JPH04116457A - Ultrasonic wave visualizing apparatus and controlling method thereof and echo measuring apparatus - Google Patents

Ultrasonic wave visualizing apparatus and controlling method thereof and echo measuring apparatus

Info

Publication number
JPH04116457A
JPH04116457A JP2235558A JP23555890A JPH04116457A JP H04116457 A JPH04116457 A JP H04116457A JP 2235558 A JP2235558 A JP 2235558A JP 23555890 A JP23555890 A JP 23555890A JP H04116457 A JPH04116457 A JP H04116457A
Authority
JP
Japan
Prior art keywords
ultrasonic
sample
scanning
echo
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2235558A
Other languages
Japanese (ja)
Inventor
Jun Kubota
純 窪田
Yoshinori Takesute
義則 武捨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2235558A priority Critical patent/JPH04116457A/en
Publication of JPH04116457A publication Critical patent/JPH04116457A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To quickly and surely adjust the apparatus and to save labor for inspection by storing the time from emission to reception of an ultrasonic wave when a peak of an echo is obtained, and automatically controlling the posture of the apparatus to a sample so as to maintain the same condition during scanning. CONSTITUTION:A pulse is generated from an ultrasonic wave transceiver part 2 in response to a command from an operating processor 10. When the ultrasonic pulse is sent to a sample 9 by an array transducer 1, an echo is generated at every discontinuous part such as a bonding surface or the like and sequentially received by the transducer 1. The received echo is detected and multiplied by the transceiver part 2 and sent to an echo measurer 3. At the start of the focus adjustment (referred to as the adjustment work), the measurer 3 detects a peak value of the echo of the connecting part at a reference point in the scanning range and the receiving time, and further detects a peak value of an echo and the receiving time during the adjustment work. The measurer 3 outputs errors and variance of these values. A mechanical coordinate control part 4 controls a Z-axis driving/detecting part 6 and a theta axis driving/ detecting part 7 of a scanner 5 so as to bring the errors and variance close to zero. Because of the adjustment work of the control part 4, the scanning focal plane is made close to the surface to be visualized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、集束超音波にて積層相中の接合面等を面走査
しエコー信号を処理することで接合面等の映像化を図る
超音波映像化装置に係り、特に、高精細なCスコープ平
面超音波映像を得るに好適な超音波映像化装置とその制
御方法並びにエコー測定器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an ultrasonic technology that scans the joint surfaces in a laminated phase using focused ultrasonic waves and processes the echo signals to visualize the joint surfaces. The present invention relates to an ultrasound imaging device, and particularly to an ultrasound imaging device suitable for obtaining high-definition C-scope plane ultrasound images, a control method thereof, and an echo measuring device.

[従来の技術] 2つの部材を接合しその接合面が良好であるか否かを検
査する場合、その接合面を集束超音波で面走査し、エコ
ー信号を処理することで接合面の映像化を図り、接合面
に欠陥が生じていないかどうかを調べる。
[Prior art] When joining two members and inspecting whether the joint surface is good or not, the joint surface is scanned with focused ultrasound and the echo signals are processed to visualize the joint surface. and examine whether there are any defects on the joint surface.

この様な超音波探傷技術における従来の接合面探傷法と
して、例えば特開平1−124762号公報記載のもの
がある。この従来技術では、接合面の傾斜角に沿うよう
に、超音波探触子を平行移動させ、超音波の焦点が接合
面上を走査するようにしている。
As a conventional bonding surface flaw detection method in such ultrasonic flaw detection technology, there is, for example, the method described in Japanese Patent Laid-Open No. 1-124762. In this conventional technique, the ultrasonic probe is moved in parallel along the inclination angle of the bonding surface, so that the focal point of the ultrasonic waves scans the bonding surface.

[発明が解決しようとする課題] 上述した従来技術は、大きな部材間の接合面であるため
、また、その接合面の周囲が外部に露出しているため、
予めその接合面の部材基準面に対する傾斜角が分かって
おり、超音波探触子を傾斜角に沿って移動させることが
できる。
[Problems to be Solved by the Invention] In the above-mentioned prior art, since the joint surface is between large members and the periphery of the joint surface is exposed to the outside,
The angle of inclination of the joint surface with respect to the member reference plane is known in advance, and the ultrasonic probe can be moved along the angle of inclination.

しかし、半田接合等においては、溶解、凝固の過程を経
るため、その接合面の部材基準面に対する傾斜角等が分
からなくなってしまう。また、ICをパッケージ内に封
じ込めた場合も、パッケージ表面と内部のICとの平行
性は補償されない。
However, in solder joints, etc., the process of melting and solidification occurs, so it becomes impossible to know the angle of inclination of the joint surface with respect to the component reference plane. Further, even when an IC is sealed within a package, parallelism between the package surface and the internal IC is not compensated for.

つまり、ICが外部から見えないので、ICとパッケー
ジ材との接合面の状態が分からなくなってしまう。
In other words, since the IC cannot be seen from the outside, the condition of the bonding surface between the IC and the package material cannot be determined.

斯かる状態の接合面の映像を得るために超音波映像化装
置を用いる場合、超音波の焦点を接合面に合致させる必
要があり、更にその焦点を接合面に沿って走査させる必
要がある。しかし、接合面の状態を外部から観察するこ
とができないので、従来は、熟練者が、試料からのエコ
ーの振幅と超音波照射からエコー受信までの時間等とを
オシロスコープ等で観察し、超音波探触子と試料台の高
さや傾きを調節しなければならなかった。
When using an ultrasonic imaging device to obtain an image of the bonded surface in such a state, it is necessary to align the focus of the ultrasonic waves with the bonded surface, and it is also necessary to scan the focus along the bonded surface. However, since it is not possible to observe the condition of the bonded surface from the outside, conventionally an expert has to observe the amplitude of the echo from the sample and the time from ultrasonic irradiation to echo reception using an oscilloscope, etc. The height and tilt of the probe and sample stage had to be adjusted.

