JPH04116555U - cylindrical structure - Google Patents

cylindrical structure

Info

Publication number
JPH04116555U
JPH04116555U JP2030591U JP2030591U JPH04116555U JP H04116555 U JPH04116555 U JP H04116555U JP 2030591 U JP2030591 U JP 2030591U JP 2030591 U JP2030591 U JP 2030591U JP H04116555 U JPH04116555 U JP H04116555U
Authority
JP
Japan
Prior art keywords
cylindrical structure
cylindrical
membrane
view
lightweight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2030591U
Other languages
Japanese (ja)
Inventor
敏秋 巻幡
徹 堀
裕彦 藤原
吏史 芦田
照久 石原
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to JP2030591U priority Critical patent/JPH04116555U/en
Publication of JPH04116555U publication Critical patent/JPH04116555U/en
Pending legal-status Critical Current

Links

Landscapes

  • Tents Or Canopies (AREA)

Abstract

(57)【要約】 【目的】 構造材料としての強度を保ちながら極めて軽
量である構造体を提供するもの。 【構成】 長手方向,周方向および斜め方向に配置され
た高引張強度線繊維材で形成された外筒膜1と、この外
筒膜1の内面に配設された、伸縮性に富みかつ気密性を
有する内筒膜2と、所定圧力で封入されて外筒膜1およ
び内筒膜2の形状を保持する空気などの気体とから筒状
構造体を構成したもの。 【効果】 大きな強度を有する筒状構造体を得ることが
でき、しかも使用しない際にはこの筒状構造体のコンパ
クト化が容易にでき、使用時には所定形状に再び保持で
き、形状記憶性を持たせることができる。
(57) [Summary] [Purpose] To provide a structure that is extremely lightweight while maintaining the strength of a structural material. [Structure] An outer cylinder membrane 1 made of high tensile strength wire fiber material arranged in the longitudinal direction, circumferential direction, and diagonal direction, and a highly elastic and airtight membrane arranged on the inner surface of this outer cylinder membrane 1. A cylindrical structure is constituted by an inner cylinder membrane 2 having properties and a gas such as air that is sealed under a predetermined pressure to maintain the shapes of the outer cylinder membrane 1 and the inner cylinder membrane 2. [Effects] A cylindrical structure with great strength can be obtained. Moreover, this cylindrical structure can be easily made compact when not in use, can be held in a predetermined shape again when in use, and has shape memory properties. can be set.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は、筒状構造体に関するものである。 The present invention relates to a cylindrical structure.

【0002】0002

【従来の技術】[Conventional technology]

従来の軽量な構造材料としては中空状や断面C字形状の鋼材やアルミ材などが 使用されていた。 Conventional lightweight structural materials include hollow or C-shaped steel and aluminum materials. It was used.

【0003】0003

【考案が解決しようとする課題】[Problem that the idea aims to solve]

しかしながら、この種の構造材料においてもその軽量化には限界があり、極端 に肉厚を薄くすると構造材料としての強度を保てないという課題があった。 However, even with this type of structural material, there is a limit to how much weight it can be reduced. However, when the wall thickness was reduced, the strength of the material as a structural material could not be maintained.

【0004】 本考案は上記問題を解決するもので、構造材料としての強度を保ちながら極め て軽量である構造体を提供することを目的するものである。0004 This invention solves the above problem, and is designed to maintain the strength as a structural material. The purpose of this invention is to provide a structure that is lightweight and lightweight.

【0005】[0005]

【課題を解決するための手段】[Means to solve the problem]

上記問題を解決するために本考案の筒状構造体は、長手方向,周方向および斜 め方向に配置された高引張強度線繊維材で形成された外筒膜と、この外筒膜の内 面に配設された、伸縮性に富みかつ気密性を有する内筒膜と、所定圧力で封入さ れて上記内外筒膜の形状を保持する流体とからなるものである。 In order to solve the above problems, the cylindrical structure of the present invention is An outer cylinder membrane made of high tensile strength wire fiber material arranged in the direction of the A highly elastic and airtight inner cylindrical membrane placed on the surface and sealed under a predetermined pressure. and a fluid that maintains the shape of the inner and outer cylindrical membranes.

【0006】[0006]

【作用】[Effect]

上記構成により、筒状構造体が、高引張強度線繊維材の外筒膜と伸縮性に富み かつ気密性を有する内筒膜と封入流体とから構成されるので超軽量化が可能であ り、また、内部に所定圧力の流体が封入されることにより、高引張強度線繊維材 は予め引張り応力が負荷され、これにより引張り,圧縮,曲げ,せん断,捩りな どの外力に対して大きな強度が発揮される。しかも構造体として使用しない際に は封入流体を抜くことによりコンパクト化できて、また、再度流体を封入するこ とにより所定形状が保持される。 With the above configuration, the cylindrical structure has high tensile strength wire fiber material outer cylinder membrane and high elasticity. In addition, since it is composed of an airtight inner cylinder membrane and a sealed fluid, it can be extremely lightweight. In addition, by sealing a fluid at a predetermined pressure inside, high tensile strength wire fiber materials can be produced. is preloaded with tensile stress, which causes it to undergo tension, compression, bending, shear, and torsion. Great strength is demonstrated against any external force. Moreover, when not used as a structure can be made more compact by removing the sealed fluid, and can also be refilled with fluid. The predetermined shape is maintained by this.

【0007】[0007]

