production amount.
特に塩素化率70%といったような高塩素化パラフィン
の製造にあたっては反応工程で液状を維持するために四
塩化炭素等を溶媒として用いていた。In particular, in the production of highly chlorinated paraffins with a chlorination rate of 70%, carbon tetrachloride or the like is used as a solvent to maintain the liquid state during the reaction process.
このため反応終了後このような溶媒を除去する工程が必
要であり、生産効率阻害の要因となっていた。特告昭5
2−43806は高塩素化パラフィンの製造法に関する
が、この方法では塩素化反応が2段工程によって行われ
るので煩雑である上に後段の工程では塩素化炭化水素を
溶媒として使用しなければならない。For this reason, a step of removing such a solvent after the completion of the reaction is required, which has been a factor in inhibiting production efficiency. Special Notice Showa 5
No. 2-43806 relates to a method for producing highly chlorinated paraffin, but in this method, the chlorination reaction is carried out in two steps, which is complicated, and in addition, a chlorinated hydrocarbon must be used as a solvent in the latter step.
(発明が解決しようとするWR題)
このような従来の技術の状態において、生産効率の良い
、生産量の調節の容易な、溶媒を必要としない、しかも
簡単な工程からなる塩素化パラフィンの製造法の開発が
求められている。(WR problem to be solved by the invention) In the state of the prior art, it is possible to produce chlorinated paraffin with high production efficiency, easy control of production amount, no solvent required, and simple process. Development of laws is required.
因みに、四塩化炭素のような溶媒は世界的に使用禁止に
なるため、このような溶媒を使用せずにしかも品質が従
来のものに優るとも劣らない塩素化パラフィンを低コス
トで製造し得る方法の開発が特に求められている。Incidentally, since the use of solvents such as carbon tetrachloride is prohibited worldwide, we have developed a method that can produce chlorinated paraffin at a low cost and with a quality comparable to that of conventional paraffin without using such solvents. There is a particular need for the development of
(課題を解決するための手段)
本発明者は、上記課題の解決を求めて鋭意研究の結果、
上記課題を解決した本発明を完成するに到った。すなわ
ち、本発明は、(a)触媒用光照射下にパラフィンを濡
れ膜状態で塩素ガスと連続的に接触させることを特徴と
するパラフィンの連続塩素化法、このような塩素化法を
実施するに好ましい装置自体に係わる、(b)塔頂部に
排ガス引抜口を有し、塔内上部にパラフィン送入口とパ
ラフィンを塔内壁面を濡れ膜状態で流下せしめるディス
トリビュータとを有し、塔底部に塩素化パラフィン取出
口を有し、塔内下部に塩素吹込口を有し、塔内をディス
トリビュータと塩素吹込口との間において2分し、上部
が反応ゾーンを形成するようにかつ下部が冷却ゾーンを
形成するようにそれぞれ熱交換用ジャケットを有する反
応塔であることを特徴とするパラフィンの連続塩素化用
反応装置、及びそのような塩素化法をそれを実施する好
ましい装置で規定した、(C)上記の反応装置の反応ゾ
ーンを触媒用光照射下におきかつ該装置の両ジャケット
に熱交換媒体を通じた状態で、パラフィンを該装置のパ
ラフィン送入口より反応塔内に供給しこれをディストリ
ビュータを介して反応塔内壁面を濡れ膜状態で連続的に
流下せしめながら塩素吹込口より塩素を反応塔内に供給
しこれをガス状で反応塔内を連続的に1袢せしめること
により前記濡れ膜状態のパラフィンと接触させ、この間
生成塩化水素ガスと未反応塩素ガスを排ガス引抜口より
引抜き、生成塩素化パラフィンを塩素化パラフィン取出
口より取出すことを特徴とするパラフィンの連続塩素化
法に関する。(Means for Solving the Problem) As a result of intensive research in search of a solution to the above problem, the present inventor has found that
The present invention has been completed which solves the above problems. That is, the present invention provides (a) a continuous chlorination method for paraffin characterized by continuously bringing paraffin into contact with chlorine gas in a wet film state under irradiation with catalyst light; (b) It has an exhaust gas outlet at the top of the column, a paraffin inlet at the top of the column, and a distributor that allows paraffin to flow down in a wet film state on the inner wall of the column, and chlorine at the bottom of the column. It has a paraffin extraction port, a chlorine inlet at the bottom of the tower, and divides the inside of the tower into two between the distributor and the chlorine inlet, with the upper part forming a reaction zone and the lower part forming a cooling zone. A reactor for the continuous chlorination of paraffins, characterized in that it is a reaction column each having a jacket for heat exchange so as to form a reactor for the continuous chlorination of paraffins, and such a chlorination process is defined by a preferred apparatus for carrying it out, (C) With the reaction zone of the above reactor under catalytic light irradiation and a heat exchange medium passed through both jackets of the reactor, paraffin is fed into the reaction column from the paraffin inlet of the reactor and is then passed through the distributor. By supplying chlorine into the reaction tower from the chlorine inlet while continuously flowing down the inner wall surface of the reaction tower in a wet film state, the wet film state is created by supplying chlorine into the reaction tower in gaseous form and continuously flowing down the inside of the reaction tower in a wet film state. The present invention relates to a continuous chlorination method for paraffin, which is characterized in that the paraffin is brought into contact with the paraffin, the generated hydrogen chloride gas and unreacted chlorine gas are extracted from an exhaust gas outlet, and the generated chlorinated paraffin is extracted from a chlorinated paraffin outlet.
以下、本発明を逐次説明する。Hereinafter, the present invention will be explained one by one.
本発明の方法により塩素化されるべきパラフィンは、常
温で液体及び固体パラフィンである。The paraffins to be chlorinated by the method of the invention are liquid and solid paraffins at room temperature.