この調節は、試料を浸漬する液体媒質と試料材質におけ
る音速が異なることから、試料の表面(裏面)等からの
エコーのみを利用して線形に制御し焦点面を接合面に合
致させるのは難しく、極めて高い熟練度が要求され、専
門家でないとできず自動化が困難であるという問題があ
る。
This adjustment is difficult because the speed of sound in the liquid medium in which the sample is immersed and the sample material are different, so it is difficult to linearly control it using only the echoes from the front (back) of the sample and align the focal plane with the bonding surface. , there is a problem in that it requires an extremely high level of skill and is difficult to automate because it can only be done by experts.

本発明の目的は、試料内部を自動走査し高精細なCスコ
ープ平面超音波映像を得ることのできる超音波映像化装
置とその制御方法並びにエコー測定器を提供することに
ある。
An object of the present invention is to provide an ultrasonic imaging apparatus, a control method thereof, and an echo measuring device that can automatically scan the inside of a sample and obtain a high-definition C-scope plane ultrasonic image.

[課題を解決するための手段] 上記目的は、試料中の検査対象面を前記超音波送受信手
段からの集束超音波で走査するに当たり、この走査中に
検査対象面からの受信信号情報が走査面と検査対象面と
のズレを検出したときこのズレを無くす方向に前記超音
波送受信手段の試料に対する姿勢を自動制御することで
、達成される。
[Means for Solving the Problems] The above object is to scan a surface to be inspected in a sample with focused ultrasonic waves from the ultrasonic transmitting/receiving means, and during this scanning, received signal information from the surface to be inspected is transmitted to the scanning surface. This is achieved by automatically controlling the attitude of the ultrasonic transmitting/receiving means with respect to the sample in a direction that eliminates this deviation when a deviation between the surface and the surface to be inspected is detected.

更に具体的には、エコーのピークを得たときの超音波送
出から受信までの時間を記憶しておき超音波で試料を走
査するときエコーピークの受信までの時間が走査中前記
の記憶時間と同じとなるように試料に対する超音波送受
信手段の姿勢を自動制御する。
More specifically, the time from ultrasonic transmission to reception when an echo peak is obtained is memorized, and when a sample is scanned with ultrasonic waves, the time until reception of the echo peak is used as the memorized time during scanning. The attitude of the ultrasonic transmitting/receiving means with respect to the sample is automatically controlled so that they are the same.

[作用コ 走査面が検査対象面からずれると、検査対象面からのエ
コーの波形が変わってくる。従って、この波形の変化が
無いように試料に対する超音波送受信手段の姿勢を自動
制御することで、走査面が検査対象面と一致し、超音波
送受信手段の受信信号を処理することで、検査対象面の
良好な映像を得ることが可能となる。
[Operation] When the scanning surface deviates from the surface to be inspected, the waveform of the echo from the surface to be inspected changes. Therefore, by automatically controlling the attitude of the ultrasonic transmitting/receiving means with respect to the sample so that there is no change in this waveform, the scanning plane matches the surface to be inspected, and by processing the received signal of the ultrasonic transmitting/receiving means, It becomes possible to obtain a good image of the surface.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

本発明の第1の実施例では、試料からのエコーの波形を
予め参照波形として記憶させておく記憶装置と、超音波
振動子でなる超音波変換器が送受信する超音波ビームを
走査させて得られるエコーとその参照波形との相関関数
を演算し、その包絡線がピークを示す時刻を参照波形と
の相対時間差として検出するピーク時刻検出器と、超音
波ビーム走査面と試料との距離及び傾きを調節・制御す
る基軸制御装置とを備えることにより、エコーの受信時
刻を受信順に検出し、予め設定しておいた順番のエコー
の受信時刻が一定となるように集束超音波ビームの焦点
走査面と試料の映像化対象面との距離及び傾きを調節・
制御するものである。
In the first embodiment of the present invention, a storage device that stores the waveform of an echo from a sample as a reference waveform in advance, and an ultrasonic transducer made of an ultrasonic transducer scan an ultrasonic beam transmitted and received. A peak time detector that calculates the correlation function between the reflected echo and its reference waveform and detects the time when the envelope peaks as a relative time difference with the reference waveform, and the distance and inclination between the ultrasonic beam scanning surface and the sample. The system detects the reception times of echoes in the order in which they are received, and adjusts and controls the focal scanning plane of the focused ultrasound beam so that the reception times of the echoes in the preset order are constant. Adjust the distance and inclination between the surface of the sample and the surface to be visualized.
It is something to control.

第1図において、演算制御部10の指令により、パルス
発生器を持つ超音波送受信部2からパルス信号が発生さ
れ、超音波変換器であるアレイトランスジューサ1から
超音波パルスが送信される。
In FIG. 1, a pulse signal is generated from an ultrasonic transmitting/receiving section 2 having a pulse generator according to a command from an arithmetic control section 10, and an ultrasonic pulse is transmitted from an array transducer 1, which is an ultrasonic transducer.