【実施例】【Example】

以下本考案の実施例を図面に基づき説明する。 図1は本考案の一実施例を示す筒状構造体の一部切欠き外観図、図2は同筒状 構造体の外筒膜の要部拡大図である。図1および図2に示すように、筒状構造体 10は、長手方向,周方向および斜め方向に配置されたアラミド繊維材からなる外 筒膜1と、この外筒膜1の内面に配設された合成ゴム製の内筒膜2とからなり、 内筒膜2には外筒膜1から外方に突出する注入口2aが設けられ、内筒膜2内に は注入口2aから空気が所定圧力まで封入されている。筒状構造体10は空気が封 入されていない状態では可撓性を有する単なる膜だが、所定圧力まで封入される と、予め設定された形状に保持される。ここで、外筒膜1の材料であるアラミド 繊維は、引張強度が310 kg・f/mm2 と高引張強度(引張強度は鋼材:40〜50 kg ・f/mm2 、炭素繊維250 〜420 kg・f/mm2 、ガラス繊維:220 kg・f/mm2 )であ り、また比重は1.39と低く(比重は鋼材:7.85、炭素繊維1.80、ガラス繊維2.54 )、他に類を見ない高衝撃強度や耐熱性,耐薬品性や優れた疲労強度を有する。 なお、外筒膜1には上記3方向のアラミド繊維材のさらに外側にこれらを押さえ る押さえ繊維材3が巻回されている、また内筒膜2の注入口2aには開閉バルブ 4が設けられている。Embodiments of the present invention will be described below based on the drawings. FIG. 1 is a partially cutaway external view of a cylindrical structure showing an embodiment of the present invention, and FIG. 2 is an enlarged view of a main part of the outer cylindrical membrane of the same cylindrical structure. As shown in FIGS. 1 and 2, the cylindrical structure 10 includes an outer cylindrical membrane 1 made of aramid fibers arranged in the longitudinal direction, circumferential direction, and diagonal direction, and a cylindrical structure 1 arranged on the inner surface of the outer cylindrical membrane 1. The inner cylinder membrane 2 is provided with an injection port 2a projecting outward from the outer cylinder membrane 1, and air is introduced into the inner cylinder membrane 2 from the injection port 2a. It is sealed up to a predetermined pressure. The cylindrical structure 10 is just a flexible membrane when air is not sealed in it, but when it is filled with air up to a predetermined pressure, it is held in a preset shape. Here, the aramid fiber that is the material of the outer cylinder membrane 1 has a high tensile strength of 310 kg・f/mm 2 (the tensile strength is 40 to 50 kg・f/mm 2 for steel material, and 250 to 420 kg・f/mm 2 for carbon fiber) kg・f/mm 2 , glass fiber: 220 kg・f/mm 2 ), and has a low specific gravity of 1.39 (specific gravity is 7.85 for steel, 1.80 for carbon fiber, and 2.54 for glass fiber), making it an unparalleled high material. It has impact strength, heat resistance, chemical resistance, and excellent fatigue strength. In addition, the outer cylinder membrane 1 has a pressing fiber material 3 wound around the aramid fiber materials in the three directions further outside to press them, and an opening/closing valve 4 is provided at the injection port 2a of the inner cylinder membrane 2. ing.

【0008】 上記構成により、筒状構造体10は主として、アラミド繊維材よりなる外筒膜1 と合成ゴムからなる内筒膜2とから構成されるため超軽量であり、また内部に所 定圧力の空気が封入されることにより、高引張強度のアラミド繊維材よりなる外 筒膜1はあらかじめ引張り応力を与えられ、これにより引張り,圧縮,曲げ,せ ん断,捩りなどの外力に対して大きな強度が発揮される。しかも、構造体として 使用しない際には空気を抜くことによりコンパクト化できて、収納,搬送に便利 であり、また、再度空気を封入することにより所定形状とすることができる。[0008] With the above configuration, the cylindrical structure 10 mainly consists of an outer cylindrical membrane 1 made of aramid fiber material. and an inner cylinder membrane 2 made of synthetic rubber, it is extremely lightweight and has no internal space. By enclosing air at a constant pressure, the outer material is made of aramid fiber material with high tensile strength. The cylindrical membrane 1 is given a tensile stress in advance, which causes it to undergo tension, compression, bending, and shearing. It exhibits great strength against external forces such as shearing and torsion. Moreover, as a structure When not in use, it can be made compact by deflating, making it convenient for storage and transportation. Moreover, it can be made into a predetermined shape by enclosing air again.

【0009】 次に、筒状構造体の継手部構造について図3および図4に基づき説明する。 図3において、11はアルミニウム製の軽量継手で、内面に凹凸部12が形成され た筒状開口部13を有する。この軽量継手11の筒状開口部13に、加圧する前の筒状 構造体10の端部を挿入し、加圧することにより外筒膜1が凹凸部12に押し付けら れてこの摩擦力により筒状構造体10が軽量継手11に係合固定される。この軽量継 手11により筒状構造体に対して引張り,圧縮,曲げ,せん断,捩りなど各種の力 を伝達できる。なお、図3に示すように、筒状構造体10の端部と軽量継手11との 隙間はウレタンゴムなどのパッキング材14で埋められている。また、軽量継手11 の材質はアルミニウムに限られるものではなく、合成樹脂やケプラー(アラミド 繊維材と合成樹脂で作られたもの)でもよい。[0009] Next, the joint structure of the cylindrical structure will be explained based on FIGS. 3 and 4. In Fig. 3, 11 is a lightweight joint made of aluminum, and an uneven part 12 is formed on the inner surface. It has a cylindrical opening 13. The cylindrical opening 13 of this lightweight joint 11 has a cylindrical shape before being pressurized. By inserting the end of the structure 10 and applying pressure, the outer cylinder membrane 1 is pressed against the uneven portion 12. The cylindrical structure 10 is engaged and fixed to the lightweight joint 11 by this frictional force. This lightweight fitting Various forces such as tension, compression, bending, shearing, and torsion are applied to the cylindrical structure by hand11. can be communicated. In addition, as shown in FIG. 3, the connection between the end of the cylindrical structure 10 and the lightweight joint 11 is The gap is filled with a packing material 14 such as urethane rubber. In addition, lightweight fittings 11 The material is not limited to aluminum, but also synthetic resin and Kepler (aramid). (made of fiber material and synthetic resin) may also be used.

【0010】 また、図4は上記軽量継手構造が用いられているT型の軽量継手15で、このT 型軽量継手15は例えば上下方向に貫通された貫通孔16と側方に開口された側方孔 17とが設けられ、それぞれの孔16,17 が上記筒状開口部13の構造とされ凹凸部12 が形成されている。これによれば筒状構造体10どうしを容易に接続することがで きる。この実施例ではT字型のものを示したが十字型や複数の接続部を有するも のなどで多数の筒状構造体10どうしを接続してもよい。0010 In addition, Figure 4 shows a T-shaped lightweight joint 15 in which the above-mentioned lightweight joint structure is used. The type lightweight joint 15 has, for example, a through hole 16 penetrated in the vertical direction and a side hole opened laterally. 17, each hole 16, 17 has the structure of the cylindrical opening 13, and the uneven portion 12 is formed. According to this, the cylindrical structures 10 can be easily connected to each other. Wear. In this example, a T-shaped one is shown, but a cross-shaped one or one with multiple connections is also available. A large number of cylindrical structures 10 may be connected to each other by, for example, .