パラフィンを塩素ガスと反応させるに当り、パラフィン
を濡れ膜状態にして触媒たる光照射下に塩素ガスと連続
的に接触させると、高反応速度でしかも塩素ガスについ
て高反応率で、何ら溶媒を必要とすることなく、パラフ
ィンが所望の塩素含有量に塩素化される。照射光は可視
光線、紫外部光のいずれも使用可能であるが、触媒活性
の見地から紫外部光が好ましい。本発明の方法によると
きは、紫外部光を触媒として使用しても得られる塩素化
パラフィンに対する悪影響は見られな(X0因みに、特
告昭52−43806の方法では、触媒光として紫外部
光をカットしたものを使用している。When paraffin is reacted with chlorine gas, if the paraffin is made into a wet film and is brought into continuous contact with chlorine gas while being irradiated with light as a catalyst, the reaction rate is high and the reaction rate is high for chlorine gas, and no solvent is required. The paraffin is chlorinated to the desired chlorine content without sacrificing it. As the irradiation light, both visible light and ultraviolet light can be used, but ultraviolet light is preferable from the viewpoint of catalytic activity. When using the method of the present invention, even when ultraviolet light is used as a catalyst, no adverse effect on the chlorinated paraffin obtained is observed ( I am using the cut one.
このような反応条件は、例えば第1図に示すような反応
装置を使用することにより実現することができる。Such reaction conditions can be realized, for example, by using a reaction apparatus as shown in FIG.
第1図に示す反応装置について説明すると、濡れ壁塔は
反応塔である。反応塔の内壁をパラフィンが濡れ膜を形
成して連続的に流下せしめられるのでこのように称する
。固体パラフィンを塩素化するには事前に液状にしてお
くことは勿論である。To explain the reaction apparatus shown in FIG. 1, the wet wall column is a reaction column. It is called this because paraffin forms a wet film on the inner wall of the reaction tower and is caused to flow down continuously. Of course, in order to chlorinate solid paraffin, it must be made into a liquid state beforehand.
反応塔の塔壁の材質は、照射光触媒を透過せしめるもの
ではなくてはならないことは勿論で、このような理由及
び耐食性の見地から材質としてはガラス特に「パイレッ
クス」ガラスを挙げることができる。Of course, the material for the wall of the reaction tower must be one that allows the irradiated photocatalyst to pass through. For this reason and from the viewpoint of corrosion resistance, glass, especially "Pyrex" glass, can be used as the material.
反応塔の上部に反応ゾーンを設け、下部に冷却ゾーンを
設ける。前者は、反応温度を調節する熱交換媒体(例え
ば50℃の低温水)を循環せしめるジャケットを反応塔
に付置し、これに温水を循環せしめることによって形成
される。このジャケットの外部に光源が置かれるので、
このジャケットの材質もまた照射光を透過せしめるもの
でなくてはならないことは云うまでもない。冷却ゾーン
は、FA素吹込部の反応温度1袢による生成塩素化パラ
フィンの発火等の異常反応が起るのを予防する冷却用熱
交換媒体を通じせしめるジャケットを光触媒照射部と塩
素吹込口の間において反応塔に付置し、これに冷却用熱
交換媒体(例えば水道水などの冷却水)を通じせしめる
ことによって形成される。A reaction zone is provided in the upper part of the reaction tower, and a cooling zone is provided in the lower part. The former is formed by attaching a jacket to the reaction tower, through which a heat exchange medium (for example, low-temperature water at 50° C.) for regulating the reaction temperature is circulated, and through which hot water is circulated. Since the light source is placed outside this jacket,
It goes without saying that the material of this jacket must also be able to transmit the irradiated light. In the cooling zone, a jacket is placed between the photocatalyst irradiation part and the chlorine inlet to allow a cooling heat exchange medium to pass through to prevent abnormal reactions such as ignition of the chlorinated paraffin produced due to the reaction temperature of the FA raw inlet part. It is formed by attaching it to a reaction tower and passing a cooling heat exchange medium (for example, cooling water such as tap water) through it.
反応塔頂部近くのパラフィン送入口から反応塔内へ液体
パラフィン又は加温されて液状になった固体パラフィン
が送入されるが、この液状パラフィン(液体パラフィン
及び液状とした固体パラフィンの総称)を反応塔内壁に
沿って濡れ膜状態で流下せしめるための適当なディスト
リビュータが設けられている。このようなディストリビ
ュータとしては、第1図に示すものはディストリビュー
タ壁と反応塔内壁によって形成されるパラフィン受の底
部に細孔をこれを通過するパラフィンが反応塔内壁全面
に濡れ膜を形成して流下するような適当間隔で穿ったも
のである。Liquid paraffin or solid paraffin that has been heated and liquefied is fed into the reaction tower from the paraffin inlet near the top of the reaction tower. A suitable distributor is provided for flowing down in a wet film along the inner wall of the column. One example of such a distributor is the one shown in Figure 1, which has pores at the bottom of the paraffin receiver formed by the distributor wall and the inner wall of the reaction tower, and the paraffin that passes through this pore forms a wet film on the entire inner wall of the reaction tower and flows down. The holes were drilled at appropriate intervals.
ディストリビュータはオーバフロー缶形式に構成するこ
ともでき、これを第2図に示す。反応塔上端を凹凸にし
ておくとオーバフロー缶より溢れるパラフィンは反応塔
内壁全面に濡れ膜を形成しながら流下し易すい。その他
ディストリビュータはパラフィンが反応塔内壁を濡れ膜
状態で流下する形式のものであればいかなる形式のもの
でもよい。The distributor can also be configured in the form of an overflow can, as shown in FIG. If the upper end of the reaction tower is made uneven, the paraffin overflowing from the overflow can will easily flow down while forming a wet film on the entire inner wall of the reaction tower. The distributor may be of any type as long as it allows paraffin to flow down the inner wall of the reaction column in the form of a wet film.