この超音波パルスは、水槽8中の液体(例えば、水やメ
チルアルコール)媒質中を集束しながら進行し、試料9
の表面に達する。一般に、試料中の音速は液体媒質中の
音速と異なるので、屈折により超音波ビームの形状も変
化する。試料9の表面で一部の超音波は反射され、表面
エコーとしてトランスジューサ1に戻る。残りが試料9
中に伝播し、接合面等の不連続部毎にエコーを発生し、
順次トランスジューサ1で受信される。受信されたエコ
ーは、超音波送受信部2で受信・増幅され、エコー測定
器3に送られる。
This ultrasonic pulse progresses while being focused in the liquid medium (for example, water or methyl alcohol) in the water tank 8, and
reach the surface of. Generally, the speed of sound in a sample is different from the speed of sound in a liquid medium, so the shape of the ultrasound beam also changes due to refraction. Some of the ultrasound waves are reflected from the surface of the sample 9 and return to the transducer 1 as surface echoes. The rest is sample 9
It propagates inside and generates echoes at each discontinuity such as the joint surface,
are received by the transducer 1 in sequence. The received echo is received and amplified by the ultrasonic transmitter/receiver 2 and sent to the echo measuring device 3.

エコー測定器3は、焦点合わせ作業(以下調整作業と呼
ぶ。)の最初に、走査範囲内の基準点で接合部エコーの
ピーク値とその受信時刻とを検出し、その後の調整作業
中に、同様に走査範囲内の点での接合部エコーのピーク
値とその受信時刻とを検出し、それらの誤差とばらつき
を出力する。
At the beginning of the focusing work (hereinafter referred to as adjustment work), the echo measuring device 3 detects the peak value of the junction echo and its reception time at a reference point within the scanning range, and during the subsequent adjustment work, Similarly, the peak values of junction echoes and their reception times at points within the scanning range are detected, and their errors and variations are output.

基軸制御装置と走査制御装置とを兼ねたメカニカル座標
制御部4は、そのピーク値とその受信時刻とに基づいて
それらがゼロに近づくように、スキャナ5のZ@駆動検
出部6及びO軸駆動検出部7を制御し、調整作業を行な
う。このとき、ばらつきが最小となるように制御するこ
とにより、接合面等に反りの有る場合や、走査焦点面が
完全な平面でない場合にも、全体として最も走査焦点面
と映像化対象面を近づけることができる。
The mechanical coordinate control unit 4, which serves as both a basic axis control device and a scanning control device, adjusts the Z@ drive detection unit 6 and O-axis drive of the scanner 5 so that the peak values approach zero based on the peak value and its reception time. It controls the detection unit 7 and performs adjustment work. At this time, by controlling to minimize the variation, the scanning focal plane and the imaging target surface can be brought as close as possible overall, even if there is a warp on the bonded surface or the scanning focal plane is not a perfect plane. be able to.

エコー測定器3の詳細は、第2図に示され、前記増幅さ
れたエコー波形は、記憶装置であるウェーブメモリ31
に記録される。記録されたエコー波形の例を第3図に示
す。調整作業の初期又はその前に、典型的なエコー波形
を1つだけ、演算制御部10の指令によりゲート波形で
切り取り、参照波として参照波形メモリ32に記憶して
おく。
Details of the echo measuring device 3 are shown in FIG. 2, and the amplified echo waveform is stored in a wave memory 31 which is a storage device.
recorded in An example of the recorded echo waveform is shown in FIG. At the beginning or before the adjustment work, only one typical echo waveform is cut out as a gate waveform according to a command from the arithmetic and control unit 10, and is stored in the reference waveform memory 32 as a reference wave.

調整作業に入り、同様に記録されたエコー信号は、第2
図の波形相関演算部33で参照波との相関演算され、相
関波形として出力される。相関波形の中心周波数は、元
のエコー波形の中心周波数のほぼ倍になっているので、
元のエコーの中心周波数の遮断周波数を持つフィルタを
通すことにより、包絡線が取り出される。前記ピーク時
刻検出器に相当する相関ピーク時刻検出部34は、それ
らの操作をした」二で、その包絡線のピーク値pjを検
出し、ピークを示す時刻t1を相関演算の時間ステップ
により参照波形との相対時間差として求め、両者をエコ
ーの受信された順番を表わす数1と共に出力する。参照
時刻メモリ35では、参照波を取り込んだあと、走査の
基準となる点、例えば走査範囲の中央で、映像化対象面
からの反射波(i番目のエコー)のピーク時刻trj−
とそのピーク値priとiとを記憶しておく。時刻偏差
検出部36では、調整作業中に基準点以外の走査範囲内
の点でのtユ及びpiと、基準点でのtri及びPri
とを比較し、その差 dti= t j−t rj 及び、 d P i =  p  i −Priを出力する。超
音波ビームを横切る不連続部の順番がiに相当するので
、映像化対象面に該当する順番]を指定することにより
、走査焦点面と映像化対象面との偏差が求められる。
Adjustment work begins, and echo signals recorded in the same way are used as the second
The waveform correlation calculation unit 33 shown in the figure performs a correlation calculation with the reference wave and outputs it as a correlation waveform. The center frequency of the correlation waveform is almost double the center frequency of the original echo waveform, so
The envelope is extracted by passing it through a filter with a cutoff frequency at the center frequency of the original echo. After performing these operations, the correlation peak time detection unit 34, which corresponds to the peak time detector, detects the peak value pj of the envelope, and uses the time t1 indicating the peak as a reference waveform by the time step of the correlation calculation. The relative time difference between the two echoes is calculated, and both are output together with the number 1 representing the order in which the echoes were received. After capturing the reference wave, the reference time memory 35 stores the peak time trj- of the reflected wave (i-th echo) from the imaging target surface at a scanning reference point, for example, the center of the scanning range.
and its peak values pri and i are stored. During adjustment work, the time deviation detection unit 36 detects tyu and pi at points within the scanning range other than the reference point, and tri and Pri at the reference point.
and outputs the difference dti=tj-trj and dPi=pi-Pri. Since the order of discontinuities across the ultrasound beam corresponds to i, the deviation between the scanning focal plane and the imaging target surface is determined by specifying the order corresponding to the imaging target surface.

