JPH04116303A - Boiler gas recirculation controller - Google Patents

Boiler gas recirculation controller

Info

Publication number
JPH04116303A
JPH04116303A JP23438190A JP23438190A JPH04116303A JP H04116303 A JPH04116303 A JP H04116303A JP 23438190 A JP23438190 A JP 23438190A JP 23438190 A JP23438190 A JP 23438190A JP H04116303 A JPH04116303 A JP H04116303A
Authority
JP
Japan
Prior art keywords
pressure
furnace
outlet pressure
gas recirculation
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23438190A
Other languages
Japanese (ja)
Other versions
JP2866171B2 (en
Inventor
Hidenori Arakawa
荒川 英則
Toshio Ogauchi
小河内 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP23438190A priority Critical patent/JP2866171B2/en
Publication of JPH04116303A publication Critical patent/JPH04116303A/en
Application granted granted Critical
Publication of JP2866171B2 publication Critical patent/JP2866171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To prevent troubles such as burnout of a duct that is a part of furnace hopper, by controlling the outlet pressure of a gas recirculation fan within a specified range according to fluctuations in the outlet pressure of the furnace. CONSTITUTION:The furnace pressures are measured to seize the operating state of a boiler, however, they greatly fluctuates in a short length of time. Therefore, the furnace pressures are measured by a furnace pressure transmitter 16 and satisfactorily averaged by a primary delay relay 17 to examine a major trend of changes in operation state of the boiler. A target value of furnace outlet pressure is produced by a function converter 20 according to a load demand signal (MW demand) 12, and a proportional control signal is produced by a deviation arithmetic controller 18 according to the target value and the actual measured pressure signals, i.e., the output of the primary delay relay 17 which removes minor fluctuations from the outputs of the furnace outlet pressure transmitter 16, so that the delivery pressure set value of a recirculating fan (GRF) is corrected within an allowable correction range of an upper-lower limiter 19. Thereby, the delivery pressure of GRF is automatically controlled within a specified range corresponding to changes in the operating state of the boiler.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明ばボイラのカス再循環制御装置に係るもので、
経年変化等による状態変化に対応して自動的にガス再循
環を制御する装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a boiler waste recirculation control device,
This invention relates to a device that automatically controls gas recirculation in response to changes in conditions due to aging, etc.

〔従来の技術〕[Conventional technology]

ガス再循環系制御の目的は大きく分けて下記の2つであ
る。
The objectives of gas recirculation system control are broadly divided into the following two.

(1)火炉ボツバよりのガス再循環量を制御することに
より再熱器出口蒸気温度を制御する。
(1) The steam temperature at the reheater outlet is controlled by controlling the amount of gas recirculated from the furnace boiler.

(2)1次ガスダクト及びウィンボックスへのガス再循
環量すなわちバーナ燃焼空気へのガス再循環量を制御す
ることによりNOX値を制御する。
(2) Control the NOX value by controlling the amount of gas recirculated to the primary gas duct and winbox, that is, the amount of gas recirculated to the burner combustion air.

L記のI」的を達成するために以下の如く制御をしてい
る。ごれを第1図に基づいて説明する。
In order to achieve the objective of "L", the following control is carried out. The dirt will be explained based on FIG.

第1図はボイラにおけるカス循環装置の系統図であり、
図において、1はカス再循環ファン(以下単にGRF)
 、2はガスミキシングファン(以下単にGMF) 、
3ば火炉ホッパ入し]ダンパ、4はGRE入ロダンバ、
5は一次ガスダンバ、6ばG M F出口−]ダンパ、
7はGMF入ロプロダンパはウィンドホックス、9ば一
次カスタクト、10ばG RF出口圧力発信器、11は
圧カコントローラである。
Figure 1 is a system diagram of a waste circulation device in a boiler.
In the figure, 1 is a waste recirculation fan (hereinafter simply referred to as GRF)
, 2 is a gas mixing fan (hereinafter simply GMF),
3 is a furnace with hopper] damper, 4 is a rodan bar with GRE,
5 is a primary gas damper, 6 is a GMF outlet-] damper,
Reference numeral 7 indicates a GMF input rotor damper as a windhox, 9 indicates a primary castact, 10 indicates a G RF outlet pressure transmitter, and 11 indicates a pressure controller.

