JPH0411668B2 - - Google Patents

Info

Publication number
JPH0411668B2
JPH0411668B2 JP62316816A JP31681687A JPH0411668B2 JP H0411668 B2 JPH0411668 B2 JP H0411668B2 JP 62316816 A JP62316816 A JP 62316816A JP 31681687 A JP31681687 A JP 31681687A JP H0411668 B2 JPH0411668 B2 JP H0411668B2
Authority
JP
Japan
Prior art keywords
fabric
density
texture
resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62316816A
Other languages
Japanese (ja)
Other versions
JPH01156579A (en
Inventor
Masahide Kaneko
Shunei Takeda
Akira Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP62316816A priority Critical patent/JPH01156579A/en
Publication of JPH01156579A publication Critical patent/JPH01156579A/en
Publication of JPH0411668B2 publication Critical patent/JPH0411668B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using flocked webs or pile fabrics upon which a resin is applied; Teasing, raising web before resin application
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、耐久性に秀れかつ風合の良好なコー
テイング布帛の製造法に関する。 (従来の技術) 従来より、布帛への防水性、防風性の付与、あ
るいは、目止め効果、表面変化等を得る方法とし
て、コーテイング加工が一般的である。衣料用コ
ーテイング加工としては、種々の樹脂が用いられ
ているが、中でもポリウレタン樹脂は、微多孔質
皮膜あるいはストレツチ性を備えた皮膜の形成が
容易であることから、風合のソフトなコーテイン
グ布帛が得易く、近年のソフト指向とあいまつて
盛んに用いられている。 一般に、布帛にコーテイング加工を施した場合
は、布帛へのコーテイング樹脂液の浸透によつて
風合の硬化が生じ、ポリウレタン樹脂等のソフト
な樹脂を用いても風合の硬化は避けられない。そ
こで、コーテイング樹脂の布帛への浸透をコント
ロールして風合を改善することが考えられるが、
浸透は風合だけでなく接着性にも関係しており、
しかも、両者は相反する関係にある。このため、
布帛に熱カレンダー処理を施し、布帛の表面を押
圧して平滑化する方法や、フツソ化合物等の撥
水、撥油剤をあらかじめ布帛に付与しておいて浸
透を防止する方法がある。(特開昭58−144178号
公報) 又、特開昭59−30966号公報には、ポリアミド
とポリエステルからなる分割剥離型の複合繊維を
用いた布帛に熱カレンダー処理とポリウレタン樹
脂コーテイング処理を施すことが開示されてい
る。 (発明が解決しようとする問題点) しかしながら、確かに熱カレンダー処理は、押
圧の圧力を高くする程、又、温度を高くする程、
平滑効果が促進され浸透防止効果が高まるが一
方、押圧平滑化を通常の布帛に用いた場合には風
合の硬化を持たらし、ポリウレタン樹脂のソフト
な風合が低減する。又、撥水、撥油処理では、浸
透防止効果はわずかであり、撥水、撥油剤とコー
テイング樹脂を組合せても接着性の低下が認めら
れる。又、熱カレンダー処理と撥水、撥油処理の
併用更に、分割剥離型繊維との併用も試みられて
いるが、コーテイング膜と布帛との接着性が十分
ではなく、耐久性の劣るものであつた。 従つて、従来のソフト風合のコーテイング布帛
は、接着強度0.4Kg/cm程度の耐久性で十分な用
途に限られ、スポーツ衣料用途あるいはコーテイ
ング面を表側に使用する用途(接着強度0.9Kg/
cm以上特に1.5〜2.0Kg/cm以上が望ましい)等へ
の展開は困難であり、ソフト風合と高接着強度を
併有するコーテイング布帛の出現が望まれてい
た。 本発明はかかる要望を満たす、耐久性と柔軟な
風合を兼備したコーテイング布帛の提供を目的と
する。 (問題点を解決するための手段) 本発明は、分割後の単糸繊度が1デニール以下
となる溶解分割型複合繊維を用いて、単糸密度
15000本/平行インチ以上の高密度織物を製織し
た後、複合繊維を溶解処理によりフイブリル化せ
しめて、織物の少なくとも片面にカレンダー加工
を施し、次いで同面にポリウレタン皮膜を形成す
ることにより得られる。 本発明で云う高密度布帛とは、分割後の単糸繊
度1デニール以下の熱可塑性合成繊維を含む織物
であつて、熱可塑性合成繊維としては、例えば、
ポリアミド繊維、ポリエステル繊維、アクリル繊
維、あるいは、後加工によつて除去される易溶解
製の共重合成分を含む複合繊維等が使用できる。 又、単糸繊度は布帛を構成する繊維の一部が前
記の範囲を満たすものであれば良く、複数種の単
糸繊度の繊維を用いても又、布帛を構成する繊維
の一部が天然繊維例えば、綿、麻、絹、羊毛等で
あつても良い。 かかる高密度織物は、単糸密度が15000本/平
方インチ以上望ましくは、30000本/平行インチ
以上である。ここで単糸密度とは、 経糸打込本数/インチ×緯糸打込本数/インチ +経糸フイラメント数×緯糸フイラメント数
(×分割セグメント数) で示される値である。 かかる範囲外の布帛、すなわち、単糸繊度が1
デニールを越え、単糸密度が平方インチ当り
15000本未満の布帛では、コーテイング樹脂の浸
透防止処理を施しても良好な風合は得難く、たと
え得られても同時に良好な接着強度を得ることは
できない。 本発明では、コーテイング樹脂として、ポリウ
レタン樹脂を主体とする重合体を使用するが、ポ
リウレタン樹脂としては、一般に用いられるポリ
エステル系あるいはポリエーテル系のポリウレタ
ン樹脂並びにポリアミド系あるいはポリカーボネ
ート系の特殊なポリウレタン樹脂等が利用できる
が、風合の硬化を防ぐ上で、これらの樹脂の100
%モジユラス(乾式フイルム作成時)は、100
Kg/cm2以下であることが望ましい。又、これらの
ポリウレタン樹脂にアクリル樹脂、シリコン樹
脂、フツソ樹脂等の他の樹脂を併用してもかまわ
ない。 かかるポリウレタン樹脂は、前記高密度織物の
少なくとも片面に乾式法、湿式法、ラミネート法
等によつて形成されたもので、皮膜面に微多孔を
有する多孔性のものと無孔性のものがあるが、そ
の膜厚は10μm以上であることが充分な耐水性を
得るために必要で、特に無孔性皮膜では10〜20μ
m、多孔性皮膜では10〜50μmであるとソフトな
風合を得ることができる。 かかるポリウレタン樹脂皮膜は、JIS K−6328
に規定する接着強度が0.9Kg/cm以上で高密度織
物と接着しており、又、かかるコーテイング織物
の耐水圧は700mmH2O以上(JIS L−1092)であ
つて、通常、700〜5000mmH2Oの値を示す。又、
多孔性皮膜を用いれば、透湿度は2000〜8500g/
m2・24hr(JIS L−1099)となる。 以上のコーテイング織物は、次の如き方法によ
り得られる。 即ち、先ず分割後の単糸繊度が1デニール以下
となる溶解分割型複合繊維を用いて、単糸密度
15000本/平方インチ以上の高密度織物を製織す
る。複合繊維は、ポリアミド又はポリエステル
と、ポリエステルにイソフタル酸やポリエチレン
グリコール等の第3成分を共重合せしめてアルカ
リ易溶解性となしたものとの組合せ等が挙げら
れ、これらの成分が単一フイラメントの横断面に
おいて、一方の成分が他方の成分を完全に包囲し
ない形状で、単一フイラメントの長手方向に沿つ
て接合されているものが好ましく、具体的には横
断面がサイドバイサイド型の複合繊維、サイドバ
イサイド繰返し型の複合繊維、放射型の形状を有
する成分と該放射部を補完する形状を有する他の
成分からなる複合繊維、放射型の形状を有する成
分と該放射部を補完し且つ中心方向に向いたV字
型の凹部のある形状を有する他の成分と該凹部を
補完するV字型の形状を有する該放射型の形状を
有する成分と同じ成分からなる複合繊維及び中空
部分のあるサイドバイサイド繰返し型複合繊維等