ここで、解決すべき課題を再確認するため、走査焦点面
と映像化対象面の関係を第4図により説明する。
Here, in order to reconfirm the problem to be solved, the relationship between the scanning focal plane and the imaging target plane will be explained with reference to FIG.

トランスジューサ]をXY定走査るときに、その音響放
射面の軌跡が成す面がトランスジューサ走査面11であ
る。トランスジューサ1が放射・検出する超音波ビーム
14の焦点が、その走査に伴って形成する面が走査焦点
面12である。この両面は、その上の点が互いに1対1
に対応しているので、スキャナ5の精度に応じて、この
面12の平面度が決まる。
When the transducer is scanned in the XY direction, the surface formed by the trajectory of the acoustic radiation surface is the transducer scanning surface 11. A scanning focal plane 12 is a plane formed by the focal point of the ultrasonic beam 14 emitted and detected by the transducer 1 as it scans. These two sides have points on them one to one with each other.
Therefore, the flatness of this surface 12 is determined depending on the accuracy of the scanner 5.

一方、映像化対象面である試料9内部の接合面13は、
第1図の水槽8の底面等の試料台上面81によって固定
され、面81と試料の外形寸法との精度によって、その
面精度が決まっている。即ち、ここでいう焦点合わせと
は、而12と面13とを一致させる作業であり、スキャ
ナ5.水槽8゜試料9等の精度により、一般に両面は一
致しない。
On the other hand, the joint surface 13 inside the sample 9, which is the surface to be visualized, is
It is fixed by the top surface 81 of the sample stage, such as the bottom surface of the water tank 8 in FIG. 1, and its surface accuracy is determined by the precision between the surface 81 and the external dimensions of the sample. That is, focusing here refers to the work of aligning the surface 12 and the surface 13, and the scanner 5. Due to the accuracy of the 8° water tank and sample 9, the two sides generally do not match.

これを一致させることが実施例での解決すべき課題であ
る。両面を−mさせる手順の基本は、まず、走査面の中
央でそのピーク値が最大値を取るように、つぎに、走査
範囲の前面にわたりそのピーク時間が一定となるように
、即ちその時間のばらつきが最小となるように制御する
点である。
The problem to be solved in the embodiment is to make this match. The basic procedure for reducing both sides to -m is: first, the peak value takes the maximum value at the center of the scanning plane, and then the peak time is constant over the front of the scanning range, that is, the peak value at that time is The point is to control so that the variation is minimized.

第5図は調整作業である焦点合わせ作業手順を示すフロ
ーチャートである。まず、参照波形メモリ32に参照波
を記憶させた後、走査範囲中央の基準点で表面エコーの
ピーク値piが最大となるようにZを調整して、焦点を
表面に合わせる(ステップコ、)。この際、Zの微小ス
テップ毎にpiの変化を比較して大きくなっている間は
同方向、小さくなったら逆方向に、それぞれ駆動するこ
とにより、piが最大となるように制御することができ
る。次に、走査範囲内の表面エコーが検出される範囲内
でtiが基準点と変らないように、その差dtiがゼロ
になるように、0を調整する(ステップ2)。そして、
再びエコが最大となるようにZを調整する(ステップ3
)。次のステップ4では、ステップ2及びステップ3の
工程でのZ及びθの変化dz及びdθが予め設定してお
いた誤差Eより小さいか否かを判定し、小さければ次の
工程(ステップ5)に進ませ、大ならばステップ2の工
程に戻る。この工程が終了すると、走査焦点面が試料表
面に一致する。
FIG. 5 is a flowchart showing the procedure of focusing work, which is adjustment work. First, after storing the reference wave in the reference waveform memory 32, adjust Z so that the peak value pi of the surface echo is maximized at the reference point in the center of the scanning range, and focus on the surface (Step Co.) . At this time, pi can be controlled to be maximized by comparing the change in pi for each small step of Z and driving in the same direction while it increases, and in the opposite direction when it decreases. . Next, 0 is adjusted so that ti does not differ from the reference point within the range in which surface echoes are detected within the scanning range, and the difference dti becomes zero (step 2). and,
Adjust Z so that eco is maximized again (Step 3
). In the next step 4, it is determined whether the changes dz and dθ in Z and θ in the steps 2 and 3 are smaller than the preset error E, and if smaller, the next step (step 5) is performed. If it is large, return to step 2. At the end of this step, the scanning focal plane coincides with the sample surface.

ステップ5では、映像化対象面である接合界面エコーに
ついて、最初に表面に対して行なったのと同じ操作を繰
返し、基準点でZを制御し、基準点での焦点を映像化対
象面に合致させる。次のステップ6からステップ8まで
は、それぞれ順次ステップ2からステップ4と同様の操
作を接合面エコーについて行なう。これにより、最後の
ステップ9で、走査焦点面が接合界面に一致する。
In step 5, for the bonded interface echo, which is the surface to be visualized, repeat the same operation that was performed on the surface first, control Z at the reference point, and match the focus at the reference point to the surface to be visualized. let In the next step 6 to step 8, the same operations as steps 2 to 4 are sequentially performed for the cemented surface echo. This causes the scanning focal plane to coincide with the bonding interface in the final step 9.

本実施例では、表面エコーでの粗調節、接合面エコーで
の微調節ができるので、調整作業が確実になる。尚、X
Y走査平面上の標本点でのdzの2乗平均を最小とする
回帰平面を求め、屈折率による焦点距離の変化を考慮に
入れて走査焦点面をそれに合わせていくことにより収束
を早めることも可能である。これらの調整手順は演算制
御部10が制御する。
In this embodiment, coarse adjustment can be made using surface echoes and fine adjustment can be made using cemented surface echoes, so that the adjustment work can be performed reliably. Furthermore, X
Convergence can be accelerated by finding the regression plane that minimizes the root mean square of dz at the sample point on the Y scanning plane and adjusting the scanning focal plane to it while taking into account changes in focal length due to refractive index. It is possible. These adjustment procedures are controlled by the calculation control section 10.