ごの様な装置において、上記目的(])の再熱器出口蒸
気温度の制御は、ガス再循環ファン1を出た後の火炉ホ
ッパ入口ダンパ3を制御することによりなされ、又目的
(2)のNOXの制御は、ガス再循環ファン1を出た後
、ウィンドボックス8を経てバーナ燃焼空気と混合をす
るに必要な圧力を得るためカスミキシングファン2を設
け、これを経てウィンドホックス8、−次ガスダクト9
にGMF出ロクンバ6、−成力スダンパ5によりガス量
を制御することがなされる。
In such a device, the control of the reheater outlet steam temperature for the above purpose () is achieved by controlling the furnace hopper inlet damper 3 after exiting the gas recirculation fan 1, and also for the purpose (2). To control NOx, after leaving the gas recirculation fan 1, it passes through the wind box 8, and a gas mixing fan 2 is installed to obtain the pressure necessary to mix it with the burner combustion air. Next gas duct 9
Then, the gas amount is controlled by the GMF output locomotor 6 and the force damper 5.

以上の如く再熱器出口蒸気温度、NOX値を制御するた
め各々の系統からそれぞれ必要なカス量を取ることにな
る。その際、常に安定な制御を行うためにはガス再循環
ファン出口の圧力はある決められた値から変動しないこ
とが必要である。
As described above, in order to control the reheater outlet steam temperature and NOX value, the required amount of waste is taken from each system. At this time, in order to perform stable control at all times, it is necessary that the pressure at the outlet of the gas recirculation fan does not fluctuate from a certain predetermined value.

そのために(″JRF出口をGR出ロ圧力発信器1゜に
より計測し圧力コントローラ11によりGRF入ロタロ
ダンパ4御している。
For this purpose, the JRF outlet is measured by the GR output rotary pressure transmitter 1°, and the GRF input rotary damper 4 is controlled by the pressure controller 11.

ところで、火炉ホッパ人口ダンパ3.−次ガスダンパs
、cMF出L」ダンパ6を安定した効果的な制御を行う
ためには、このダンパの出入口差汗がある一定の範囲に
入っていることか必要である。
By the way, the furnace hopper artificial damper 3. -Next gas damper
, cMF output L'' In order to perform stable and effective control of the damper 6, it is necessary that the difference in sweat at the entrance and exit of this damper falls within a certain range.

そのためには、そのようになるようガス再循環ファン1
出口圧力を制御することが必要である。
In order to do so, the gas recirculation fan 1 must be
It is necessary to control the outlet pressure.

この方法を第2図を参照して説明する。図はGRF出口
制御回路を示しており、12は発電量指令の如き負荷要
求信号(MWデマンド)、13は負荷要求信号をガス再
循環ファン1の出口圧力値に変換する関数変換器、15
はG RF出口圧力発信器10の出力を補正してG R
F人L1ガスクンパ4に制御信号を送出するコントロー
ラである。
This method will be explained with reference to FIG. The figure shows a GRF outlet control circuit, where 12 is a load demand signal (MW demand) such as a power generation command, 13 is a function converter that converts the load demand signal into an outlet pressure value of the gas recirculation fan 1, and 15
G R by correcting the output of the RF outlet pressure transmitter 10
This is a controller that sends a control signal to the F person L1 Gaskumper 4.