反応によって生じた塩イし水素ガス及び未反応塩素ガス
は反応塔頂部の排ガス引抜口より排出し、適当な排ガス
除害処理に付せられる。反応塔底部には生成した塩素化
パラフィンの取出口が設けられている。Hydrogen salt gas and unreacted chlorine gas produced by the reaction are discharged from the exhaust gas outlet at the top of the reaction tower and subjected to appropriate exhaust gas abatement treatment. An outlet for the produced chlorinated paraffin is provided at the bottom of the reaction tower.
塔頂より任意的に挿入しである温度計は反応温度測定用
であり、同じく任意的に冷却ゾーンの下部に設置した温
度計は冷却効果N立川である。塩素化パラフィン製品槽
も任意的に設置することができる。排ガス引抜用パイプ
にガスサンプリング装置を設けることも可能で、この装
置によるサンプリングしたガスの分析より塩素の反応率
を知ることができる。A thermometer optionally inserted from the top of the column is for measuring the reaction temperature, and a thermometer optionally installed at the bottom of the cooling zone is for cooling effect N Tachikawa. A chlorinated paraffin product tank may also be optionally provided. It is also possible to provide a gas sampling device in the exhaust gas extraction pipe, and the reaction rate of chlorine can be determined by analyzing the sampled gas using this device.
反応塔に供給されるパラフィンは例えば定量ポンプを介
することにより、塩素は例えばフロート式流量計により
、それぞれ、その供給量を計測することができる。The amount of paraffin supplied to the reaction tower can be measured, for example, through a metering pump, and the amount of chlorine supplied to the reaction tower can be measured, for example, with a float type flow meter.
第1図の反応装置では、液状パラフィンの濡れ膜は反応
塔の内壁に形成されるのみであるが、濡れ膜面積を増や
せば反応がより能率的に行なわれ得る。濡れ膜面積を増
やすには例えば反応塔内壁を波板状に形成するとよい。In the reactor shown in FIG. 1, a wet film of liquid paraffin is only formed on the inner wall of the reaction tower, but the reaction can be carried out more efficiently by increasing the area of the wet film. In order to increase the wetted membrane area, for example, the inner wall of the reaction column may be formed into a corrugated plate shape.
第1図の反応装置では、光触媒の照射方法として外部照
射法を採用している。しかし内部照射法も可能である。In the reaction apparatus shown in FIG. 1, an external irradiation method is employed as a method of irradiating the photocatalyst. However, internal irradiation methods are also possible.
内部照射法は光源より直接反応面へ光触媒を照射できる
利点があるが、一方工作上の難点があることや反応中に
発生するミストが光源へ直接付着し光触媒を十分に活用
できなくする可能性があること等の難点がある。本発明
の方法の実施に当っては、これらの点を考慮して光触媒
の照射方法を選択するとよい。The internal irradiation method has the advantage of being able to directly irradiate the reaction surface with the photocatalyst from the light source, but it also has the disadvantages of manufacturing difficulties and the possibility that the mist generated during the reaction will adhere directly to the light source, making it impossible to fully utilize the photocatalyst. There are some disadvantages such as the fact that When carrying out the method of the present invention, it is preferable to select a photocatalyst irradiation method taking these points into consideration.
第1図に示す反応装置を使用してパラフィンワックスの
塩素化を行なうことは、前記の説明から当業者にとって
は自明のことと思われるが、若干付言する。Although it will be obvious to those skilled in the art from the foregoing description that paraffin wax can be chlorinated using the reactor shown in FIG. 1, a few additional comments will be made.
塩素化の開始は、予じめ反応ゾーン及び冷却ゾーンの両
ジャケットにそれぞれ適当温度の適当な熱交換媒体を通
しておきかつ光触媒照射用光源をオンにしておいてから
加温した液状パラフィンを好ましくは定量ポンプを介し
て反応塔内ディストリビュータに連続的に供給し、これ
によりパラフィンは反応塔内壁を濡れ膜を形成して連続
的に流下せしめられる。一方、塔下部の塩素吹込口より
反応塔内に連続的に送入された塩素はガス状で塔内を上
昇し、反応ゾーンでパラフィンの濡れ膜と接触し、これ
によりパラフィンの塩素化反応が連続的に行なわれる。To start chlorination, a suitable heat exchange medium at an appropriate temperature is passed through the jackets of both the reaction zone and the cooling zone in advance, and the light source for photocatalyst irradiation is turned on, and then the heated liquid paraffin is preferably quantified. The paraffin is continuously supplied to a distributor in the reaction tower via a pump, whereby the paraffin forms a wet film on the inner wall of the reaction tower and continuously flows down. On the other hand, chlorine, which is continuously fed into the reaction tower from the chlorine inlet at the bottom of the tower, rises in the tower in gaseous form and comes into contact with the wet film of paraffin in the reaction zone, thereby causing a chlorination reaction of paraffin. It is done continuously.
一般に化学反応は触媒を使用して行なうと反応速度が向
上するが、上に述べたような反応塔を使用し一方の原料
を流下させる濡れ膜状態で反応に付するときは、この原
料が反応塔内壁を流下する短い時間内で反応を完結させ
る必要があるのでどうしても触媒の助けを借りなければ
ならない。しかし触媒が製品内に混入することによって
及ぼす1響については、本発明方法の目的生成物である
塩素化パラフィンの場合未知の事柄が多いためコンタミ
として製品内に残らない光を触媒として使用することは
この問題を回避する利点がある。In general, when a chemical reaction is carried out using a catalyst, the reaction rate increases, but when a reaction tower is used as described above and one of the raw materials is subjected to the reaction in a wet film state flowing down, the reaction rate of this raw material is increased. Since the reaction must be completed within the short time it takes for the liquid to flow down the inner wall of the column, the aid of a catalyst must be used. However, regarding the impact caused by the catalyst mixed into the product, there are many unknowns in the case of chlorinated paraffin, which is the target product of the method of the present invention, so it is recommended to use light that does not remain in the product as a contaminant as a catalyst. has the advantage of avoiding this problem.