アレイトランスジューサを制御して超音波ビームを走査
し映像化を図るためには、例えば、第6図のような構成
の回路を用いることができる。演算制御部1oの指令に
より送信タイミング信号発生装置21が決めるタイミン
グにより、超音波変換器であるアレイトランスジューサ
1から超音波が発信される。そのタイミング毎に、電子
走査制御部22の決めた各同時駆動振動素子と、多チヤ
ンネルパルス発生器23の各チャンネルとを、接続切替
器であるマトリクススイッチ回路24が接続する。パル
ス発生器23の各チャネルは、超音波ビームを集束させ
るための遅延時間に従ったタイミングでアレイトランス
ジューサ1の各同時駆動素子を駆動し、超音波パルスを
試料に向けて発生する。試料から帰ってきたエコーは、
同じアレイトランスジューサ1で受信されて電気信号に
変換□される。このとき、マトリクススイッチ24は各
同時駆動素子1と多チヤンネル受信器25の各チャンネ
ルとの間を接続していて、上記の受信エコーは、受信器
25で前記遅延時間に従った位相補正を受けながら増幅
され、合成されてエコー測定器3と映像装置26へ出力
される。映像装置26は、受信器25の出力信号を画像
処理部26aで処理し、これをCRT 26 bに表示
する。演算制御部10は、ここでは、各部の動作の指令
、アレイの同時駆動素子の選択、各チャンネルに与える
遅延時間の設定等を行なっている。以上、第1の実施例
によれば、高精度の焦点合わせが可能である。
In order to control the array transducer and scan the ultrasonic beam for imaging, a circuit having a configuration as shown in FIG. 6, for example, can be used. Ultrasonic waves are transmitted from the array transducer 1, which is an ultrasonic transducer, at a timing determined by the transmission timing signal generator 21 in response to a command from the arithmetic control unit 1o. At each timing, a matrix switch circuit 24, which is a connection switch, connects each simultaneously driven vibration element determined by the electronic scanning control section 22 and each channel of the multichannel pulse generator 23. Each channel of the pulse generator 23 drives each simultaneously driven element of the array transducer 1 at a timing according to a delay time for focusing the ultrasound beam, and generates an ultrasound pulse toward the sample. The echo that came back from the sample was
It is received by the same array transducer 1 and converted into an electrical signal. At this time, the matrix switch 24 connects each simultaneously driven element 1 and each channel of the multi-channel receiver 25, and the received echoes are subjected to phase correction in the receiver 25 according to the delay time. The signals are amplified, combined, and output to the echo measuring device 3 and the video device 26. The video device 26 processes the output signal of the receiver 25 with an image processing section 26a and displays it on a CRT 26b. Here, the arithmetic control section 10 commands the operation of each section, selects the simultaneously driven elements of the array, and sets the delay time given to each channel. As described above, according to the first embodiment, highly accurate focusing is possible.

第7図は本発明において、エコー測定器を実現する他の
実施例を示すものである。本実施例では、超音波送受信
部2の受信したエコー波形を、まず、ゲート回路371
によって概略映像化対象面からのエコーの受信される時
間のエコーのみを取り出し、移相器37によってその中
心周波数によって決まる波長の1/4に相当するだけ位
相の異なる波形を作り、それらを二乗して加算器391
で加えあわせ、遮断周波数がほぼエコーの中心周波数に
近い低域フィルター392により倍周波成分を除いて、
ピーク時間検出器34によってそのピーり値piとその
受信時刻tjとを検出し出力する。
FIG. 7 shows another embodiment of the present invention for realizing an echo measuring device. In this embodiment, the echo waveform received by the ultrasonic transmitter/receiver 2 is first transmitted to the gate circuit 371.
By extracting only the echoes at the time when the echoes are received from the surface to be roughly visualized, a phase shifter 37 creates a waveform with a phase difference corresponding to 1/4 of the wavelength determined by the center frequency, and then squares them. Adder 391
In addition, the harmonic frequency components are removed by a low-pass filter 392 whose cutoff frequency is close to the center frequency of the echo.
The peak time detector 34 detects and outputs the peak value pi and the reception time tj.

第1図の演算制御部10は、それらを統計処理し、走査
焦点面と映像化対象面とを一致させる。この実施例によ
れば、構成が簡略化され、処理が高速化される。
The arithmetic control unit 10 in FIG. 1 statistically processes them to match the scanning focal plane and the imaging target plane. According to this embodiment, the configuration is simplified and the processing speed is increased.

以上述べた実施例では、超音波ビームの走査をアレイト
ランスジューサによる電子走査を想定して説明した。こ
の場合に調整作業の時間短縮効果が顕著であるが、その
条件に拘束されるものではなく、単一の集束形探触子を
機械走査する場合にも適用され、より細かいピッチでの
精密な調整が期待できるものである。
In the embodiments described above, the scanning of the ultrasonic beam has been explained assuming electronic scanning by an array transducer. In this case, the effect of reducing the adjustment work time is remarkable, but it is not limited to this condition, and it can also be applied when mechanically scanning a single focusing probe, and precision scanning at a finer pitch can be achieved. Adjustments can be expected.