即ら、MWデマンド12を関数変換器]3により各負荷
のガス再循環ファン1出口の圧力に変換し、この変換値
をGRF出口発信器10により計測した値とコントlコ
ーラ15において比較し、コントローラ15はこれに基
づきGRF入ロゾロダンパ制御信号力する。
That is, the MW demand 12 is converted to the pressure at the outlet of the gas recirculation fan 1 of each load by the function converter] 3, and this converted value is compared with the value measured by the GRF outlet transmitter 10 in the controller 15, Based on this, the controller 15 outputs a GRF input Rozoro damper control signal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如き従来装置では、G RF出口圧力の制御か、
MWテマンド12によって設定された圧力値と、実際に
計測されたG RI?出L1圧力値とによってのみ制御
されているため、例えば、ボイラの経年変化などによる
状態変化に対応できない。即ぢ、A Hの汚れにより△
P増加率が経年変化により変わった場合などにおいて、
同じ発熱量を求める場合は設定ずべきGRF出口圧力は
異なるのであるが、上記従来装置では、運転負が状況に
応じてGRF出口の圧力設定を行っているのが実情であ
る。
In the conventional device as described above, controlling the G RF outlet pressure,
The pressure value set by MW Temando 12 and the actually measured GRI? Since it is controlled only based on the output L1 pressure value, it cannot respond to changes in the condition due to aging of the boiler, for example. Immediately, due to dirt on A H, △
In cases such as when the P increase rate changes due to changes over time,
If the same calorific value is to be obtained, the GRF outlet pressure should be set differently, but in the conventional device described above, the actual situation is that the pressure at the GRF outlet is set depending on the operating situation.

又、上記装置では、経年変化を見て火炉圧力の増加分ト
α値を大きくする必要があり、これによりG RFの動
力損失が大きくなるとい・う不都合もあつノこ。
In addition, with the above device, it is necessary to increase the α value by the increase in furnace pressure in view of aging, which also has the disadvantage of increasing the power loss of the GRF.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は」−記の点に鑑めてなされたもので、負荷要求
信号に基づいてガス再循環ファン出り圧力を設定する再
循環圧力設定手段と、運転中のガス再循環ファン出口圧
力を検出するm循環圧力検出手段と、該循環圧力検出1
段の出力に基づいて前記再循環圧力設定手段により設定
されたガス再循環ファン出口圧力を補正する再循環圧力
補正手段とを備え、該再循環圧力補正手段の出力により
ガス再循環ファン出口圧力を所定範囲に制御するように
したボイラガス再循環制御装置において、負荷要求信号
に基づいて火炉出口圧力を設定する火炉圧力が設定手段
と、運転中の火炉出口圧力を検出する火炉圧力検出手段
と、該火炉圧力検出手段の出力に基づいて前記火炉圧力
設定手段により設定された火炉出口圧力を補正する火炉
圧力補正手段と、該火炉圧力補正手段の出力を前記再循
環圧力補正手段に印加する加算器とを有し、火炉出I」
圧力の変動に基づいてガス再循環ファン出口圧力を所定
範囲に制御することを特徴としている。
The present invention has been made in view of the above points, and includes a recirculation pressure setting means for setting the gas recirculation fan outlet pressure based on a load request signal, and a recirculation pressure setting means for setting the gas recirculation fan outlet pressure during operation. m circulating pressure detecting means for detecting, and the circulating pressure detecting means 1;
recirculation pressure correction means for correcting the gas recirculation fan outlet pressure set by the recirculation pressure setting means based on the output of the stage, the gas recirculation fan outlet pressure being adjusted by the output of the recirculation pressure correction means; A boiler gas recirculation control device configured to control the furnace gas recirculation within a predetermined range, comprising: a furnace pressure setting means for setting the furnace outlet pressure based on a load request signal; a furnace pressure detection means for detecting the furnace outlet pressure during operation; Furnace pressure correction means for correcting the furnace outlet pressure set by the furnace pressure setting means based on the output of the furnace pressure detection means; and an adder for applying the output of the furnace pressure correction means to the recirculation pressure correction means. It has a furnace exit I.
It is characterized by controlling the gas recirculation fan outlet pressure within a predetermined range based on pressure fluctuations.

〔作用〕[Effect]

上記構成では、負荷要求信号によって予め設定された火
炉出力圧力は、検出された実際の火炉圧力により補正さ
れる。この補正出力はガス再循環ファン出口圧力を制御
する補正信号として別途形成されたカス再循環ファン出
口圧力補正出力に力11えられる。従って、ボイラの経
年変化が表われる火炉圧力の変化に応して、必要なカス
再循環ファン出口圧力が適切にコントロールされる。
In the above configuration, the furnace output pressure preset by the load request signal is corrected by the detected actual furnace pressure. This correction output is applied to a separately formed waste recirculation fan outlet pressure correction output 11 as a correction signal for controlling the gas recirculation fan outlet pressure. Therefore, the required waste recirculation fan outlet pressure can be appropriately controlled in response to changes in furnace pressure that are caused by aging of the boiler.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図、第2図に基づいて説明する。 An embodiment of the present invention will be described based on FIGS. 1 and 2.