反応により生成した塩素化パラフィンは反応塔下部の取
出口より取り出される。また、同時に生成する塩化水素
ガス及び未反応塩素ガスは塔頂より抜き出し、過当な排
ガス除害処理に付せられる。The chlorinated paraffin produced by the reaction is taken out from the outlet at the bottom of the reaction tower. Furthermore, simultaneously generated hydrogen chloride gas and unreacted chlorine gas are extracted from the top of the tower and subjected to excessive exhaust gas abatement treatment.
塩素の高度利用その他の目的から複数個の反応塔を使用
し、液状パラフィンはこの複数の反応塔に並列的に供給
し、塩素ガスは直列的に通過せしめる。生成塩化水素ガ
スを伴う未反応塩素ガスは適当な箇所で塩酸吸収塔を通
過せしめられて、そこで塩酸が回収される。第3図に、
本発明の方法を複数個の反応塔を使用して実施する例の
概念図を示す。A plurality of reaction towers are used for high utilization of chlorine and other purposes, liquid paraffin is supplied in parallel to the plurality of reaction towers, and chlorine gas is passed through the reaction towers in series. The unreacted chlorine gas accompanied by the generated hydrogen chloride gas is passed through a hydrochloric acid absorption tower at an appropriate point, where the hydrochloric acid is recovered. In Figure 3,
A conceptual diagram of an example in which the method of the present invention is implemented using a plurality of reaction columns is shown.
パラフィンの塩素化度(塩素含有量)、塩素化パラフィ
ンの品質等は、このような反応塔を使用する場合は光触
媒用光源(例えば、第1図において光源の強度を加減し
、又は該光源を複数区画に横断し、これらの区画のうち
光源をオンとする区画数を加減することにより、塩素化
度を調節することもできる)、パラフィン供給量、塩素
供給量、及び反応温度に依存するので、このような因子
に着目して予備実験により予じめ所望の塩素化度を達成
する必要な反応条件を与えられた反応装置について定め
ておくことは当業者であれば容易に行なうことができる
。The degree of chlorination (chlorine content) of paraffin, the quality of chlorinated paraffin, etc. are determined by adjusting the light source for photocatalyst (for example, adjusting the intensity of the light source in Fig. 1 or changing the light source) when using such a reaction tower. The degree of chlorination can also be adjusted by traversing multiple sections and adjusting the number of sections with the light source turned on), as it depends on the paraffin supply amount, chlorine supply amount, and reaction temperature. A person skilled in the art can easily focus on such factors and predetermine the necessary reaction conditions for a reaction apparatus to achieve a desired degree of chlorination through preliminary experiments. .
(実施例) 以下本発明を実施例により更に説明する。(Example) The present invention will be further explained below with reference to Examples.
実施例1
反応装置として第1図に示す形状の、「パイレックス」
ガラス製の濡れ壁塔を採用した。ただし、濡れ壁塔内径
5α、光源長180cg+、反応ゾーン長200α及び
冷却ゾーン長50cmとした。Example 1 A “Pyrex” reactor with the shape shown in Figure 1 was used.
A glass wet wall tower was adopted. However, the inner diameter of the wet wall tower was 5α, the light source length was 180 cg+, the reaction zone length was 200 α, and the cooling zone length was 50 cm.
塩素化に供した固体パラフィン(パラフィンワックス)
は炭素原子数はC16〜C4oに分布し、平均炭素原子
数はC26で、融点は53℃であった。Solid paraffin (paraffin wax) subjected to chlorination
The number of carbon atoms was distributed from C16 to C4o, the average number of carbon atoms was C26, and the melting point was 53°C.
反応操作の概要は次の通りであった。The outline of the reaction operation was as follows.
反応の開始に際し、まず温水(約50℃)を反応ゾーン
ジャケットに通水し、更に冷!inゾーンジャゲットに
は水道水を通水した。光触媒用光源を点灯して定常の発
光状態になったところで加温して液状としたパラフィン
ワックスを定−ポンプによって供給した。供給されたパ
ラフィンワックスがディストリビュータで分散されて反
応ゾーンに濡れ膜をつくり流下し始めたら塩素を下部吹
込口より供給し、反応ゾーン内でパラフィンワックスと
塩素を向流接触させることにより反応させた。To start the reaction, first, warm water (approximately 50°C) is passed through the reaction zone jacket, and then cooled! Tap water was passed through the in-zone jugget. When the photocatalytic light source was turned on and a steady state of light emission was achieved, paraffin wax, which had been heated and liquefied, was supplied by a constant pump. When the supplied paraffin wax was dispersed by the distributor, forming a wet film in the reaction zone and began to flow down, chlorine was supplied from the lower inlet, and the paraffin wax and chlorine were brought into countercurrent contact within the reaction zone, causing a reaction.
生成塩素化パラフィンは流下し冷却ゾーンで冷却されて
比重測定管を経た後に製品槽に送り込まれた。一方、生
成塩化水素ガスと未反応塩素ガスは上部より排ガスとし
て押し出され除害処理塔へ送られた。The produced chlorinated paraffin flowed down, was cooled in a cooling zone, passed through a specific gravity measuring tube, and was then sent to a product tank. On the other hand, the generated hydrogen chloride gas and unreacted chlorine gas were pushed out from the top as exhaust gas and sent to the abatement treatment tower.
操作の途中状況はパラフィンワックスは濡れ壁塔内壁を
一様に流下して偏流は認められなかった。During the operation, the paraffin wax flowed uniformly down the inner wall of the wet wall tower, and no drift was observed.
反応ゾーンは光照射部の下部より約501の間に発泡現
象が顕著であった。この部分が最も反応が激しい部分で
あり、生成塩素化パラフィンは反応熱により最高温度1
60℃にも達する場合があったが、冷却ゾーンで急冷さ
れるため冷却ゾーン通過後は35℃まで低下していた。In the reaction zone, the bubbling phenomenon was noticeable from the lower part of the light irradiation area to about 50 mm. This part is the part where the reaction is most intense, and the generated chlorinated paraffin reaches a maximum temperature of 1
In some cases, the temperature reached 60°C, but because it was rapidly cooled in the cooling zone, the temperature dropped to 35°C after passing through the cooling zone.