また、」二記実施例では、走査焦点面と試料の映像化対
象面との距離を調整する座標軸をZ、両面間の傾きを調
整する座標軸をθ軸でそれぞれ代表させたが、θ軸につ
いては第1図の紙面に垂直な方向にも追加して1軸(例
えばφ軸)を取ることが出来、走査面の左右ばかりでな
く前後の傾きも調整できるようにしてもよい。Zについ
ても、同様に1軸に限られることはない。一方、映像化
対象面の傾きもそのための機構として、例えば、3点支
持で支持点毎に高さ調整するアクチュエータを設けるこ
とにより調整可能であり、より広い範囲の調整のできる
効果がある。
In addition, in the second embodiment, the coordinate axis for adjusting the distance between the scanning focal plane and the imaging target surface of the sample was represented by Z, and the coordinate axis for adjusting the inclination between both surfaces was represented by the θ axis. In addition, one axis (for example, the φ axis) can be taken in addition to the direction perpendicular to the plane of the paper in FIG. 1, and it may be possible to adjust not only the left and right sides of the scanning plane but also the front and back inclination. Similarly, Z is not limited to one axis. On the other hand, the inclination of the imaging target surface can also be adjusted by providing a mechanism for this purpose, for example, an actuator that adjusts the height for each support point with three-point support, which has the effect of allowing adjustment over a wider range.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、走査焦点面と映像化対象面とを一致さ
せる調整が早く確実にできるので、高速・高分解能検査
の省力化および時間短縮が可能どなる。
According to the present invention, adjustment to match the scanning focal plane and the imaging target plane can be quickly and reliably performed, making it possible to save labor and time in high-speed, high-resolution inspection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第]実施例に係る超音波映像化装置の
要部の構成を示すブロック図、第2図は第1図のエコー
測定器の詳細構成図、第3図は第2図の各処理部で扱う
信号の波形図、第4図は本発明の課題である焦点調節の
概念を示す図、第5図は本発明の課題である焦点調節の
手順を示すフローチャート、第6図はアレイI・ランス
ジユーザを用いる場合の第1図に示す超音波送受信部の
構成図、第7図はエコー測定器に関する本発明の他の実
施例の構成を示す図である。 アレイ1〜ランスジユーサ、2・・・超音波送受3・・
・エコー測定器、32・・・参照波形メモリ、・波形相
関演算部、34 ・ピーク時刻検出部、時刻偏差検出部
、4・・メカニカル座標制御9・・・試料。 1・・ 僧都、 部、 代理人弁理士 秋 本  正  実 第 簡 第 図 −」 L−一多一一
FIG. 1 is a block diagram showing the configuration of main parts of an ultrasound imaging device according to the embodiment of the present invention, FIG. 2 is a detailed configuration diagram of the echo measuring device shown in FIG. 1, and FIG. 4 is a diagram showing the concept of focus adjustment, which is a problem of the present invention; FIG. 5 is a flowchart showing the procedure of focus adjustment, which is a problem of the present invention; 6. This figure is a block diagram of the ultrasonic transmitter/receiver section shown in FIG. 1 when using an array I transceiver, and FIG. 7 is a diagram showing the structure of another embodiment of the present invention regarding an echo measuring device. Array 1 - Lancer, 2... Ultrasonic transmitter/receiver 3...
-Echo measuring device, 32...Reference waveform memory, -Waveform correlation calculation unit, 34 -Peak time detection unit, time deviation detection unit, 4...Mechanical coordinate control 9...Sample. 1. Sozu, Department, Representative Patent Attorney Masaaki Akimoto Real Number 1 Simplified Diagram L-Itaichi

Claims (1)