尚、第1図の系統閾は、従来装置と共通であり、第2図
のGRF出「]制制御路は、既に説明した従来の制御回
路に一部必要回路をイ=1加したものである。このイ」
加回路において、13は変換器、14は加算器、16は
火炉出I」圧力発信器、17は−・次遅れ器、18はコ
ン1−ローラ、19は上下限リミッタ、20は関数変換
器である。このよ・うな回路は、制御系全体の安定性を
考慮して従来装置の制御回路にイ」加されることが望ま
しい。
The system threshold shown in Fig. 1 is common to the conventional device, and the GRF output control path shown in Fig. 2 is obtained by adding some necessary circuits to the conventional control circuit already explained. There is.
In the adding circuit, 13 is a converter, 14 is an adder, 16 is a furnace output pressure transmitter, 17 is a second lag device, 18 is a controller 1-roller, 19 is an upper and lower limiter, and 20 is a function converter. It is. It is desirable that such a circuit be added to the control circuit of the conventional device in consideration of the stability of the entire control system.

ボイラの状態の変化をつかまえるのは火炉圧力を計測す
るのがよい。しかしながら、火炉圧力は短期的には非常
に変動している。したかつて火炉圧力発信器16により
計測しごれを一次遅れ器17により十分に平準化しボイ
ラの状態の大きな変化傾向をつかむ。ごれと従来の制御
回路のMWデマンド12より作成し関数変換器20によ
って変換された火炉圧力設定値とをコントローラ18に
より比較し、比較結果を補正信号として−1−下限りミ
ッタ]9を介して加算器14に印加する。補正信号によ
る修正は長時限的な修正動作とさせるため比列制御とし
、積分要素はこの:1ントローラ18には持たせない。
A good way to detect changes in boiler conditions is to measure furnace pressure. However, furnace pressure is highly variable in the short term. The sag measured by the furnace pressure transmitter 16 is sufficiently leveled by the primary lag device 17 to grasp the tendency of large changes in the condition of the boiler. The controller 18 compares the dust with the furnace pressure set value created from the MW demand 12 of the conventional control circuit and converted by the function converter 20, and uses the comparison result as a correction signal via the -1-lower limit limiter]9. and is applied to the adder 14. The correction using the correction signal is performed by ratio sequence control in order to perform a long-term correction operation, and the :1 controller 18 is not provided with an integral element.

又、火炉圧力は短時限的には非常に変動しているためか
えって外乱となる可能性があるため上下限リミッタ19
により制限をかけ暴走しないよう歯止めをかげる。
In addition, since the furnace pressure fluctuates greatly in a short period of time, there is a possibility that it will cause disturbance, so the upper and lower limiters 19
This will put a stop to it and prevent it from running out of control.

以上説明したよ・うに、本実施例では、MWデマンドか
ら関数変換器20により、火炉出口圧力の目標値を作り
、実測した火炉圧力信号即ち、火炉圧力発信器16の出
力の小さな変動を取除く為の一次遅れリレー17とを偏
差演算コントローラ18で比例制御信号を作り、」−下
限りミツター19の許容する修正幅たけG RF出口圧
力設定値を修正するものである。
As explained above, in this embodiment, the target value of the furnace outlet pressure is created from the MW demand by the function converter 20, and small fluctuations in the actually measured furnace pressure signal, that is, the output of the furnace pressure transmitter 16, are removed. A proportional control signal is generated by the first-order delay relay 17 and the deviation calculation controller 18, and the RF outlet pressure set value is corrected by the correction width allowed by the lower limit limiter 19.

従って、火炉圧力の大きな傾向により設定値の修正動作
を行うことによりボイラ状態の変化に対して、自動的に
G R,F出口圧を所定範囲に制?ffUすることがで
きる。
Therefore, by correcting the set value due to a large trend in the furnace pressure, the G R and F outlet pressures can be automatically controlled within a predetermined range in response to changes in the boiler condition. ffU can be done.