が挙げられる。これらの複合繊維のうち、横断面
が放射型の形状を有する成分のある複合繊維が好
適である。 かかる織物は、溶解分割型複合繊維をフイブリ
ル化せしめるが、フイブリル化処理はアルカリ易
溶解成分を用いた場合は、水酸化ナトリウム等の
アルカリ溶液で同成分を溶解除去する方法が挙げ
られる。 本発明では、耐久性に秀れかつ風合の良好なコ
ーテイング布帛を得る為に、前記の高密度布帛に
熱カレンダー処理を施してコーテイング樹脂の浸
透を布帛の厚みの1/4〜1/2にコントロールしてい
る。熱カレンダー処理の条件は、温度120〜190
℃、望ましくは130〜170℃、線圧50〜500Kg/cm、
望ましくは80〜300Kg/cmの範囲が好ましい。温
度120℃未満あるいは線圧50Kg/cm未満の条件で
は、平滑化が不十分となり浸透による風合の硬化
をもたらし、190℃を越える温度あるいは500Kg/
cmを越える線圧の条件では、繊維の融着による風
合の硬化や接着強度の低下が生じるおそれがあ
る。熱カレンダー処理の条件は、布帛を構成する
繊維によつて上記の範囲より適宜選択される。 本発明では、前記ポリウレタン樹脂を前記高密
度織物にコーテイングして膜厚10μm以上の樹脂
層を形成させる。該重合体のコーテイング方法
は、乾式法、湿式法並びに無溶媒のもののいずれ
であつてもよく、フローテイングナイフコータ
ー、ナイフオーバーロールコーター、リバースロ
ールコーター、ロールドクターコーター、グラビ
アロールコーター、キスロールコーター等の塗布
方式が利用できる。又、ラミネート加工も利用で
きるが、接着剤は十分に接着性が得られかつ風合
の硬化の少ないものを選ぶ。 さらに、ソフトな風合を得る上で、コーテイン
グ液の粘度は10000cps以上であることが望まし
く、10000cps未満では、コーテイング樹脂の浸透
が布帛厚みの1/2以上となつて風合を硬化させる
ことがある。 本発明では、熱カレンダー処理の前に、フツソ
系撥水剤又は、シリコン系撥水剤を含むフツソ系
撥水剤によつて撥水加工を於すことも可能であ
る。この場合には、コーテイング樹脂の浸透がさ
らに少なくなり、よりソフトな風合が得られる。
ただし、接着強度を保持する上から、シリコン系
撥水剤はフツソ系撥水剤に対して20重量%以下で
併用することが望ましい。 (実施例) 実施例 1 経糸70デニール36フイラメント、緯糸100デニ
ール50フイラメントで経糸密度110本/inch、緯
糸密度84本/inchであり、経糸がナイロン6フイ
ラメント、緯糸が放射状に延びた8個のナイロン
6成分とこれを補完するポリエチレングリコール
共重合ポリエチレンテレフタレートより成るフイ
ブリル化型複合フイラメントであるタフタを苛性
ソーダ水溶液により減量加工して、緯糸のポリエ
チレングリコール共重合ポリエチレンテレフタレ
ート成分を溶解除去して、緯糸の単糸デニール約
0.18デニール、単糸密度約37560本/inch2である
高密度織物を得た。続いて、液流染色機にて染
色、乾燥した後、フツソ系撥水剤2%水溶液をパ
デイングして撥水処理を行つた。次に、温度160
℃、線圧130Kg/cmの条件にて熱カレンダー処理
を行い、表面の平滑化を図つた。 さらに、下記処方のポリウレタン樹脂溶液をロ
ールドクターコーターを用いて塗布しただちに約
30℃の水中にて湿式凝固させ、約40℃で湯洗を行
つた。 ポリエステル系ポリウレタン樹脂 30部 ブロツクイソシアネート 3部 N,N−ジメチルホルムアミド 100部 続いて、シリコン系撥水剤1%水溶液をパデイ
ングし、約120℃の温度で乾燥を行つた後に、約
160℃の温度にて熱処理を行つた。 以上のコーテイング布帛では、膜厚約25μm、
布帛への樹脂の浸透が布帛厚みの1/4〜1/2の範囲
にある樹脂層が形成されていた。そして、接着強
度は約1.6〜2.0Kg/cmと良好であり、風合も極め
てソフトであつた。 比較列 1 実施例1に於いて、熱カレンダー処理を省略す
る以外は、すべて同一の工程を実施した。 このコーテイング布帛では、膜厚約25μm、布
帛への樹脂の浸透は布帛厚みの1/2を越え、部分
的には裏面への樹脂抜けが認められた。又、風合
はペーパーライクで、やや硬いものであつた。 比較例 2 経糸70デニール18フイラメント、緯糸70デニー
ル18フイラメントで、経糸密度112本/inch、緯
糸密度90本/inchのナイロン6タフタを精練した
織物、すなわち、単糸デニール約3.9デニール、
単糸密度約3640本/inch2である織物に対して、
実施例1の染色以降の工程を実施した。 得られたコーテイング布帛は、膜厚約25μm、
布帛への樹脂の浸透は布帛厚みの1/4〜1/2である
が、風合はペーパーライクで硬く、又、接着強度
も0.6〜0.8Kg/cmとやや劣つていた。
(Industrial Application Field) The present invention relates to a method for producing a coated fabric that is highly durable and has a good feel. (Prior Art) Coating processing has conventionally been a common method for imparting waterproof and windproof properties to fabrics, or for obtaining sealing effects, surface changes, and the like. Various resins are used for coating clothing, but polyurethane resins are particularly useful for coating fabrics with a soft texture because they can easily form microporous films or films with stretch properties. It is easy to obtain and has been widely used in conjunction with the recent software-oriented trend. Generally, when a fabric is coated, the texture hardens due to the penetration of the coating resin into the fabric, and even if a soft resin such as polyurethane resin is used, the hardening of the texture is unavoidable. Therefore, it is possible to improve the texture by controlling the penetration of the coating resin into the fabric.
Penetration is related not only to texture but also to adhesion.
Moreover, the two have a contradictory relationship. For this reason,
There is a method in which the fabric is thermally calendered and the surface of the fabric is pressed to smooth it, and a method in which a water or oil repellent such as a fluorocarbon compound is applied to the fabric in advance to prevent penetration. (Japanese Unexamined Patent Publication No. 58-144178) Furthermore, JP-A No. 59-30966 discloses that a fabric using split-peelable composite fibers made of polyamide and polyester is subjected to thermal calendering treatment and polyurethane resin coating treatment. is disclosed. (Problems to be Solved by the Invention) However, it is true that the higher the pressing pressure and the higher the temperature, the higher the thermal calender treatment becomes.