【特許請求の範囲】 1、超音波送受信手段から試料に送出した超音波のエコ
ーを受信し受信信号を処理して画像信号にする超音波映
像化装置において、エコーのピークを得たときの超音波
送出から受信までの時間を記憶しておき超音波で試料を
走査するときエコーピークの受信までの時間が走査中前
記の記憶時間と同じとなるように試料に対する超音波送
受信手段の姿勢を自動制御する姿勢制御手段を設けたこ
とを特徴とする超音波映像化装置。 2、超音波送受信手段から試料に送出した超音波のエコ
ーを受信し受信信号を処理して画像信号にする超音波映
像化装置において、エコーのピークを得たときの超音波
送出から受信までの時間を記憶しておき超音波で試料を
走査するときエコーピークの受信までの時間が走査中前
記の記憶時間と同じとなるように試料に対する超音波送
受信手段の姿勢を自動制御することを特徴とする超音波
映像化装置の制御方法。 3、超音波送受信手段から試料に送出した超音波のエコ
ーを受信し受信信号を映像信号に変換して表示装置に表
示する超音波映像化装置において、前記試料中の検査対
象面を前記超音波送受信手段からの集束超音波で走査す
る走査手段と、この走査中に検査対象面からの受信信号
情報が走査面と検査対象面とのズレを検出したときこの
ズレを無くす方向に前記超音波送受信手段の試料に対す
る姿勢を自動制御する姿勢制御手段とを備えることを特
徴とする超音波映像化装置。 4、超音波送受信手段から試料に送出した超音波のエコ
ーを受信し受信信号を映像信号に変換して表示装置に表
示する超音波映像化装置において、前記試料中の検査対
象面を前記超音波送受信手段からの集束超音波で走査す
るに当たり、この走査中に検査対象面からの受信信号情
報が走査面と検査対象面とのズレを検出したときこのズ
レを無くす方向に前記超音波送受信手段の試料に対する
姿勢を自動制御することを特徴とする超音波映像化装置
の制御方法。 5、超音波を集束して試料に送波し試料からのエコーを
受波し電気信号に変換する一次元配列された振動素子群
で成る超音波送受信手段と、前記振動素子群を電子走査
することで試料中の接合面に集束された超音波ビームを
走査する走査手段と、前記超音波送受信手段の受信信号
を処理し映像信号にし前記接合面の映像を表示する表示
手段とを備える超音波映像化装置において、超音波送出
から前記接合面からのエコーピークの受信までの時間を
計測してその時間を記憶しておく記憶手段と、前記電子
走査中に前記接合面からのエコーピークが最大となり超
音波送出から該エコーピークの受信までの時間が前記記
憶手段の記憶時間と一定となるように前記超音波送受信
手段の試料に対する姿勢を自動制御する手段とを備える
ことを特徴とする超音波映像化装置。 6、超音波を集束して試料に送波し試料からのエコーを
受波し電気信号に変換する一次元配列された振動素子群
で成る超音波送受信手段と、前記振動素子群を電子走査
することで試料中の接合面に集束された超音波ビームを
走査する走査手段と、前記超音波送受信手段の受信信号
を処理し映像信号にし前記接合面の映像を表示する表示
手段とを備える超音波映像化装置において、超音波送出
から前記接合面からのエコーピークの受信までの時間を
計測してその時間を記憶しておき、前記電子走査中に前
記接合面からのエコーピークが最大となり超音波送出か
ら該エコーピークの受信までの時間が前記記憶した時間
と同じとなるように前記超音波送受信手段の試料に対す
る姿勢を自動制御することを特徴とする超音波映像化装
置の制御方法。 7、超音波送受信手段から試料に送出した超音波のエコ
ーを受信し受信信号を処理して画像信号にする超音波映
像化装置において、エコーのピークを得たときの超音波
送出から受信までの時間を記憶しておき超音波で試料を
走査するときエコーピークの受信までの時間の前記記憶
時間に対するバラツキが走査中最小となるように試料に
対する超音波送受信手段と映像化対象面との距離を自動
制御する制御手段を設けたことを特徴とする超音波映像
化装置。 8、超音波送受信手段から試料に送出した超音波のエコ
ーを受信し受信信号を処理して画像信号にする超音波映
像化装置において、エコーのピークを得たときの超音波
送出から受信までの時間を記憶しておき超音波で試料を
走査するときエコーピークの受信までの時間の前記記憶
時間に対するバラツキが走査中最小となるように試料に
対する超音波送受信手段と映像化対象面との距離を自動
制御することを特徴とする超音波映像化装置の制御方法
。 9、超音波送受信手段と試料との相対位置、距離、姿勢
を制御する制御機構を備える超音波映像化装置に設けら
れるエコー測定器であって、試料の基準点に送出した超
音波のエコーの受信までの第1時間と試料を超音波で走
査するときのエコーを受信するまでの第2時間との偏差
を求め該偏差に応じた信号を制御信号として出力する手
段を備え、該制御信号にて前記制御機構を制御し超音波
走査面を検査対象面に一致させることを特徴とするエコ
ー測定器。
[Scope of Claims] 1. In an ultrasonic imaging device that receives echoes of ultrasonic waves sent to a sample from an ultrasonic transmitter/receiver and processes the received signals into image signals, the ultrasonic wave when the echo peak is obtained is The time from sending out sonic waves to receiving them is memorized, and when scanning a sample with ultrasonic waves, the attitude of the ultrasonic transmitting/receiving means with respect to the sample is automatically adjusted so that the time until reception of the echo peak is the same as the memorized time during scanning. An ultrasonic imaging device characterized in that it is provided with attitude control means for controlling. 2. In an ultrasonic imaging device that receives echoes of ultrasonic waves sent to a sample from an ultrasonic transmitting/receiving means, processes the received signals, and converts them into image signals, the process from transmitting ultrasonic waves to receiving them when the peak of the echo is obtained is The method is characterized in that the time is memorized and the attitude of the ultrasonic transmitting/receiving means with respect to the sample is automatically controlled so that when the sample is scanned with ultrasonic waves, the time until reception of the echo peak is the same as the memorized time during scanning. A method for controlling an ultrasound imaging device. 3. In an ultrasonic imaging device that receives echoes of ultrasonic waves sent to a sample from an ultrasonic transmitting/receiving means, converts the received signal into a video signal, and displays it on a display device, the surface to be inspected in the sample is exposed to the ultrasonic waves. A scanning means that scans with focused ultrasound from a transmitting/receiving means, and when received signal information from the surface to be inspected detects a deviation between the scanning surface and the surface to be inspected during this scanning, the ultrasonic transmitting/receiving means moves in a direction to eliminate this deviation. 1. An ultrasonic imaging apparatus comprising: attitude control means for automatically controlling the attitude of the means with respect to a sample. 4. In an ultrasonic imaging device that receives echoes of ultrasonic waves sent to a sample from an ultrasonic transmitting/receiving means, converts the received signal into a video signal, and displays it on a display device, the surface to be inspected in the sample is exposed to the ultrasonic waves. When scanning with focused ultrasonic waves from the transmitting/receiving means, when received signal information from the surface to be inspected detects a deviation between the scanning surface and the surface to be inspected during this scanning, the ultrasonic transmitting/receiving means moves in a direction to eliminate this deviation. A method for controlling an ultrasonic imaging device, characterized by automatically controlling its posture with respect to a sample. 5. Ultrasonic transmitting/receiving means consisting of a one-dimensional array of vibrating elements that focuses and transmits ultrasonic waves to the sample, receives echoes from the sample, and converts them into electrical signals, and electronically scans the vibrating element group. an ultrasonic device comprising: a scanning means for scanning an ultrasonic beam focused on a bonded surface in a sample; and a display means for processing a received signal of the ultrasonic transmitting/receiving means to convert it into a video signal and displaying an image of the bonded surface. In the imaging device, there is provided a storage means for measuring and storing the time from sending out the ultrasonic waves to receiving the echo peak from the bonding surface, and a storage means for measuring and storing the time from sending out the ultrasonic waves to receiving the echo peak from the bonding surface, and a storage device for measuring and storing the time from sending out the ultrasonic wave to receiving the echo peak from the bonding surface; and means for automatically controlling the attitude of the ultrasonic transmitting/receiving means with respect to the sample so that the time from transmitting the ultrasonic waves to receiving the echo peak is constant with the storage time of the storage means. Imaging device. 6. Ultrasonic transmitting/receiving means consisting of a one-dimensional array of vibrating elements that focuses and transmits ultrasonic waves to the sample, receives echoes from the sample, and converts them into electrical signals, and electronically scans the vibrating element group. an ultrasonic device comprising: a scanning means for scanning an ultrasonic beam focused on a bonded surface in a sample; and a display means for processing a received signal of the ultrasonic transmitting/receiving means to convert it into a video signal and displaying an image of the bonded surface. In the imaging device, the time from transmitting the ultrasonic waves to receiving the echo peak from the bonded surface is measured and memorized, and when the echo peak from the bonded surface reaches its maximum during the electronic scanning, the ultrasonic wave A method for controlling an ultrasound imaging apparatus, comprising automatically controlling the attitude of the ultrasound transmitting/receiving means with respect to the sample so that the time from transmission to reception of the echo peak is the same as the stored time. 7. In an ultrasonic imaging device that receives echoes of ultrasonic waves sent to a sample from an ultrasonic transmitting/receiving means, processes the received signals, and converts them into image signals. When scanning a sample with ultrasonic waves by memorizing the time, the distance between the ultrasonic transmitting/receiving means for the sample and the surface to be visualized is set so that the variation in the time to receive an echo peak with respect to the memorized time is minimized during scanning. An ultrasonic imaging device characterized by being provided with a control means for automatic control. 8. In an ultrasonic imaging device that receives echoes of ultrasonic waves sent to a sample from an ultrasonic transmitting/receiving means, processes the received signals, and converts them into image signals. When scanning a sample with ultrasonic waves by memorizing the time, the distance between the ultrasonic transmitting/receiving means for the sample and the surface to be visualized is set so that the variation in the time to receive an echo peak with respect to the memorized time is minimized during scanning. A method of controlling an ultrasonic imaging device characterized by automatic control. 9. An echo measuring device installed in an ultrasonic imaging device equipped with a control mechanism for controlling the relative position, distance, and attitude between the ultrasonic transmitting/receiving means and the sample, which measures the echo of ultrasonic waves sent to a reference point of the sample. means for determining a deviation between a first time until reception and a second time until receiving an echo when scanning a sample with ultrasound and outputting a signal corresponding to the deviation as a control signal; An echo measuring device characterized in that the ultrasonic scanning surface is made to coincide with the surface to be inspected by controlling the control mechanism.
JP2235558A 1990-09-07 1990-09-07 Ultrasonic wave visualizing apparatus and controlling method thereof and echo measuring apparatus Pending JPH04116457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2235558A JPH04116457A (en) 1990-09-07 1990-09-07 Ultrasonic wave visualizing apparatus and controlling method thereof and echo measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2235558A JPH04116457A (en) 1990-09-07 1990-09-07 Ultrasonic wave visualizing apparatus and controlling method thereof and echo measuring apparatus