尚、上記実施例にあっては、MWデマンド12が本発明
における負荷要求信号、関数変換器13がガス再循環圧
力設定手段、コントローラ15が再循環圧力補正手段、
火炉圧力発信器16が火炉圧力検出手段、関数変換器2
0が火炉圧力設定手段、コントローラ18が火炉圧力補
正手段、GRF出I」圧力発信器10か再循環圧力検出
手段に夫々相当する。
In the above embodiment, the MW demand 12 is the load request signal of the present invention, the function converter 13 is the gas recirculation pressure setting means, the controller 15 is the recirculation pressure correction means,
Furnace pressure transmitter 16 is furnace pressure detection means, function converter 2
0 corresponds to the furnace pressure setting means, the controller 18 corresponds to the furnace pressure correction means, and the GRF output pressure transmitter 10 corresponds to the recirculation pressure detection means, respectively.

第2図の実施例でばMWデマンド12の出力を関数リレ
ー20を介してコン1−ローラ18に送出しているが、
火炉圧力の信号に対するGRF出ロ出力圧力設定値数を
設定する設定回路を火炉圧力発信器16の出力側の一次
遅れリレー17と、偏差演算コントローラ18の間に設
けれは、関数リレー20は不要であって同様の効果を得
ることができる。
In the embodiment shown in FIG. 2, the output of the MW demand 12 is sent to the controller 1-roller 18 via the function relay 20.
If a setting circuit for setting the number of GRF output pressure set values for the furnace pressure signal is provided between the primary delay relay 17 on the output side of the furnace pressure transmitter 16 and the deviation calculation controller 18, the function relay 20 is not required. The same effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明した通りであり、火炉圧力の経年的−
ト昇に対して、GRF出口圧力が必ず1αだけ高い運転
が可能となるので、火炉圧力変化で再循環ガスが流れず
、火炉ホッパ一部のダクト燃損等のトラブルを防止する
ことができる。又、GRFから火炉に供給される再循環
ガス流量の変動が少くなり、RH蒸気温度が変動するこ
となく運転できる NOXについても安定した制御に効果がある等の利点が
ある」−に、火炉圧力−(αの→αの値を小さく設定し
てもよいことになり、経年変化を見込んで+αの値を大
きくする現状に対してG RFの動力損失を少く運転出
来る効果がある。
The present invention is as explained above, and the furnace pressure changes over time.
Since the GRF outlet pressure is always 1α higher than the temperature rise, recirculation gas does not flow due to a change in the furnace pressure, and troubles such as duct burnout in a part of the furnace hopper can be prevented. Additionally, fluctuations in the flow rate of recirculated gas supplied from the GRF to the furnace are reduced, and there are advantages such as stable control of NOx, which allows operation without fluctuations in RH steam temperature. -(α→α) can be set to a small value, which has the effect of reducing the power loss of the GRF compared to the current situation where the +α value is increased in anticipation of aging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられるボイラガス再循環制御装置
の全体系統図、第2図は従来及び本発明の制御回路の要
部説明図である。 】・・・・・・ガス循環ファン、10・・・・・・GR
F出ロ出力圧力発振器2・・・・・・MWデマンド、1
3・・・・・・関数変換器、14・・・・・・加算器、
15・・・・・・コンI・ローラ、16・・・・・・火
炉圧力発信器、18・・・・・・コントローラ。 =20
FIG. 1 is an overall system diagram of a boiler gas recirculation control device used in the present invention, and FIG. 2 is an explanatory diagram of main parts of a conventional control circuit and a control circuit of the present invention. ]...Gas circulation fan, 10...GR
F output pressure oscillator 2...MW demand, 1
3...Function converter, 14...Adder,
15... Controller I roller, 16... Furnace pressure transmitter, 18... Controller. =20

Claims (1)