【0011】 また、図5は本考案の筒状構造体を用いた製品の一例としての飛行船の概略斜 視図、図6は気球の概略斜視図を示すもので、図5および図6に示すように、飛 行船20および気球30の骨格部は周方向に延びる筒状構造体10をその長手方向に複 数配設して形成されている。そして、これらの筒状構造体10の内筒膜内の圧力を 適度に高められることにより、これらの筒状構造体10により形成される飛行船20 および気球30内の圧力を真空に近い状態にしても形状を保つことができる。した がって、飛行船20および気球30内の気体を真空ポンプなどにより排出すること事 により簡単に浮力の調整ができ、浮力を得るのに必要なヘリウム量を大幅に節約 できると同時に浮力調整の容易な飛行船20および気球30を実現できる。[0011] Figure 5 is a schematic diagram of an airship as an example of a product using the cylindrical structure of the present invention. Figure 6 shows a schematic perspective view of the balloon, and as shown in Figures 5 and 6, The skeleton part of the boat 20 and the balloon 30 has a cylindrical structure 10 extending in the circumferential direction, which is duplicated in the longitudinal direction. It is formed by arranging several. Then, the pressure inside the inner cylinder membrane of these cylindrical structures 10 is An airship 20 formed by these cylindrical structures 10 by being raised appropriately Moreover, the balloon 30 can maintain its shape even if the pressure inside the balloon 30 is brought to a near-vacuum state. did Therefore, it is necessary to exhaust the gas inside the airship 20 and the balloon 30 using a vacuum pump or the like. This allows easy adjustment of buoyancy and significantly reduces the amount of helium required to obtain buoyancy. At the same time, it is possible to realize an airship 20 and a balloon 30 with easy buoyancy adjustment.

【0012】 図7は本考案の筒状構造体を用いたドームを示す概略斜視図で、図7に示すよ うに、ドーム40の骨格部は周方向に延びる筒状構造体10を高さ方向に複数配設し て形成されている。これによれば、従来のように複雑なトラス構造などを用いる ことなく、構造を単純化でき、設計面での制約が大幅に減少し、建設の際の工期 を大幅に短縮でき、建設作業の安全性も向上する。0012 FIG. 7 is a schematic perspective view showing a dome using the cylindrical structure of the present invention, as shown in FIG. In other words, the skeleton of the dome 40 has a plurality of cylindrical structures 10 extending in the circumferential direction arranged in the height direction. It is formed by According to this, using a complex truss structure as in the past The structure can be simplified, design constraints are significantly reduced, and the construction period is reduced. This will significantly shorten the time required and improve the safety of construction work.

【0013】 図8は本考案の筒状構造体を用いた宇宙基地を示す概略斜視図で、図8および 図9に示すように、宇宙基地50の骨格部は縦横および斜め方向に延びる筒状構造 体10を複数配設して形成されている。また、図10に示すように、受信発信部51の 骨格部も周方向および放射方向に延びる筒状構造体10を複数配設して形成されて いる。これによれば、宇宙基地50の骨格部を小さく折り畳んでロケット内に収納 でき、軽量であるため、輸送エネルギーの低減を図れ、現場で筒状構造体10に気 体を流入させることにより宇宙基地50の構築を短時間で容易にできる。[0013] FIG. 8 is a schematic perspective view showing a space base using the cylindrical structure of the present invention. As shown in Figure 9, the skeleton of the space station 50 has a cylindrical structure extending vertically, horizontally and diagonally. It is formed by arranging a plurality of bodies 10. In addition, as shown in FIG. The skeleton part is also formed by arranging a plurality of cylindrical structures 10 extending in the circumferential direction and the radial direction. There is. According to this, the skeleton of Space Station 50 can be folded into a small size and stored inside the rocket. Because it is lightweight and can reduce transportation energy, it is easy to handle the cylindrical structure 10 at the site. The influx of bodies allows for the construction of a space base 50 in a short period of time.

【0014】 さらに、図11は本考案の筒状構造体を用いた簡易橋を示す概略斜視図である。 この簡易橋60は、長手方向に延びる筒状構造体10を複数配設して形成されている 。これによれば、取り扱いが容易で、一人でも取り扱え、筒状構造体10への空気 注入により速やかに所定の強度を有する部材を構成できるため、組立,解体を迅 速に行え、コンパクトな状態で輸送できる。また、簡易橋60は軽量であるため、 いかだとして用いることができ、図12に示すように、幅方向に延びる筒状構造体 10を複数配設していかだ70を形成してもよい。[0014] Furthermore, FIG. 11 is a schematic perspective view showing a simple bridge using the cylindrical structure of the present invention. This simple bridge 60 is formed by arranging a plurality of cylindrical structures 10 extending in the longitudinal direction. . According to this, it is easy to handle, even one person can handle it, and the air to the cylindrical structure 10 is By injection, it is possible to quickly construct components with a specified strength, allowing for quick assembly and disassembly. It can be carried out quickly and transported in a compact state. In addition, since the simple bridge 60 is lightweight, A cylindrical structure that can be used as a raft and extends in the width direction, as shown in Figure 12. 10 may be arranged to form the raft 70.

【0015】 また、図13〜図15に示すように、骨格部および上面部に筒状構造体10を複数並 べて配設して簡易橋80を形成してもよく、この簡易橋80を、図16の(a) 〜(d) に 示すように車載することもできる。これによれば、構成部材としての筒状構造体 10が軽量であり、空気を抜いた状態で非常に小さくできるため、搭載用の車両81 を、従来の無軌道車などを用いることなく、小回りがきき、使い勝手のよい装輪 車で対応できる。そして、筒状構造体10への空気注入により速やかに所定の強度 を有する部材を構成できるため、簡易橋80の架設、撤収を迅速に行える。[0015] In addition, as shown in FIGS. 13 to 15, a plurality of cylindrical structures 10 are arranged in parallel on the skeleton and the upper surface. A simple bridge 80 may be formed by arranging all It can also be mounted on a vehicle as shown. According to this, a cylindrical structure as a component 10 is lightweight and can be very small when deflated, making it suitable for mounting on vehicles81 , a wheeled vehicle that is easy to turn and easy to use, without using conventional trackless vehicles. This can be done by car. Then, by injecting air into the cylindrical structure 10, the predetermined strength is quickly achieved. Since it is possible to construct a member having the following structure, the simple bridge 80 can be quickly erected and dismantled.