Publications (1)

Publication Number Publication Date
JPH04116457A true JPH04116457A (en) 1992-04-16

Family

ID=16987766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2235558A Pending JPH04116457A (en) 1990-09-07 1990-09-07 Ultrasonic wave visualizing apparatus and controlling method thereof and echo measuring apparatus

Country Status (1)

Country Link
JP (1) JPH04116457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175136A (en) * 2007-12-26 2009-08-06 Panasonic Corp Ultrasonic measuring method, electronic component manufacturing method, and semiconductor package
JP2017173175A (en) * 2016-03-24 2017-09-28 三菱マテリアル株式会社 Power module substrate ultrasonic inspection device and power module substrate ultrasonic inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175136A (en) * 2007-12-26 2009-08-06 Panasonic Corp Ultrasonic measuring method, electronic component manufacturing method, and semiconductor package
JP2017173175A (en) * 2016-03-24 2017-09-28 三菱マテリアル株式会社 Power module substrate ultrasonic inspection device and power module substrate ultrasonic inspection method

Similar Documents

Publication Publication Date Title
JP4564286B2 (en) 3D ultrasonic imaging device
US8429973B2 (en) Ultrasonic inspection device and ultrasonic inspection method
KR101118657B1 (en) Ultrasonic inspection device
US7357029B2 (en) Thermal-acoustic scanning systems and methods
CN108169331B (en) Sheet grid wing structure welding seam phased array ultrasonic detection device and detection method
WO2010001853A1 (en) 3d ultrasonographic device
JP2011117877A (en) 3d ultrasonographic device
KR102485090B1 (en) Position control device, position control method, and ultrasonic image system
JP5863591B2 (en) Ultrasonic inspection equipment
JPH07294500A (en) Ultrasonic image inspection device
JP6641054B1 (en) Probe movable range setting device and movable range setting method
US4467653A (en) Method and apparatus for ultrasonic analysis
JPH04116457A (en) Ultrasonic wave visualizing apparatus and controlling method thereof and echo measuring apparatus
US5024094A (en) Ultrasonic imaging system of bonding zone
JPH0540029A (en) Furnace interior inspecting device
JP4633268B2 (en) Ultrasonic flaw detector
KR100530672B1 (en) Phased array ultrasonic inspection apparatus having controlling means for focusing parameters
JPH0461306B2 (en)
JPH05188046A (en) Ultrasonic probe and ultrasonic diagnosis method
JPH02269962A (en) Ultrasonic inspection device
JPH0611385A (en) Measuring instrument for acoustic velocity of transverse wave and young's modulus and/or poisson ratio measuring instrument using the device
JPH08313498A (en) Ultrasonic microscope
JPH06102260A (en) Confocal ultrasonic microscope
JPH0658747A (en) Detection method for position shift of contact part and position adjustment device
JPS6085365A (en) Ultrasonic flaw detector