The smoothing effect is promoted and the penetration prevention effect is enhanced, but on the other hand, when pressure smoothing is applied to ordinary fabrics, the texture is hardened and the soft texture of the polyurethane resin is reduced. In addition, water-repellent and oil-repellent treatments have only a slight penetration prevention effect, and even when a water-repellent or oil-repellent agent is combined with a coating resin, a decrease in adhesion is observed. In addition, attempts have been made to combine thermal calendaring with water-repellent and oil-repellent treatments, as well as use of split-peelable fibers, but the adhesion between the coating film and the fabric is not sufficient and the durability is poor. Ta. Therefore, conventional coated fabrics with a soft texture are limited to applications where durability with an adhesive strength of about 0.4 kg/cm is sufficient, and applications such as sports clothing or applications where the coated surface is used on the front side (adhesive strength of 0.9 kg/cm)
It has been difficult to develop coating fabrics that have a soft texture and high adhesive strength, especially 1.5 to 2.0 Kg/cm or more. The present invention aims to provide a coated fabric that satisfies such demands and has both durability and a soft feel. (Means for Solving the Problems) The present invention uses a dissolvable split type composite fiber whose single filament fineness after splitting is 1 denier or less.
It is obtained by weaving a high-density fabric of 15,000 fibers/parallel inch or more, fibrillating the composite fibers by melting, calendering at least one side of the fabric, and then forming a polyurethane film on the same side. The high-density fabric referred to in the present invention is a fabric containing thermoplastic synthetic fibers having a single filament fineness of 1 denier or less after splitting, and examples of the thermoplastic synthetic fibers include:
Polyamide fibers, polyester fibers, acrylic fibers, or easily soluble conjugate fibers containing copolymer components that are removed by post-processing can be used. In addition, the single yarn fineness may be such that some of the fibers constituting the fabric satisfy the above range, and even if fibers with multiple types of single yarn fineness are used, some of the fibers constituting the fabric may be natural. The fiber may be, for example, cotton, linen, silk, wool, etc. Such a high-density woven fabric has a single yarn density of 15,000 yarns/parallel inch or more, preferably 30,000 yarns/parallel inch or more. Here, the single yarn density is a value expressed as: Number of warp threads/inch x number of weft threads/inch + number of warp filaments x number of weft filaments (x number of divided segments). Fabrics outside this range, that is, fabrics with a single yarn fineness of 1
Over denier, single yarn density per square inch
With less than 15,000 pieces of fabric, it is difficult to obtain a good feel even if the coating resin is treated to prevent penetration, and even if it is obtained, good adhesive strength cannot be obtained at the same time. In the present invention, a polymer mainly composed of polyurethane resin is used as the coating resin. Examples of the polyurethane resin include commonly used polyester-based or polyether-based polyurethane resins, and special polyamide-based or polycarbonate-based polyurethane resins. are available, but 100% of these resins are effective in preventing hardening of the texture.
% modulus (during dry film creation) is 100