【0016】[0016]

【考案の効果】 以上のように本考案によれば、超軽量でかつ引張り,圧縮,曲げ,せん断,捩 りなどの外力に対して大きな強度を有する筒状構造体を得ることができ、しかも 使用しない際にはこの筒状構造体のコンパクト化が容易にでき、使用時には所定 形状に再び保持でき、形状記憶性を持たせることができる。[Effect of the idea] As described above, according to the present invention, it is extremely lightweight and can be used in tension, compression, bending, shearing, and torsion. It is possible to obtain a cylindrical structure that has great strength against external forces such as This cylindrical structure can be easily made compact when not in use, and when in use it can be It can retain its shape again and can have shape memory properties.

【提出日】平成4年6月19日[Submission date] June 19, 1992

【手続補正1】[Procedural amendment 1]

【補正対象書類名】明細書[Name of document to be amended] Specification

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction details] 【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は、筒状構造体に関するものである。 The present invention relates to a cylindrical structure.

【0002】0002

【従来の技術】[Conventional technology]

従来の軽量な構造材料としては中空状や断面C字形状の鋼材やアルミ材などが 使用されていた。 Conventional lightweight structural materials include hollow or C-shaped steel and aluminum materials. It was used.

【0003】0003

【考案が解決しようとする課題】[Problem that the idea aims to solve]

しかしながら、この種の構造材料においてもその軽量化には限界があり、極端 に肉厚を薄くすると構造材料としての強度を保てないという課題があった。 However, even with this type of structural material, there is a limit to how much weight it can be reduced. However, when the wall thickness was reduced, the strength of the material as a structural material could not be maintained.

【0004】 本考案は上記問題を解決するもので、構造材料としての強度を保ちながら極め て軽量である構造体を提供することを目的するものである。0004 This invention solves the above problem, and is designed to maintain the strength as a structural material. The purpose of this invention is to provide a structure that is lightweight and lightweight.

【0005】[0005]

【課題を解決するための手段】[Means to solve the problem]

上記問題を解決するために本考案の筒状構造体は、長手方向,周方向および斜 め方向に配置された高引張強度線繊維材で形成された外筒膜と、この外筒膜の内 面に配設された、伸縮性に富みかつ気密性を有する内筒膜と、所定圧力で封入さ れて上記内外筒膜の形状を保持する流体とからなるものである。 In order to solve the above problems, the cylindrical structure of the present invention is An outer cylinder membrane made of high tensile strength wire fiber material arranged in the direction of the A highly elastic and airtight inner cylindrical membrane placed on the surface and sealed under a predetermined pressure. and a fluid that maintains the shape of the inner and outer cylindrical membranes.

【0006】[0006]

【作用】[Effect]

上記構成により、筒状構造体が、高引張強度線繊維材の外筒膜と伸縮性に富み かつ気密性を有する内筒膜と封入流体とから構成されるので超軽量化が可能であ り、また、内部に所定圧力の流体が封入されることにより、高引張強度線繊維材 は予め引張り応力が負荷され、これにより引張り,圧縮,曲げ,せん断,捩りな どの外力に対して大きな強度が発揮される。しかも構造体として使用しない際に は封入流体を抜くことによりコンパクト化できて、また、再度流体を封入するこ とにより所定形状が保持される。 With the above configuration, the cylindrical structure has high tensile strength wire fiber material outer cylinder membrane and high elasticity. In addition, since it is composed of an airtight inner cylinder membrane and a sealed fluid, it can be extremely lightweight. In addition, by sealing a fluid at a predetermined pressure inside, high tensile strength wire fiber materials can be produced. is preloaded with tensile stress, which causes it to undergo tension, compression, bending, shear, and torsion. Great strength is demonstrated against any external force. Moreover, when not used as a structure can be made more compact by removing the sealed fluid, and can also be refilled with fluid. The predetermined shape is maintained by this.

【0007】[0007]

【実施例】【Example】

以下本考案の実施例を図面に基づき説明する。 図1は本考案の一実施例を示す筒状構造体の一部切欠き外観図、図2は同筒状 構造体の外筒膜の要部拡大図である。図1および図2に示すように、筒状構造体 10は、長手方向,周方向および斜め方向に配置されたアラミド繊維材からなる外 筒膜1と、この外筒膜1の内面に配設された合成ゴム製の内筒膜2とからなり、 内筒膜2には外筒膜1から外方に突出する注入口2aが設けられ、内筒膜2内に は注入口2aから空気が所定圧力まで封入されている。筒状構造体10は空気が封 入されていない状態では可撓性を有する単なる膜だが、所定圧力まで封入される と、予め設定された形状に保持される。ここで、外筒膜1の材料であるアラミド 繊維は、引張強度が310 kg・f/mm2 と高引張強度(引張強度は鋼材:40〜50 kg ・f/mm2 、炭素繊維250 〜420 kg・f/mm2 、ガラス繊維:220 kg・f/mm2 )であ り、また比重は1.39と低く(比重は鋼材:7.85、炭素繊維1.80、ガラス繊維2.54 )、他に類を見ない高衝撃強度や耐熱性,耐薬品性や優れた疲労強度を有する。 なお、外筒膜1には上記3方向のアラミド繊維材のさらに外側にこれらを押さえ る押さえ繊維材3が巻回されている、また内筒膜2の注入口2aには開閉バルブ 4が設けられている。Embodiments of the present invention will be described below based on the drawings. FIG. 1 is a partially cutaway external view of a cylindrical structure showing an embodiment of the present invention, and FIG. 2 is an enlarged view of a main part of the outer cylindrical membrane of the same cylindrical structure. As shown in FIGS. 1 and 2, the cylindrical structure 10 includes an outer cylindrical membrane 1 made of aramid fibers arranged in the longitudinal direction, circumferential direction, and diagonal direction, and a cylindrical structure 1 arranged on the inner surface of the outer cylindrical membrane 1. The inner cylinder membrane 2 is provided with an injection port 2a projecting outward from the outer cylinder membrane 1, and air is introduced into the inner cylinder membrane 2 from the injection port 2a. It is sealed up to a predetermined pressure. The cylindrical structure 10 is just a flexible membrane when air is not sealed in it, but when it is filled with air up to a predetermined pressure, it is held in a preset shape. Here, the aramid fiber that is the material of the outer cylinder membrane 1 has a high tensile strength of 310 kg・f/mm 2 (the tensile strength is 40 to 50 kg・f/mm 2 for steel material, and 250 to 420 kg・f/mm 2 for carbon fiber) kg・f/mm 2 , glass fiber: 220 kg・f/mm 2 ), and has a low specific gravity of 1.39 (specific gravity is 7.85 for steel, 1.80 for carbon fiber, and 2.54 for glass fiber), making it an unparalleled high material. It has impact strength, heat resistance, chemical resistance, and excellent fatigue strength. In addition, the outer cylinder membrane 1 has a pressing fiber material 3 wound around the aramid fiber materials in the three directions further outside to press them, and an opening/closing valve 4 is provided at the injection port 2a of the inner cylinder membrane 2. ing.