このため塩素吹込口周囲に於ける発火等の異常現象は全
く認められなかった。Therefore, no abnormal phenomena such as ignition were observed around the chlorine inlet.
反応条件の詳細を第1表に示す。Details of the reaction conditions are shown in Table 1.
第 1 表 波 長 (人) 出 力 (W、灯〉 照射塔長 C+v+) 照射距離 (闇) 濡れ壁塔供給量(g/分) パラフィン 塩素 3000〜4000 40wx4灯 51.0 81.3 寧なお、後出参照。Part 1 table Wave length (person) Output power (W, light) Irradiation tower chief C+v+) Irradiation distance (dark) Wet wall tower supply amount (g/min) paraffin chlorine 3000~4000 40wx4 lights 51.0 81.3 Nainao, see below.
反応結果を得られた塩素化パラフィンの品質とともに第
2表に示した。また、比較のために、従来方式であるバ
ッチ塩素化方式による塩素化パラフィンについての同様
のデータを第2表に併記した。The reaction results are shown in Table 2 along with the quality of the chlorinated paraffin obtained. For comparison, similar data on chlorinated paraffins produced by the conventional batch chlorination method are also listed in Table 2.
第
表
本発明
バンチ塩素化方式
塩素化パラフィン
生 成 、1i(5分間当り、り)419比 重(
70℃> 1.124
1.124塩素含有曇(%) 41
.0 41.0塩素反応率 (%)
&3.4塩素化パラフィンの品質
色 相 <APHA> 55
130!i! Ii
O,020,02屈折率 (25℃>
1.503 1.503熱安定性 (17
5℃、N2ブロア)
脱HC1畳(%)(4時間値) 0.128
0.140揮発減量(%) 0.
167 0.171加熱前後色相
淡黄色→褐色 淡黄色→黒褐色ギヤーオーブン加
熱着色
(120℃X2h、150℃×3h) 淡黄色→褐色
淡黄色→黒褐色耐候性
太閤光7日間雲霞後色相 淡黄色→茶色 淡黄
色→赤褐色因みに、本発明者は実施例1における同様の
実験を反応条件を変えて行なうことにより種々の知見を
得ている。以下、これについて説明する。Table: Bunch chlorination method of the present invention Chlorinated paraffin production, 1i (per 5 minutes) 419 specific gravity (
70℃>1.124
1.124 Chlorine-containing haze (%) 41
.. 0 41.0 Chlorine reaction rate (%)
&3.4 Quality color of chlorinated paraffin <APHA> 55
130! i! Ii
O,020,02 refractive index (25℃>
1.503 1.503 Thermal stability (17
5℃, N2 blower) HC removal (%) (4 hour value) 0.128
0.140 Volatilization loss (%) 0.
167 0.171 Hue before and after heating
Pale yellow → brown Pale yellow → dark brown Gear oven heat coloring (120℃ x 2h, 150℃ x 3h) Pale yellow → brown Pale yellow → black brown Weather resistance Taiko light 7 days after cloud haze Hue Pale yellow → brown Pale yellow → reddish brown By the way, this book The inventor has obtained various findings by conducting the same experiment as in Example 1 by changing the reaction conditions. This will be explained below.
(1) 塩素化用光触媒
光化学反応は、一般に特定波長域の光エネルギーを利用
するものが多く有効波長の選択が最も重要な課題となっ
ている。塩素化に使用される光の有効波長は一般的には
紫外部より可視光までの酔囲とされている。本発明者も
過去の知見よりこの範囲の波長はパラフィンの塩素置換
反応に著しく有効である事を認めているが、一方製品で
ある塩素化パラフィンの品質に及ぼす悪影響もある事を
認知している。従って、一般に使用されている光源がこ
の反応に使用可能か否かは、光触媒を使用することによ
って製品の品質が悪くならない事が必要最低の判断条件
となる。なお、一般に光塩素化のために使用されている
光源としては水素放電管、閃光ランプ、水銀灯、タング
ステンランプ。(1) Photocatalytic photochemical reactions for chlorination generally utilize light energy in a specific wavelength range, and the selection of effective wavelength is the most important issue. The effective wavelength of light used for chlorination is generally considered to be in the range from ultraviolet to visible light. The present inventor also acknowledges from past knowledge that wavelengths in this range are extremely effective for the chlorination reaction of paraffin, but also acknowledges that it also has an adverse effect on the quality of the chlorinated paraffin product. . Therefore, the minimum necessary condition for determining whether a commonly used light source can be used for this reaction is that the quality of the product does not deteriorate due to the use of a photocatalyst. Light sources commonly used for photochlorination include hydrogen discharge tubes, flash lamps, mercury lamps, and tungsten lamps.
キセノンランプ、ハロゲンランプ、特殊螢光灯等が知ら
れている。Xenon lamps, halogen lamps, special fluorescent lamps, etc. are known.
そこで、本発明をなすに当り種々の光触媒用光源を集め
たが、それを例示すると、光源へ−複写用螢光灯で、発
光ピークが4050人のところにあり、波長域が340
0〜4600人にわたり広く分布している。Therefore, in making the present invention, various light sources for photocatalysts were collected.To give an example, a fluorescent lamp for copying has an emission peak at 4,050 yen, and a wavelength range of 340 yen.
It is widely distributed between 0 and 4,600 people.