It is desirable that it is less than Kg/ cm2 . Further, other resins such as acrylic resin, silicone resin, and fluorine resin may be used in combination with these polyurethane resins. Such polyurethane resin is formed on at least one side of the high-density fabric by a dry method, a wet method, a lamination method, etc., and there are two types: porous ones with micropores on the film surface and non-porous ones. However, in order to obtain sufficient water resistance, the film thickness must be at least 10 μm, especially for non-porous films.
m, in the case of a porous film, a soft texture can be obtained when the thickness is 10 to 50 μm. This polyurethane resin film conforms to JIS K-6328
It is bonded to a high-density fabric with an adhesive strength of 0.9Kg/cm or more as specified in the above, and the water pressure resistance of such coating fabric is 700mmH 2 O or more (JIS L-1092), usually 700 to 5000mmH 2 Indicates the value of O. or,
If a porous film is used, the moisture permeability is 2000 to 8500g/
m2・24hr (JIS L-1099). The above coated fabric can be obtained by the following method. That is, first, using a melt-splitting composite fiber whose single fiber fineness after splitting is 1 denier or less, the single fiber density is
Weave high-density fabrics with more than 15,000 pieces per square inch. Composite fibers include a combination of polyamide or polyester and a polyester made by copolymerizing a third component such as isophthalic acid or polyethylene glycol to make it easily soluble in alkali. It is preferable that one component does not completely surround the other component in the cross section, and the fibers are joined along the longitudinal direction of a single filament. Specifically, composite fibers with a side-by-side cross section, side-by-side composite fibers, etc. A repeating composite fiber, a composite fiber consisting of a component having a radial shape and another component having a shape that complements the radiating portion, a component having a radial shape and a component that complements the radiating portion and is directed toward the center. Composite fibers made of the same component as the other component having a V-shaped concave shape and the component having a radial shape having a V-shaped shape that complements the concave portion, and a side-by-side repeating type having a hollow portion. Examples include composite fibers. Among these conjugate fibers, conjugate fibers having a component whose cross section has a radial shape are preferred. Such textiles are produced by fibrillating the dissolvable split composite fibers, and when a component easily soluble in alkali is used in the fibrillation treatment, a method of dissolving and removing the component with an alkaline solution such as sodium hydroxide can be used. In the present invention, in order to obtain a coating fabric that is highly durable and has a good texture, the high-density fabric is thermally calendered to increase the penetration of the coating resin by 1/4 to 1/2 of the thickness of the fabric. is controlled. The conditions for thermal calendaring are a temperature of 120 to 190
℃, preferably 130~170℃, linear pressure 50~500Kg/cm,
The preferred range is 80 to 300 kg/cm. If the temperature is less than 120℃ or the linear pressure is less than 50Kg/cm, smoothing will be insufficient and the texture will harden due to penetration.
Under conditions where the linear pressure exceeds cm, there is a risk that the texture will harden and the adhesive strength will decrease due to fiber fusion. Conditions for the thermal calendaring treatment are appropriately selected from the above range depending on the fibers constituting the fabric. In the present invention, the polyurethane resin is coated on the high-density fabric to form a resin layer having a thickness of 10 μm or more. The coating method for the polymer may be a dry method, a wet method, or a solvent-free method, and may be a floating knife coater, a knife over roll coater, a reverse roll coater, a roll doctor coater, a gravure roll coater, a kiss roll