【0008】 上記構成により、筒状構造体10は主として、アラミド繊維材よりなる外筒膜1 と合成ゴムからなる内筒膜2とから構成されるため超軽量であり、また内部に所 定圧力の空気が封入されることにより、高引張強度のアラミド繊維材よりなる外 筒膜1はあらかじめ引張り応力を与えられ、これにより引張り,圧縮,曲げ,せ ん断,捩りなどの外力に対して大きな強度が発揮される。しかも、構造体として 使用しない際には空気を抜くことによりコンパクト化できて、収納,搬送に便利 であり、また、再度空気を封入することにより所定形状とすることができる。[0008] With the above configuration, the cylindrical structure 10 mainly consists of an outer cylindrical membrane 1 made of aramid fiber material. and an inner cylinder membrane 2 made of synthetic rubber, it is extremely lightweight and has no internal space. By enclosing air at a constant pressure, the outer material is made of aramid fiber material with high tensile strength. The cylindrical membrane 1 is given a tensile stress in advance, which causes it to undergo tension, compression, bending, and shearing. It exhibits great strength against external forces such as shearing and torsion. Moreover, as a structure When not in use, it can be made compact by deflating, making it convenient for storage and transportation. Moreover, it can be made into a predetermined shape by enclosing air again.

【0009】 次に、筒状構造体の継手部構造について図3および図4に基づき説明する。 図3において、11はアルミニウム製の軽量継手で、内面に凹凸部12が形成され た筒状開口部13を有する。この軽量継手11の筒状開口部13に、加圧する前の筒状 構造体10の端部を挿入し、加圧することにより外筒膜1が凹凸部12に押し付けら れてこの摩擦力により筒状構造体10が軽量継手11に係合固定される。この軽量継 手11により筒状構造体に対して引張り,圧縮,曲げ,せん断,捩りなど各種の力 を伝達できる。なお、図3に示すように、筒状構造体10の端部と軽量継手11との 隙間はウレタンゴムなどのパッキング材14で埋められている。また、軽量継手11 の材質はアルミニウムに限られるものではなく、合成樹脂やケプラー(アラミド 繊維材と合成樹脂で作られたもの)でもよい。[0009] Next, the joint structure of the cylindrical structure will be explained based on FIGS. 3 and 4. In Fig. 3, 11 is a lightweight joint made of aluminum, and an uneven part 12 is formed on the inner surface. It has a cylindrical opening 13. The cylindrical opening 13 of this lightweight joint 11 has a cylindrical shape before being pressurized. By inserting the end of the structure 10 and applying pressure, the outer cylinder membrane 1 is pressed against the uneven portion 12. The cylindrical structure 10 is engaged and fixed to the lightweight joint 11 by this frictional force. This lightweight fitting Various forces such as tension, compression, bending, shearing, and torsion are applied to the cylindrical structure by hand11. can be communicated. In addition, as shown in FIG. 3, the connection between the end of the cylindrical structure 10 and the lightweight joint 11 is The gap is filled with a packing material 14 such as urethane rubber. In addition, lightweight fittings 11 The material is not limited to aluminum, but also synthetic resin and Kepler (aramid). (made of fiber material and synthetic resin) may also be used.

【0010】 また、図4は上記軽量継手構造が用いられているT型の軽量継手15で、このT 型軽量継手15は例えば上下方向に貫通された貫通孔16と側方に開口された側方孔 17とが設けられ、それぞれの孔16,17 が上記筒状開口部13の構造とされ凹凸部12 が形成されている。これによれば筒状構造体10どうしを容易に接続することがで きる。この実施例ではT字型のものを示したが十字型や複数の接続部を有するも のなどで多数の筒状構造体10どうしを接続してもよい。0010 In addition, Figure 4 shows a T-shaped lightweight joint 15 in which the above-mentioned lightweight joint structure is used. The type lightweight joint 15 has, for example, a through hole 16 penetrated in the vertical direction and a side hole opened laterally. 17, each hole 16, 17 has the structure of the cylindrical opening 13, and the uneven portion 12 is formed. According to this, the cylindrical structures 10 can be easily connected to each other. Wear. In this example, a T-shaped one is shown, but a cross-shaped one or one with multiple connections is also available. A large number of cylindrical structures 10 may be connected to each other by, for example, .

【0011】 また、図5は本考案の筒状構造体を用いた製品の一例としての飛行船の概略斜 視図、図6は気球の概略斜視図を示すもので、図5および図6に示すように、飛 行船20および気球30の骨格部は周方向に延びる筒状構造体10をその長手方向に複 数配設して形成されている。そして、これらの筒状構造体10の内筒膜内の圧力を 適度に高められることにより、これらの筒状構造体10により形成される飛行船20 および気球30内の圧力を真空に近い状態にしても形状を保つことができる。した がって、飛行船20および気球30内の気体を真空ポンプなどにより排出すること事 により簡単に浮力の調整ができ、浮力を得るのに必要なヘリウム量を大幅に節約 できると同時に浮力調整の容易な飛行船20および気球30を実現できる。[0011] Figure 5 is a schematic diagram of an airship as an example of a product using the cylindrical structure of the present invention. Figure 6 shows a schematic perspective view of the balloon, and as shown in Figures 5 and 6, The skeleton part of the boat 20 and the balloon 30 has a cylindrical structure 10 extending in the circumferential direction, which is duplicated in the longitudinal direction. It is formed by arranging several. Then, the pressure inside the inner cylinder membrane of these cylindrical structures 10 is An airship 20 formed by these cylindrical structures 10 by being raised appropriately Moreover, the balloon 30 can maintain its shape even if the pressure inside the balloon 30 is brought to a near-vacuum state. did Therefore, it is necessary to exhaust the gas inside the airship 20 and the balloon 30 using a vacuum pump or the like. This allows easy adjustment of buoyancy and significantly reduces the amount of helium required to obtain buoyancy. At the same time, it is possible to realize an airship 20 and a balloon 30 with easy buoyancy adjustment.