これがジアゾ感光紙の分光感度と一致しているので複写
機用光源として使用されている。紫外線出力14w /
90w管。;光源B−ハロゲン灯でハロゲン化合物封
入による白色光を放つ光源であり一般照明用に用途が広
い。紫外IIは少くない。:光源C−螢光灯で、発光ピ
ークが5300人のところにあり、波長域が4700〜
6200人にわたり分布している。紫外線は含有しない
。複写機用、光化学用の用途を有する。;光源り一螢光
灯で波長域が3000〜5800人にわたり分布してい
る。青色光を照射する。舞台照明用、光化学用の用途が
ある。:光源E−螢光灯で、発光ピークが3600人の
ところにあり、波長域3000人から可視光線にわたり
分布している。捕虫器用、光化学用の用途を有する。紫
外繰出カフ、5 w/40w管。;光源F−螢光灯で、
発光ピークが3600人のところにあり、波長域が30
00人〜4000人にわたり分布している。可視光線は
照射しない。螢光検査用、光化学用の用途を有し、紫外
練土カフ、5 w/40w管;光源G−高圧水銀灯で、
波長域2500人〜赤外線にわたり、光化学用用途を有
する。;光源H−照明用水銀灯で、一般照明用であって
、波長域2500人〜赤外線である。Since this corresponds to the spectral sensitivity of diazo-sensitive paper, it is used as a light source for copying machines. UV output 14w/
90w tube. ;Light Source B - A halogen lamp that emits white light by enclosing a halogen compound, and has a wide range of uses for general lighting. Ultraviolet II is not small. : Light source C - Fluorescent lamp, the emission peak is at 5300, and the wavelength range is 4700 ~
It is distributed over 6,200 people. Contains no ultraviolet rays. It has applications for copying machines and photochemistry. ;The light source is a fluorescent lamp, and the wavelength range is distributed over 3,000 to 5,800 people. Emits blue light. It has uses for stage lighting and photochemistry. :Light source E - Fluorescent lamp, the emission peak is at 3,600 yen, and the wavelength range is from 3,000 yen to visible light. It has uses for insect traps and photochemistry. Ultraviolet delivery cuff, 5w/40w tube. ;Light source F - fluorescent lamp;
The luminescence peak is at 3600, and the wavelength range is 30.
The distribution ranges from 00 to 4000 people. No visible light is emitted. It has uses for fluorescence inspection and photochemistry, ultraviolet clay cuff, 5w/40w tube; light source G - high pressure mercury lamp,
It has photochemical applications in the wavelength range of 2,500 to infrared. Light Source H - A mercury lamp for illumination, for general illumination, with a wavelength range of 2,500 to infrared.
因みに、実施例1で使用した光源は上記光源の内の光源
Fである。Incidentally, the light source used in Example 1 is light source F of the above-mentioned light sources.
■ 各種光触媒で生成した塩素化パラフィンの品質
実施例1の反応装置を使用して実施例1におけると同様
にしてただし各種光源を光触媒として塩素含有@41.
0%の塩素化パラフィンを調製し、光触媒が品質に及ぼ
す影響の有無を確認した。■ Quality of chlorinated paraffins produced with various photocatalysts The reaction apparatus of Example 1 was used in the same manner as in Example 1, except that various light sources were used as photocatalysts and chlorine-containing @41.
We prepared 0% chlorinated paraffin and confirmed whether the photocatalyst had any effect on quality.
品質試験の試料は反応@置の比重測定管より直接抜取り
無水炭酸ソーダを4%加え2時間撹拌しながらエアーブ
ローを行った後、安定剤を1%添加、濾過を行い分析試
料とした。The sample for the quality test was taken directly from the specific gravity measuring tube in the reaction room, 4% anhydrous soda carbonate was added thereto, and air blowing was carried out while stirring for 2 hours. After that, 1% stabilizer was added, and the sample was filtered and used as an analysis sample.
結果は次の通りであった。[a)色相については、本発
明による塩素化パラフィンの色相は対照量よりも優れて
いた。(b)酸価及び屈折率については、本発明による
塩素化パラフィンは対照量と同等であり、異常は認めら
れなかった。(C)熱安定性(175℃、N2ブロアー
)については、試験試料259をフラスコに入れてオイ
ルバス中で175℃に保ちながらN2ブロアーを行う熱
安定性試験に付したところ、本発明による製品の熱安定
性は対照量よりも優れていた。また、揮発減量は対照量
と同等であり、加熱後色相については、対照量は黒褐色
に着色したが本発明による光塩素化量は全て褐色であり
非常に優れていた。(d)ギヤーオープンによる加熱着
色試験結果は、塩素化パラフィンの耐熱性(熱着色)の
微小な差異を求めるために、試験試料をギヤーオーブン
中で120℃、2時間、150℃、3時間の加熱を行な
ったところ、対照量は著しく着色して黒褐色に変色した
が本発明による光塩素化量の中では光源りによる製品が
赤褐色に着色した以外は褐色であり、優れていた。The results were as follows. [a) Regarding the hue, the hue of the chlorinated paraffin according to the invention was superior to the control amount. (b) Regarding acid value and refractive index, the chlorinated paraffin according to the present invention was equivalent to the control amount, and no abnormality was observed. (C) Regarding thermal stability (175°C, N2 blower), when test sample 259 was put into a flask and subjected to a thermal stability test in which N2 blower was applied while keeping it at 175°C in an oil bath, it was found that the product according to the present invention The thermal stability of was better than the control amount. Further, the volatilization loss was the same as that of the control amount, and as for the hue after heating, the control amount was colored blackish brown, but the amount of photochlorination according to the present invention was all brown, which was very excellent. (d) Heat coloring test results by gear open: In order to determine minute differences in heat resistance (thermal coloring) of chlorinated paraffin, test samples were heated in a gear oven at 120°C for 2 hours and at 150°C for 3 hours. When heated, the control sample was markedly colored and turned blackish brown, but among the amounts of photochlorination according to the present invention, the product was brown except for the product due to the light source, which was colored reddish brown, and was excellent.