coater. Other coating methods can be used. Lamination processing can also be used, but the adhesive should be one that provides sufficient adhesion and is less likely to harden the texture. Furthermore, in order to obtain a soft texture, it is desirable that the viscosity of the coating liquid is 10,000 cps or more; if it is less than 10,000 cps, the penetration of the coating resin will be more than 1/2 of the fabric thickness, which may harden the texture. be. In the present invention, it is also possible to perform water-repellent finishing using a fluorine-based water repellent or a fluorine-based water repellent containing a silicone-based water repellent before thermal calendering. In this case, penetration of the coating resin is further reduced, resulting in a softer texture.
However, in order to maintain adhesive strength, it is preferable to use the silicone water repellent in an amount of 20% by weight or less based on the soft water repellent. (Example) Example 1 Warp yarn is 70 denier 36 filaments, weft yarn is 100 denier 50 filament, warp yarn density is 110/inch, weft yarn density is 84 yarn/inch, warp is nylon 6 filament, weft is 8 pieces extending radially. Taffeta, which is a fibrillated composite filament made of 6 nylon components and complementary polyethylene glycol copolymerized polyethylene terephthalate, is processed to reduce its weight with a caustic soda aqueous solution, and the polyethylene glycol copolymerized polyethylene terephthalate component in the weft is dissolved and removed. Single yarn denier approx.
A high-density fabric having a denier of 0.18 and a single yarn density of approximately 37,560 pieces/inch 2 was obtained. Subsequently, after dyeing and drying using a jet dyeing machine, water repellency treatment was performed by padding with a 2% aqueous solution of a futsuo-based water repellent. Then temperature 160
Thermal calender treatment was performed under the conditions of ℃ and linear pressure of 130 kg/cm to smooth the surface. Furthermore, a polyurethane resin solution with the following formulation was applied immediately using a roll doctor coater.
Wet coagulation was performed in water at 30°C, followed by hot water washing at approximately 40°C. Polyester polyurethane resin 30 parts Blocked isocyanate 3 parts N,N-dimethylformamide 100 parts Next, padding with a 1% aqueous solution of silicone water repellent and drying at a temperature of about 120°C.
Heat treatment was performed at a temperature of 160°C. For the above coating fabric, the film thickness is approximately 25μm,
A resin layer was formed in which the resin penetrated into the fabric in a range of 1/4 to 1/2 of the fabric thickness. The adhesive strength was good at about 1.6 to 2.0 kg/cm, and the texture was extremely soft. Comparison row 1 All the same steps as in Example 1 were carried out except that the thermal calender treatment was omitted. In this coated fabric, the film thickness was approximately 25 μm, and the penetration of the resin into the fabric exceeded 1/2 of the fabric thickness, and some resin leakage was observed on the back side. In addition, the texture was paper-like and somewhat hard. Comparative Example 2 A woven fabric made of refined nylon 6 taffeta with a warp of 70 denier and 18 filaments, a weft of 70 denier and 18 filaments, and a warp density of 112 threads/inch and a weft density of 90 threads/inch, that is, a single thread denier of approximately 3.9 denier.
For a fabric with a single yarn density of approximately 3640 threads/inch 2 ,
The steps after dyeing in Example 1 were carried out. The obtained coating fabric has a film thickness of approximately 25 μm,
The penetration of the resin into the fabric was 1/4 to 1/2 of the fabric thickness, but the texture was paper-like and hard, and the adhesive strength was slightly inferior at 0.6 to 0.8 kg/cm.

【表】 (発明の効果) 以上の如く、本発明によれば、接着強度に優れ
た耐久性のあるコーテイング布帛が得られ、しか
も、かかるコーテイング布帛は耐水性を有しつつ
従来品にない柔軟な風合を兼備するものであつ
て、その有用性は明らかである。
[Table] (Effects of the Invention) As described above, according to the present invention, a durable coated fabric with excellent adhesive strength can be obtained, and furthermore, such a coated fabric has water resistance and flexibility not found in conventional products. It has a unique texture, and its usefulness is obvious.

Claims (1)

【特許請求の範囲】 1 分割後の単糸繊度が1デニール以下となる溶
解分解型複合繊維を用いて、単糸密度15000本/
平方インチ以上の高密度織物を製織した後、複合
繊維を溶解処理によりフイブリル化せしめて、織
物の少なくとも片面にカレンダー加工を施し、次
いで同面にポリウレタン皮膜を形成することを特
徴とする風合の良好なコーテイング織物の製造方
法。 2 溶解分割型複合繊維が2種の成分が横断面に
おいて、放射状の形状を有して接合している特許
請求の範囲第1項記載の方法。 3 カレンダー処理が温度120〜190℃、線圧50〜
500Kg/cmである特許請求の範囲第1項記載の方
法。
[Claims] 1. Using a dissolvable composite fiber whose single fiber fineness after splitting is 1 denier or less, a single fiber density of 15,000 pieces/
After weaving a high-density fabric with a size of square inches or more, the composite fibers are fibrillated by a melting process, and at least one side of the fabric is calendered, and then a polyurethane film is formed on the same side. A method for producing a good coated fabric. 2. The method according to claim 1, wherein the two components of the melt-splitable conjugate fiber are joined in a radial shape in a cross section. 3 Calendering at a temperature of 120 to 190℃ and a linear pressure of 50 to
500 Kg/cm. The method according to claim 1.
JP62316816A 1987-12-14 1987-12-14 Coating fabric and production thereof Granted JPH01156579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62316816A JPH01156579A (en) 1987-12-14 1987-12-14 Coating fabric and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62316816A JPH01156579A (en) 1987-12-14 1987-12-14 Coating fabric and production thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5024812A Division JPH05272062A (en) 1993-01-19 1993-01-19 Coated woven fabric