【0012】 図7は本考案の筒状構造体を用いたドームを示す概略斜視図で、図7に示すよ うに、ドーム40の骨格部は周方向に延びる筒状構造体10を高さ方向に複数配設し て形成されている。これによれば、従来のように複雑なトラス構造などを用いる ことなく、構造を単純化でき、設計面での制約が大幅に減少し、建設の際の工期 を大幅に短縮でき、建設作業の安全性も向上する。0012 FIG. 7 is a schematic perspective view showing a dome using the cylindrical structure of the present invention, as shown in FIG. In other words, the skeleton of the dome 40 has a plurality of cylindrical structures 10 extending in the circumferential direction arranged in the height direction. It is formed by According to this, using a complex truss structure as in the past The structure can be simplified, design constraints are significantly reduced, and the construction period is reduced. This will significantly shorten the time required and improve the safety of construction work.

【0013】 図8は本考案の筒状構造体を用いた宇宙基地を示す概略斜視図で、図8および 図9に示すように、宇宙基地50の骨格部は縦横および斜め方向に延びる筒状構造 体10を複数配設して形成されている。また、図10に示すように、受信発信部51の 骨格部も周方向および放射方向に延びる筒状構造体10を複数配設して形成されて いる。これによれば、宇宙基地50の骨格部を小さく折り畳んでロケット内に収納 でき、軽量であるため、輸送エネルギーの低減を図れ、現場で筒状構造体10に気 体を流入させることにより宇宙基地50の構築を短時間で容易にできる。[0013] FIG. 8 is a schematic perspective view showing a space base using the cylindrical structure of the present invention. As shown in Figure 9, the skeleton of the space station 50 has a cylindrical structure extending vertically, horizontally and diagonally. It is formed by arranging a plurality of bodies 10. In addition, as shown in FIG. The skeleton part is also formed by arranging a plurality of cylindrical structures 10 extending in the circumferential direction and the radial direction. There is. According to this, the skeleton of Space Station 50 can be folded into a small size and stored inside the rocket. Because it is lightweight and can reduce transportation energy, it is easy to handle the cylindrical structure 10 at the site. The influx of bodies allows for the construction of a space base 50 in a short period of time.

【0014】 さらに、図11は本考案の筒状構造体を用いた簡易橋を示す概略斜視図である。 この簡易橋60は、長手方向に延びる筒状構造体10を複数配設して形成されている 。これによれば、取り扱いが容易で、一人でも取り扱え、筒状構造体10への空気 注入により速やかに所定の強度を有する部材を構成できるため、組立,解体を迅 速に行え、コンパクトな状態で輸送できる。また、簡易橋60は軽量であるため、 いかだとして用いることができ、図12に示すように、幅方向に延びる筒状構造体 10を複数配設していかだ70を形成してもよい。[0014] Furthermore, FIG. 11 is a schematic perspective view showing a simple bridge using the cylindrical structure of the present invention. This simple bridge 60 is formed by arranging a plurality of cylindrical structures 10 extending in the longitudinal direction. . According to this, it is easy to handle, even one person can handle it, and the air to the cylindrical structure 10 is By injection, it is possible to quickly construct components with a specified strength, allowing for quick assembly and disassembly. It can be carried out quickly and transported in a compact state. In addition, since the simple bridge 60 is lightweight, A cylindrical structure that can be used as a raft and extends in the width direction, as shown in Figure 12. 10 may be arranged to form the raft 70.

【0015】 また、図13〜図15に示すように、骨格部および上面部に筒状構造体10を複数並 べて配設して簡易橋80を形成してもよく、この簡易橋80を、図16の(a) 〜(d) に 示すように車載することもできる。これによれば、構成部材としての筒状構造体 10が軽量であり、空気を抜いた状態で非常に小さくできるため、搭載用の車両81 を、従来の無軌道車などを用いることなく、小回りがきき、使い勝手のよい装輪 車で対応できる。そして、筒状構造体10への空気注入により速やかに所定の強度 を有する部材を構成できるため、簡易橋80の架設、撤収を迅速に行える。[0015] In addition, as shown in FIGS. 13 to 15, a plurality of cylindrical structures 10 are arranged in parallel on the skeleton and the upper surface. A simple bridge 80 may be formed by arranging all It can also be mounted on a car as shown. According to this, a cylindrical structure as a component 10 is lightweight and can be very small when deflated, making it suitable for mounting on vehicles81 , a wheeled vehicle that is easy to turn and easy to use, without using conventional trackless vehicles. This can be done by car. Then, by injecting air into the cylindrical structure 10, the predetermined strength is quickly achieved. Since it is possible to construct a member having the following structure, the simple bridge 80 can be quickly erected and dismantled.

【0016】 また、筒状構造体10をエアジャッキ90として用いてもよい。すなわち図17の(a ) ,(b) に示すように、脱輪やはまり込み状態の車輪90の下に、空気を抜いた状 態の筒状構造体10を挟み込む。この際に、筒状構造体10を薄く押し潰した状態に できるため、車輪91とはまり込み箇所との間にこの筒状構造体10を容易に挟み込 むことができる。この後、図17の(c) に示すように、筒状構造体10を挟み込んだ 状態で、この筒状構造体10に注入口2aから空気を注入する。この際の空気圧は 4kg・f/cm2 以下で十分であるので、手押しポンプで注入することが可能である 。空気注入後には、エアジャッキ90としての筒状構造体10は十分に強い構造の円 筒形状となるため、この上を車輌で走行することが可能であり、容易に車輌を走 行・脱出できる。Further, the cylindrical structure 10 may be used as an air jack 90. That is, as shown in FIGS. 17(a) and 17(b), the deflated cylindrical structure 10 is sandwiched under the wheel 90 that has fallen off or is stuck. At this time, since the cylindrical structure 10 can be crushed thinly, the cylindrical structure 10 can be easily sandwiched between the wheel 91 and the fitting location. Thereafter, as shown in FIG. 17(c), air is injected into the cylindrical structure 10 from the injection port 2a with the cylindrical structure 10 sandwiched therebetween. Since the air pressure at this time is sufficient to be 4 kg·f/cm 2 or less, it is possible to inject with a hand pump. After the air is injected, the cylindrical structure 10 serving as the air jack 90 has a sufficiently strong cylindrical shape, so that a vehicle can run on it, and the vehicle can easily run and escape.