(e)耐候性試験結果は、試験試料を色相測定ガラスシ
リンダーに入れ屋外の太陽光線に7日間lI露したとこ
ろ、対照量は著しく着色して赤褐色になったが、本発明
の光塩素化量の中では光源A@射による製品と光源り照
射による製品が褐色に着色したが他の光照射の製品の着
色は茶色であり、耐候性は著しく優れていた。(e) Weather resistance test results showed that when the test sample was placed in a hue measuring glass cylinder and exposed to sunlight outdoors for 7 days, the control amount was markedly colored and turned reddish brown, but the photochlorination amount of the present invention was Among them, the products irradiated with light source A@ and the products irradiated with light source were colored brown, but the products irradiated with other light were colored brown, and their weather resistance was extremely excellent.
O) 光源が品質に及ぼす影響
(a)比重、酸価、屈折率及び塩素含有量については、
8種類の光源による塩素化パラフィンの比重、酸価、屈
折率、塩素含有Φ等は、対照量と全く同じであり、差異
は認められない。この事より、本発明の反応方法で製造
した塩素化パラフィンと対照量とは同じ製品であると判
断される。(b)色相、熱安定性及び耐候性については
、塩素化パラフィンの一般的製法において紫外線を照射
すると生成する塩素化パラフィンの色相、熱安定性、耐
光性は一般に悪い傾向を示す。これは紫外線によって活
性化された塩素が分子中の不安定な位置にも置換をする
ので製品は逆に脱塩酸を受けやすい不安定な構造にある
ためと言われている。しかし、本発明の反応方法によっ
て製造された製品の色相、熱安定性、耐光性は一般的製
法によって製造された製品よりも優れていた。この原因
として考えられることは(イ)非常に短時間のうちに反
応が完了してしまうために熱履歴が極く短時間である。O) Effect of light source on quality (a) Regarding specific gravity, acid value, refractive index and chlorine content,
The specific gravity, acid value, refractive index, chlorine content Φ, etc. of the chlorinated paraffin measured by eight types of light sources were exactly the same as the control amount, and no difference was observed. From this, it is determined that the chlorinated paraffin produced by the reaction method of the present invention and the control amount are the same product. (b) Regarding hue, thermal stability, and weather resistance, the hue, thermal stability, and weather resistance of chlorinated paraffin produced when irradiated with ultraviolet rays in a general manufacturing method for chlorinated paraffin generally tend to be poor. This is said to be because the product has an unstable structure that is susceptible to dehydrochlorination, as chlorine activated by ultraviolet light also substitutes in unstable positions in the molecule. However, the color, thermal stability, and light resistance of the products produced by the reaction method of the present invention were superior to those produced by the conventional production method. Possible reasons for this are (a) The reaction is completed in a very short time, so the thermal history is very short.
このために反応中に熱分解を受ける時間が極端に少ない
ためであろうと思われる。(ロ)膜面反応のために反応
表面積が大であり活性化された塩素分子はより反応の起
りやすい位置へ優先的に反応するためであろう。このこ
とは逆に分解し難い位置に置換していて安定な構造にな
ると考えられる。This is probably because the time for thermal decomposition during the reaction is extremely short. (b) This is probably because the reaction surface area is large due to the membrane surface reaction, and the activated chlorine molecules react preferentially to positions where the reaction is more likely to occur. On the contrary, this is thought to result in a stable structure due to the substitution at a position that is difficult to decompose.
(4) 光源の種類による塩素反応率の差異光源の種
類による塩素反応率の差異を厳密に比較検討するために
、生成する塩素化パラフィンの塩素含有量がほぼ同等に
なるような条件を選択して行った。(4) Differences in chlorine reaction rate depending on the type of light source In order to strictly compare and examine the difference in chlorine reaction rate depending on the type of light source, conditions were selected so that the chlorine content of the chlorinated paraffin produced was almost the same. I went.
各光源による塩素反応率は使用した塩素量、パラフィン
供給量および生成塩素化パラフィンの塩素含有量から算
出した。又マテリアルバランスは、塩素發、パラフィン
供給Φ、生成塩素化バラフィン比重および塩素化パラフ
ィン生成量から算出をした。これらの結果は良好であっ
た。The chlorine reaction rate for each light source was calculated from the amount of chlorine used, the amount of paraffin supplied, and the chlorine content of the chlorinated paraffin produced. The material balance was calculated from chlorine content, paraffin supply Φ, specific gravity of chlorinated paraffin produced, and amount of chlorinated paraffin produced. These results were good.
実験に使用した8神類の光源の中では光源D、E及びF
の触媒効果が優れていた。この優劣の差は波長分布と照
射塔長の差具によって生ずるものであると思われる。Among the eight divine light sources used in the experiment, light sources D, E, and F
The catalytic effect was excellent. This difference in superiority is thought to be caused by differences in wavelength distribution and irradiation tower length.
(発明の効果)
本発明により、生産効率の良い、生産量の調節の容易な
、溶媒を必要としない、しかも簡単な工程からなる塩素
化パラフィンの製造法が提供される。また、四塩化炭素
等の溶媒を使用することなく、即ち、無溶媒でしかも品
質が従来のものに優るとも劣らない塩素化パラフィンを
低コストで製造し得ることとなった。(Effects of the Invention) The present invention provides a method for producing chlorinated paraffins that has good production efficiency, allows easy adjustment of production amount, does not require a solvent, and includes a simple process. In addition, it has become possible to produce chlorinated paraffin at low cost without using a solvent such as carbon tetrachloride, that is, without using a solvent, and whose quality is at least as good as that of conventional paraffins.
第1図は本発明に係わる反応塔の1例を示し、第2図は
オーバフロー缶形式のディストリビュータの例を示し、
第3図は複数個の反応塔を使用す
る場合の反応塔の連結例を示す。Figure 1 shows an example of a reaction tower according to the present invention, Figure 2 shows an example of an overflow can type distributor, and Figure 3 shows an example of connecting reaction towers when a plurality of reaction towers are used. show.
Claims (3)
ガスと連続的に接触させることを特徴とするパラフィン
の連続塩素比法。(1) A continuous chlorine ratio method for paraffin, which is characterized in that paraffin is brought into continuous contact with chlorine gas in a wet film state under irradiation with catalyst light.