Publications (2)

Publication Number Publication Date
JPH01156579A JPH01156579A (en) 1989-06-20
JPH0411668B2 true JPH0411668B2 (en) 1992-03-02

Family

ID=18081236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62316816A Granted JPH01156579A (en) 1987-12-14 1987-12-14 Coating fabric and production thereof

Country Status (1)

Country Link
JP (1) JPH01156579A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144178A (en) * 1982-02-22 1983-08-27 東レ株式会社 Moisture permeable and water leakage resistant coated fabric
JPS58191220A (en) * 1982-05-06 1983-11-08 Teijin Ltd Microfibrillating type hollow annular composite fiber
JPS58214584A (en) * 1982-06-07 1983-12-13 三菱レイヨン株式会社 Processing of acrylic fiber product by urethane resin
JPS5930966A (en) * 1982-08-13 1984-02-18 帝人株式会社 Production of fabric having waterproofness and moisture permeability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144178A (en) * 1982-02-22 1983-08-27 東レ株式会社 Moisture permeable and water leakage resistant coated fabric
JPS58191220A (en) * 1982-05-06 1983-11-08 Teijin Ltd Microfibrillating type hollow annular composite fiber
JPS58214584A (en) * 1982-06-07 1983-12-13 三菱レイヨン株式会社 Processing of acrylic fiber product by urethane resin
JPS5930966A (en) * 1982-08-13 1984-02-18 帝人株式会社 Production of fabric having waterproofness and moisture permeability

Also Published As

Publication number Publication date
JPH01156579A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
KR101745980B1 (en) Down proof woven fabric
EP2006439B1 (en) Artificial leather and method for producing the same
GB2039790A (en) A moisture-permeable waterproof coated fabric and method of making the same
US5922445A (en) Composite material and process for production of same
CN112210865A (en) Improved double-faced woolen cloth production process
JPS6144991B2 (en)
JPH0411668B2 (en)
JPH05272062A (en) Coated woven fabric
KR100232727B1 (en) Process for preparing 3 layer coating fabric having improved water vapor permeability and waterproof
KR100379072B1 (en) Nonwoven fabric synthetic leather having elasticity
JPH07305275A (en) Production of waterproof woven fabric
JP3165275B2 (en) Waterproof fabric and manufacturing method thereof
JPH1181141A (en) Polyester resin-processed woven fabric
JP3709676B2 (en) Manufacturing method of napped sheet
KR19980028821A (en) Manufacturing method of waterproof waterproof coating fabric
JP3484598B2 (en) Method of manufacturing nap sheet
JP3430852B2 (en) Method of manufacturing nap sheet
JP2017080937A (en) Flame-retardant waterproof fabric for uniform clothing
JPH0512466B2 (en)
JP2006045716A (en) Moisture-permeable waterproof cloth and method for producing the same
JPS60215869A (en) Production of high density fabric
JPS6385166A (en) Production of ultrafine fiber knitted fabric
JP2002201562A (en) Method for producing high density fabric with high waterproofness
KR101184479B1 (en) Artificial leather and method for manufacturing the same
JP3164425B2 (en) Moisture permeable, waterproof fabric