【0017】 つまり、従来では、脱輪やはまり込み状態からの車輪の脱出は人力で車輌を持 ち上げる方法や、車輪の下に土砂、石、木ぎれなどを詰め込む方法しかなく、ま た、従来のジャッキでは、まず車輪の下に挟み込むことが困難で、例え、ジャッ キを挟み込んで持ち上げることができたとしても、そのジャッキを支えとして使 用した状態で車輌を走行させて車輪を脱出させることは危険過ぎた。このため、 従来のジャッキは脱出に利用できなかったが、本実施例のエアジャッキ90によれ ば、車輌を容易かつ迅速に、しかも少ない労力で走行・脱出できる。[0017] In other words, in the past, the only way to get a wheel out of a derailed or stuck state was to manually hold the vehicle. The only options are to hoist it up, or to stuff dirt, stones, wood chips, etc. under the wheels. In addition, with conventional jacks, it is difficult to clip them under the wheels; Even if you can lift the jack by holding it in place, do not use the jack as a support. It was too dangerous to drive the vehicle and try to remove the wheels while the wheels were in use. For this reason, Conventional jacks could not be used for escape, but with the air jack 90 of this example, If so, the vehicle can be easily and quickly driven and escaped with less effort.

【0018】 なお、脱出の際の走行をさらに容易にするために、図18に示すように、複数の 筒状構造体10を連結した構造のエアジャッキ92を用いることも可能である。[0018] In addition, in order to make it easier to run when escaping, there are multiple It is also possible to use an air jack 92 having a structure in which the cylindrical structures 10 are connected.

【0019】[0019]

【考案の効果】[Effect of the idea]

以上のように本考案によれば、超軽量でかつ引張り,圧縮,曲げ,せん断,捩 りなどの外力に対して大きな強度を有する筒状構造体を得ることができ、しかも 使用しない際にはこの筒状構造体のコンパクト化が容易にでき、使用時には所定 形状に再び保持でき、形状記憶性を持たせることができる。 As described above, according to the present invention, it is extremely lightweight and can be used in tension, compression, bending, shearing, and torsion. It is possible to obtain a cylindrical structure that has great strength against external forces such as This cylindrical structure can be easily made compact when not in use, and when in use it can be It can retain its shape again and can have shape memory properties.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本考案の一実施例を示す筒状構造体の一部切欠
き外観図である。
FIG. 1 is a partially cutaway external view of a cylindrical structure showing an embodiment of the present invention.

【図2】同筒状構造体の外筒膜の要部拡大図である。FIG. 2 is an enlarged view of a main part of the outer cylinder membrane of the same cylindrical structure.

【図3】本考案の継手部構造の部分切欠き概略図であ
る。
FIG. 3 is a partially cutaway schematic diagram of the joint structure of the present invention.

【図4】本考案の継手部構造の部分切欠き概略図であ
る。
FIG. 4 is a partially cutaway schematic diagram of the joint structure of the present invention.

【図5】本考案の筒状構造体を用いた飛行船の概略斜視
図である。
FIG. 5 is a schematic perspective view of an airship using the cylindrical structure of the present invention.

【図6】本考案の筒状構造体を用いた気球の概略斜視図
である。
FIG. 6 is a schematic perspective view of a balloon using the cylindrical structure of the present invention.

【図7】本考案の筒状構造体を用いたドームの概略斜視
図である。
FIG. 7 is a schematic perspective view of a dome using the cylindrical structure of the present invention.

【図8】本考案の筒状構造体を用いた宇宙基地の概略斜
視図である。
FIG. 8 is a schematic perspective view of a space base using the cylindrical structure of the present invention.

【図9】同宇宙基地の要部拡大斜視図である。FIG. 9 is an enlarged perspective view of the main parts of the space base.

【図10】同宇宙基地の要部拡大斜視図である。[Fig. 10] An enlarged perspective view of the main parts of the Space Station.

【図11】本考案の筒状構造体を用いた簡易橋の概略斜視
図である。
FIG. 11 is a schematic perspective view of a simple bridge using the cylindrical structure of the present invention.

【図12】本考案の筒状構造体を用いたいかだの概略斜視
図である。
FIG. 12 is a schematic perspective view of a raft using the cylindrical structure of the present invention.

【図13】本考案の筒状構造体を用いた簡易橋の概略斜視
図である。
FIG. 13 is a schematic perspective view of a simple bridge using the cylindrical structure of the present invention.

【図14】同簡易橋の要部拡大斜視図である。FIG. 14 is an enlarged perspective view of the main parts of the simple bridge.

【図15】同簡易橋の側面図である。[Fig. 15] A side view of the simple bridge.

【図16】同簡易橋搭載車両の簡易橋の各組立工程を示す
説明斜視図である。
FIG. 16 is an explanatory perspective view showing each assembly process of the simple bridge of the vehicle equipped with the same simple bridge.

【符号の説明】[Explanation of symbols]

1 外筒膜 2 内筒膜 2a 注入口 10 筒状構造体 1 Outer cylinder membrane 2 Inner cylinder membrane 2a Inlet 10 Cylindrical structure

─────────────────────────────────────────────────────
──────────────────────────────────────────────── ───

【手続補正書】[Procedural amendment]

【提出日】平成4年6月19日[Submission date] June 19, 1992

【手続補正1】[Procedural amendment 1]

【補正対象書類名】明細書[Name of document to be amended] Specification

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction details]

【書類名】 明細書[Document name] Statement

【考案の名称】 筒状構造体[Name of invention] Cylindrical structure

【実用新案登録請求の範囲】[Scope of utility model registration request]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本考案の一実施例を示す筒状構造体の一部切欠
き外観図である。
FIG. 1 is a partially cutaway external view of a cylindrical structure showing an embodiment of the present invention.

【図2】同筒状構造体の外筒膜の要部拡大図である。FIG. 2 is an enlarged view of a main part of the outer cylinder membrane of the same cylindrical structure.

【図3】本考案の継手部構造の部分切欠き概略図であ
る。
FIG. 3 is a partially cutaway schematic diagram of the joint structure of the present invention.

【図4】本考案の継手部構造の部分切欠き概略図であ
る。
FIG. 4 is a partially cutaway schematic diagram of the joint structure of the present invention.

【図5】本考案の筒状構造体を用いた飛行船の概略斜視
図である。
FIG. 5 is a schematic perspective view of an airship using the cylindrical structure of the present invention.

【図6】本考案の筒状構造体を用いた気球の概略斜視図
である。
FIG. 6 is a schematic perspective view of a balloon using the cylindrical structure of the present invention.

【図7】本考案の筒状構造体を用いたドームの概略斜視
図である。
FIG. 7 is a schematic perspective view of a dome using the cylindrical structure of the present invention.

【図8】本考案の筒状構造体を用いた宇宙基地の概略斜
視図である。
FIG. 8 is a schematic perspective view of a space base using the cylindrical structure of the present invention.

【図9】同宇宙基地の要部拡大斜視図である。FIG. 9 is an enlarged perspective view of the main parts of the space base.

【図10】同宇宙基地の要部拡大斜視図である。[Fig. 10] An enlarged perspective view of the main parts of the Space Station.

【図11】本考案の筒状構造体を用いた簡易橋の概略斜視
図である。
FIG. 11 is a schematic perspective view of a simple bridge using the cylindrical structure of the present invention.

【図12】本考案の筒状構造体を用いたいかだの概略斜視
図である。
FIG. 12 is a schematic perspective view of a raft using the cylindrical structure of the present invention.

【図13】本考案の筒状構造体を用いた簡易橋の概略斜視
図である。
FIG. 13 is a schematic perspective view of a simple bridge using the cylindrical structure of the present invention.

【図14】同簡易橋の要部拡大斜視図である。FIG. 14 is an enlarged perspective view of the main parts of the simple bridge.

【図15】同簡易橋の側面図である。[Fig. 15] A side view of the simple bridge.

【図16】同簡易橋搭載車両の簡易橋の各組立工程を示す
説明斜視図である。
FIG. 16 is an explanatory perspective view showing each assembly process of the simple bridge of the vehicle equipped with the same simple bridge.

【図17】(a) 〜(c) はそれぞれエアジャッキの使用順序
を示す側面図である。
FIGS. 17A to 17C are side views showing the order in which the air jack is used.

【図18】エアジャッキの他の実施例を示す斜視図であ
る。
FIG. 18 is a perspective view showing another embodiment of the air jack.

【符号の説明】 1 外筒膜 2 内筒膜 2a 注入口 10 筒状構造体 ─────────────────────────────────────────────────────
[Explanation of symbols] 1 Outer cylinder membrane 2 Inner cylinder membrane 2a Inlet 10 Cylindrical structure ──────────────────────────── ────────────────────────

【手続補正書】[Procedural amendment]

【提出日】平成4年6月19日[Submission date] June 19, 1992

【手続補正1】[Procedural amendment 1]

【補正対象書類名】図面[Name of document to be corrected] Drawing

【補正対象項目名】図17[Correction target item name] Figure 17

【補正方法】追加[Correction method] Added

【補正内容】[Correction details]

【図17】 [Figure 17]

【手続補正2】[Procedural amendment 2]

【補正対象書類名】図面[Name of document to be corrected] Drawing

【補正対象項目名】図18[Correction target item name] Figure 18

【補正方法】追加[Correction method] Added

【補正内容】[Correction details]

【図18】 [Figure 18]

フロントページの続き (72)考案者 芦田 吏史 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)考案者 石原 照久 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内Continuation of front page (72) Creator: Takashi Ashida 5-3-28 Nishikujo, Konohana-ku, Osaka-shi, Osaka Prefecture Within Hitachi Zosen Corporation (72) Creator Teruhisa Ishihara 5-3-28 Nishikujo, Konohana-ku, Osaka-shi, Osaka Prefecture Within Hitachi Zosen Corporation

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 長手方向,周方向および斜め方向に配置
された高引張強度線繊維材で形成された外筒膜と、この
外筒膜の内面に配設された、伸縮性に富みかつ気密性を
有する内筒膜と、所定圧力で封入されて上記内外筒膜の
形状を保持する流体とからなる筒状構造体。
Claim 1: An outer cylindrical membrane formed of high tensile strength wire fiber material arranged in the longitudinal direction, circumferential direction, and diagonal direction, and a highly elastic and airtight membrane disposed on the inner surface of the outer cylindrical membrane. A cylindrical structure comprising an inner cylindrical membrane having properties and a fluid sealed at a predetermined pressure to maintain the shape of the inner and outer cylindrical membranes.
JP2030591U 1991-04-01 1991-04-01 cylindrical structure Pending JPH04116555U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2030591U JPH04116555U (en) 1991-04-01 1991-04-01 cylindrical structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2030591U JPH04116555U (en) 1991-04-01 1991-04-01 cylindrical structure

Publications (1)

Publication Number Publication Date
JPH04116555U true JPH04116555U (en) 1992-10-19

Family

ID=31906412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2030591U Pending JPH04116555U (en) 1991-04-01 1991-04-01 cylindrical structure

Country Status (1)

Country Link
JP (1) JPH04116555U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088231A (en) * 2015-11-16 2017-05-25 株式会社横井製作所 Slender bag-like airtight structure
JP2020200704A (en) * 2019-06-12 2020-12-17 西松建設株式会社 Waterway tunnel inspection device and control method of waterway tunnel inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088231A (en) * 2015-11-16 2017-05-25 株式会社横井製作所 Slender bag-like airtight structure
JP2020200704A (en) * 2019-06-12 2020-12-17 西松建設株式会社 Waterway tunnel inspection device and control method of waterway tunnel inspection device

Similar Documents

Publication Publication Date Title
CA2198913C (en) Tank for storing pressurized gas
AU677306B2 (en) Inflatable body
US6090465A (en) Reinforced composite structure
US8935888B2 (en) Composite structural member
US10843783B1 (en) Hexakis icosahedron frame-skin vacuum lighter than air vehicle
CN101476281B (en) Expansion type cable-rod-film combined emergency bridge
US3774566A (en) Light-weight, crash-resistant, vehicular structure
EP0557907A1 (en) Assembly and method for attaching a pressure vessel to another object
JPH04116555U (en) cylindrical structure
CN106836496B (en) Design method of tied space structure system
US5938179A (en) Bag and method of constructing the same
EP0647751A2 (en) Braided airbeams and method of making the same
US20060038062A1 (en) Layered shell vacuum balloons
CN216467505U (en) A building engineering transport vechicle for transporting prefabricated building component
CN113464198B (en) Rescue support device
JPS59158796A (en) Hydraulic jack and manufacture thereof
US3814372A (en) Open-top shell molding apparatus
USRE39554E1 (en) Reinforced composite structure
US4005896A (en) Method and apparatus for handling large, fragile objects
JPH02290797A (en) Cylindrical structure, its manufacture and its coupling part structure
US3687401A (en) Light-weight, wreck-resistant cabin
EP0650460A1 (en) A lifting cushion
CN212428282U (en) Pressurization truss structure in hollow rod
JPH04137177U (en) cylindrical structure
US3735947A (en) Cushioned, barrel-curved, wreck-resistant vehicle