ィン送入口とパラフィンを塔内壁面を濡れ膜状態で流下
せしめるディストリビュータとを有し、塔底部に塩素化
パラフィン取出口を有し、塔内下部に塩素吹込口を有し
、塔内をディストリビユータと塩素吹込口との間におい
て2分し、上部が反応ゾーンを形成するようにかつ下部
が冷却ゾーンを形成するようにそれぞれ熱交換用ジャケ
ットを有する反応塔であることを特徴とするパラフィン
の連続塩素化用反応装置。(2) It has an exhaust gas outlet at the top of the column, a paraffin inlet at the top of the column and a distributor that allows paraffin to flow down in a wet film over the inner wall of the column, and a chlorinated paraffin outlet at the bottom of the column. , has a chlorine inlet at the bottom of the column, and divides the inside of the column into two between the distributor and the chlorine inlet, so that the upper part forms a reaction zone and the lower part forms a cooling zone. A reaction apparatus for continuous chlorination of paraffins, characterized in that the reaction tower has a heat exchange jacket.
照射下におきかつ該装置の両ジャケットに熱交換媒体を
通じた状態で、パラフィンを該装置のパラフィン送入口
より反応塔内に供給しこれをディストリビュータを介し
て反応塔内壁面を濡れ膜状態で連続的に流下せしめなが
ら塩素吹込口より塩素を反応塔内に供給しこれをガス状
で反応塔内を連続的に上昇せしめることにより前記濡れ
膜状態のパラフィンと接触させ、この間生成塩化水素ガ
スと未反応塩素ガスを排ガス引抜口より引抜き、生成塩
素化パラフィンを塩素化パラフィン取出口より取出すこ
とを特徴とするパラフィンの連続塩素比法。(3) With the reaction zone of the reactor according to claim 2 under irradiation with catalytic light and with a heat exchange medium passed through both jackets of the reactor, paraffin is supplied into the reaction tower from the paraffin inlet of the reactor. The chlorine is then continuously flowed down as a wet film on the inner wall of the reaction tower via a distributor, and chlorine is supplied into the reaction tower from the chlorine inlet, and the gas is allowed to rise continuously inside the reaction tower. A continuous chlorine ratio method for paraffin, which is characterized in that the paraffin is brought into contact with the paraffin in a wet film state, during which time generated hydrogen chloride gas and unreacted chlorine gas are extracted from an exhaust gas outlet, and generated chlorinated paraffin is extracted from a chlorinated paraffin outlet. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23605290A JPH04117409A (en) | 1990-09-06 | 1990-09-06 | Continuous chlorination of paraffin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23605290A JPH04117409A (en) | 1990-09-06 | 1990-09-06 | Continuous chlorination of paraffin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04117409A true JPH04117409A (en) | 1992-04-17 |
Family
ID=16995033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23605290A Pending JPH04117409A (en) | 1990-09-06 | 1990-09-06 | Continuous chlorination of paraffin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04117409A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017510447A (en) * | 2014-03-26 | 2017-04-13 | コーニング インコーポレイテッド | Modular distribution photochemical reactor system |
CN107142124A (en) * | 2017-06-26 | 2017-09-08 | 柳州市隆达丰化工科技有限公司 | A kind of method that thermal chlorination is combined production chlorinated paraffin 52 with photocatalytic method |
-
1990
- 1990-09-06 JP JP23605290A patent/JPH04117409A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017510447A (en) * | 2014-03-26 | 2017-04-13 | コーニング インコーポレイテッド | Modular distribution photochemical reactor system |
CN107142124A (en) * | 2017-06-26 | 2017-09-08 | 柳州市隆达丰化工科技有限公司 | A kind of method that thermal chlorination is combined production chlorinated paraffin 52 with photocatalytic method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7282120B2 (en) | UV-activated chlorination process | |
US4874489A (en) | Process for the production of chlorine dioxide | |
JP2013181028A (en) | Use of mixture obtained by irradiating halogenated hydrocarbon with light | |
JP6654782B2 (en) | Photoreactor and photoreactor | |
CN106892813B (en) | Method for preparing difluorochloroacetyl chloride by gas-phase photooxidation reaction | |
JPH04117409A (en) | Continuous chlorination of paraffin | |
US5092971A (en) | Bromination | |
Lapkin et al. | Photo-oxidation by singlet oxygen generated on nanoporous silicon in a LED-powered reactor | |
US4087342A (en) | Method of simultaneously carrying out plurality of photochemical reactions | |
Egloff et al. | The Halogenation of the Paraffin Hydrocarbons. | |
Watson | Chlorination of phenols with chlorine and tert-butyl hypochlorite. Comparison | |
JP2001504845A (en) | Method for producing carboxylic acid fluoride | |
JP2834489B2 (en) | Method for producing chlorine-free hydrochloric acid with low content of organic halogen compounds | |
JP7445297B2 (en) | Flow type photoreaction reactor and flow type photoreaction device | |
CN216137211U (en) | Reactor for continuous photocatalytic chlorination | |
Harris et al. | The chemiluminescence of 3-aminophthalhydrazide | |
JP2021175716A (en) | Manufacturing method of monochloroethylene carbonate | |
TWI391326B (en) | Production method of high purity liquefied chlorine | |
Hingle et al. | Spectroscopy in separated flames—II: The use of the separated air-acetylene flame in long path atomic absorption spectroscopy | |
NL8503568A (en) | PROCESS FOR THE PREPARATION OF METHANE SULFONYL CHLORIDE. | |
GB1410949A (en) | Manufacture of chlorine hydrate | |
WO1996033129A1 (en) | A chemical procedure to produce water of reduced deuterium content | |
Ragonese et al. | Application of empirical rate expressions and conservation equations to photoreactor design | |
CN112409184A (en) | Method for synthesizing o-nitrobenzyl bromide through photocatalysis | |
CA1336588C (en) | Process for the production of a dibrominated alkylbenzene |