【特許請求の範囲】 負荷要求信号に基づいてガス再循環ファン出口圧力を設
定する再循環圧力設定手段と、運転中のガス再循環ファ
ン出口圧力を検出する再循環圧力検出手段と、該再循環
圧力検出手段の出力に基づいて前記再循環圧力設定手段
により設定されたガス再循環ファン出口圧力を補正する
再循環圧力補正手段とを備え、該再循環圧力補正手段の
出力によりガス再循環ファン出口圧力を所定範囲に制御
するようにしたボイラガス再循環制御装置において、 負荷要求信号に基づいて火炉出口圧力を設定する火炉圧
力設定手段と、運転中の火炉出口圧力を検出する火炉圧
力検出手段と、該火炉圧力検出手段の出力に基づいて前
記火炉圧力設定手段により設定された火炉出口圧力を補
正する火炉圧力補正手段と、該火炉圧力補正手段の出力
を前記再循環圧力補正手段に印加する加算器とを有し、
火炉出口圧力の変動に基づいてガス再循環ファン出口圧
力を所定範囲に制御することを特徴とするボイラガス再
循環制御装置。
[Scope of Claims] Recirculation pressure setting means for setting a gas recirculation fan outlet pressure based on a load request signal; recirculation pressure detection means for detecting the gas recirculation fan outlet pressure during operation; recirculation pressure correction means for correcting the gas recirculation fan outlet pressure set by the recirculation pressure setting means based on the output of the pressure detection means; A boiler gas recirculation control device configured to control pressure within a predetermined range, comprising: a furnace pressure setting means for setting a furnace outlet pressure based on a load request signal; a furnace pressure detection means for detecting the furnace outlet pressure during operation; Furnace pressure correction means for correcting the furnace outlet pressure set by the furnace pressure setting means based on the output of the furnace pressure detection means; and an adder for applying the output of the furnace pressure correction means to the recirculation pressure correction means. and has
A boiler gas recirculation control device that controls gas recirculation fan outlet pressure within a predetermined range based on fluctuations in furnace outlet pressure.
JP23438190A 1990-09-06 1990-09-06 Boiler gas recirculation control device Expired - Fee Related JP2866171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23438190A JP2866171B2 (en) 1990-09-06 1990-09-06 Boiler gas recirculation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23438190A JP2866171B2 (en) 1990-09-06 1990-09-06 Boiler gas recirculation control device

Publications (2)

Publication Number Publication Date
JPH04116303A true JPH04116303A (en) 1992-04-16
JP2866171B2 JP2866171B2 (en) 1999-03-08

Family

ID=16970111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23438190A Expired - Fee Related JP2866171B2 (en) 1990-09-06 1990-09-06 Boiler gas recirculation control device

Country Status (1)

Country Link
JP (1) JP2866171B2 (en)

Also Published As

Publication number Publication date
JP2866171B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
JPS6062606A (en) Method and apparatus for limiting steam turbine pressure change ratio
JPH04116303A (en) Boiler gas recirculation controller
JPS63286614A (en) Combustion control of boller
JPH11285297A (en) Device and method for controlling frequency of steam-power plant
JP3941405B2 (en) Boiler automatic control apparatus and method
JP2519727B2 (en) Gas turbine injection steam control device
JPS6086322A (en) Safety device for combustion
JPH01127805A (en) Controller for boiller and turbine plant
JP2000265968A (en) Fluid feed pump recirculating control device
JPH0223766B2 (en)
JP2849943B2 (en) Power generation control device
JPH1181919A (en) White smoke of exhaust gas preventing method in binary cycle gas turbine device
JP2000266304A (en) Controller for temperature reducer
JPH0514166B2 (en)
JPS6241514A (en) Method for controlling ventilation of exhaust gas in smoke discharging and desulferation facility
JPS62170735A (en) Fuel gas system
JPH01325A (en) Gas turbine injection steam control device
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JPH0732944Y2 (en) Flow control device for turbine generator with limited output
JPS60228819A (en) Air flow rate controlling device of boiler
JPS60171308A (en) Method of burning fuel in burner with reduced amount of generated nox
JPH0321808B2 (en)
JPH05149108A (en) Drum level control device for compound cycle power generation plant
JPH0756365B2 (en) Boiler automatic control device
JPS649527B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees