JPH04116239A - Catalystic deterioration diagnostic device for internal combustion engine - Google Patents

Catalystic deterioration diagnostic device for internal combustion engine

Info

Publication number
JPH04116239A
JPH04116239A JP2235372A JP23537290A JPH04116239A JP H04116239 A JPH04116239 A JP H04116239A JP 2235372 A JP2235372 A JP 2235372A JP 23537290 A JP23537290 A JP 23537290A JP H04116239 A JPH04116239 A JP H04116239A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
sensor
learning
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2235372A
Other languages
Japanese (ja)
Other versions
JP2864699B2 (en
Inventor
Takashi Aramaki
孝 荒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2235372A priority Critical patent/JP2864699B2/en
Publication of JPH04116239A publication Critical patent/JPH04116239A/en
Application granted granted Critical
Publication of JP2864699B2 publication Critical patent/JP2864699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent decrease in diagnostic accuracy caused by deviation of a rear air-fuel ratio and deviation of a judging standard by inhibiting deterioration diagnosis of catalyst in the case renewal of learning compensation which uses a downstream air-fuel ratio sensor is not performed enough. CONSTITUTION:A catalyst converter 27 is interposed at an exhaust passage 23 in an internal combustion engine 21, and an upstream oxygen sensor 28 is arranged above the catalyst converter 27, and a downstream oxygen sensor 29 is arranged downstream. A feedback compensation coefficient is calculated based on output of the oxygen sensor 28 in a control unit 32, and the feedback compensation coefficient is corrected by a learning value based on the output of the oxygen sensor 29. When the number of renewal of the learning value based on the output of the oxygen sensor 29 is at a specified value or more, the deviation in the air-fuel ratios is seldom happened, and deterioration diagnosis of the catalyst converter 27 is performed by comparing the outputs of the oxygen sensors 28, 29 each other. Consequently, the deterioration diagnosis is performed accurately.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、触媒コンバータの上流側と下流側とに配設
された空燃比センサを利用して、触媒の劣化状態を診断
するようにした内燃機関の触媒劣化診断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an internal combustion engine in which the deterioration state of a catalyst is diagnosed using air-fuel ratio sensors disposed on the upstream and downstream sides of a catalytic converter. The present invention relates to a catalyst deterioration diagnostic device.

従来の技術 内燃機関の触媒コンバータの上流側および下流側にそれ
ぞれ空燃比センサ例えば0.センサを配設し、上流側O
,センサの出力信号を主にして空燃比フィードバック制
御を実行するとともに、両センサの出力信号の比較から
触媒の劣化を診断するようにした装置が、例えば特開昭
63−205441号公報に開示されている。
BACKGROUND OF THE INVENTION Air-fuel ratio sensors, for example 0.0. A sensor is installed on the upstream side
For example, Japanese Patent Application Laid-Open No. 63-205441 discloses a device that executes air-fuel ratio feedback control mainly using the output signal of a sensor and diagnoses deterioration of a catalyst by comparing the output signals of both sensors. ing.

すなわち、空燃比フィードバック制御の実行中には、主
に上流側Otセンサの出力信号に基づいて例えば疑似的
な比例積分制御により燃料供給量が制御されるので、上
流側O,センサの出力信号は第5図の(a)に示すよう
に、周期的にリッチ。
That is, during execution of air-fuel ratio feedback control, the fuel supply amount is controlled mainly by pseudo proportional-integral control based on the output signal of the upstream O sensor, so the output signal of the upstream O sensor is As shown in FIG. 5(a), it is rich periodically.

リーンの反転を繰り返す。これに対し、触媒コンバータ
の下流側では、触媒のO,ストレージ能力により残存酸
素濃度の変動が非常に緩やかなものとなるので、下流側
O,センサの出力信号としては、第5図の(b)に示す
ように、上流側Otセンサに比べて変動幅が小さく、か
つ周期が長くなる。
Repeat lean reversals. On the other hand, on the downstream side of the catalytic converter, the fluctuation in the residual oxygen concentration is very gradual due to the O storage capacity of the catalyst, so the output signal of the downstream O sensor is ), the fluctuation range is smaller and the period is longer than that of the upstream Ot sensor.

しかし、触媒コンバータにおける触媒が劣化してくると
、0.ストレージ能力の低下により、触媒コンバータ上
流側と下流側とで酸素濃度がそれ程変わらなくなり、そ
の結果、下流側O,センサの出力信号は、第5図の(c
)に示すように、上流側0.センサの出力に近似した周
期で反転を繰り返すようになり、かつその変動幅も大き
くなってくる。
However, as the catalyst in the catalytic converter deteriorates, 0. Due to the decrease in storage capacity, the oxygen concentration does not change much between the upstream and downstream sides of the catalytic converter, and as a result, the output signal of the downstream O sensor becomes as shown in (c) in Figure 5.
), the upstream side 0. Inversions begin to repeat at a period similar to the sensor output, and the range of variation becomes large.

従って、上記公報に記載の装置では、上流側0、センサ
のリッチ、リーンの反転周期TIと下流側O,センサの
リッチ、リーンの反転周期T2との比(TI/T2)を
求め、この比が所定値以上となったときに、触媒が劣化
したものと判定するようにしている。
Therefore, in the device described in the above publication, the ratio (TI/T2) of the upstream side 0, sensor rich, lean inversion period TI and the downstream side O, sensor rich, lean inversion period T2 is determined, and this ratio When the value exceeds a predetermined value, it is determined that the catalyst has deteriorated.

尚、下流側O!センサの出力信号は、上述した触媒劣化
診断のほかに、上流側O,センサの出力信号に基づく空
燃比フィードバック制御の全体的な空燃比の片寄りの学
習補正等にも用いられるのが一般的である。
In addition, downstream O! In addition to diagnosing catalyst deterioration as described above, the output signal of the sensor is generally used for learning correction of the overall air-fuel ratio bias in air-fuel ratio feedback control based on the output signal of the upstream oxygen sensor. It is.

発明が解決しようとする課題 しかしながら上記のように上流側O,センサの出力と下
流側O,センサの出力とを比較して触媒の劣化を正確に
診断するには、その前提として、空燃比フィードバック
制御により与えられる実際の空燃比が、理論空燃比を中
心としてかなり高精度に制御されていなければならない
。つまり、上流側0.センサの経年変化等により実際の
空燃比がリッチ側もしくはリーン側に片寄った状態で周
期的に反転を繰り返している場合には、下流側O、セン
サの反転周期が影響を受けるため、一定レベルを基準と
した診断を精度良く行うことができない。
Problems to be Solved by the Invention However, in order to accurately diagnose catalyst deterioration by comparing the output of the upstream O sensor and the output of the downstream O sensor as described above, air-fuel ratio feedback is a prerequisite. The actual air-fuel ratio provided by the control must be controlled with fairly high precision around the stoichiometric air-fuel ratio. In other words, upstream side 0. If the actual air-fuel ratio is biased toward the rich or lean side due to aging of the sensor and repeats periodic reversals, the reversal period of the downstream O and sensor will be affected, so it is necessary to maintain a constant level. Diagnosis based on the standard cannot be performed with high accuracy.

課題を解決するための手段 そこで、この発明は下流側空燃比センサの出力信号を用
いて空燃比フィードバック制御を学習補正するものにお
いて、その学習が十分に進行したことを条件として、触
媒の劣化診断を行うようにした。すなわち、この発明に
係る内燃機関の触媒劣化診断装置は、排気通路に介装さ
れた触媒コンバータの上流側に配設された上流側空燃比
センサ1と、触媒コンバータの下流側に配設された下流
側空燃比センサ2と、内燃機関の運転条件に応じて基本
燃料噴射量を設定する基本燃料噴射量設定手段3と、上
流側空燃比センサlの出力に基づいてフィードバック補
正係数を算出する補正係数算出手段4と、少なくとも機
関回転数と負荷とをパラメータとする運転領域の複数の
区画に割り付けた学習値をそれぞれ記憶する記憶手段5
と、各区画の学習値を用いて上記フィードバック補正係
数を補正する学習補正手段6と、このフィードバック補
正係数を用いて上記基本燃料噴射量を補正する燃料噴射
量補正手段7と、機関運転条件がいずれかの区画内に所
定期間とどまっているときに、下流側空燃比センサ2の
出力に基づいて上記記憶手段における学習値を修正かつ
更新する学習更新手段8と、この更新の回数を各区画毎
に計数する学習回数計数手段9とを備えてなる内燃機関
において、空燃比フィードバック制御中に上流側空燃比
センサ1の出力と下流側空燃比センサ2の出力とを比較
して触媒の劣化を判定する劣化判定手段IOと、上記学
習値の更新回数が所定回数以下のときに上記の劣化判定
を禁止する判定禁止0手段11とを備えたことを特徴と
している。
Means for Solving the Problems Therefore, the present invention learns and corrects air-fuel ratio feedback control using the output signal of a downstream air-fuel ratio sensor, and performs catalyst deterioration diagnosis on the condition that the learning has sufficiently progressed. I decided to do this. That is, the catalyst deterioration diagnosis device for an internal combustion engine according to the present invention includes an upstream air-fuel ratio sensor 1 disposed upstream of a catalytic converter interposed in an exhaust passage, and an upstream air-fuel ratio sensor 1 disposed downstream of the catalytic converter. A correction unit that calculates a feedback correction coefficient based on the output of the downstream air-fuel ratio sensor 2, the basic fuel injection amount setting means 3 that sets the basic fuel injection amount according to the operating conditions of the internal combustion engine, and the output of the upstream air-fuel ratio sensor l. Coefficient calculation means 4, and storage means 5 for storing learning values respectively assigned to a plurality of sections of an operating region having at least engine speed and load as parameters.
a learning correction means 6 for correcting the feedback correction coefficient using the learning value of each section; a fuel injection amount correction means 7 for correcting the basic fuel injection amount using the feedback correction coefficient; Learning and updating means 8 corrects and updates the learning value in the storage means based on the output of the downstream air-fuel ratio sensor 2 when the user stays in one of the compartments for a predetermined period of time; In an internal combustion engine, the deterioration of the catalyst is determined by comparing the output of the upstream air-fuel ratio sensor 1 and the output of the downstream air-fuel ratio sensor 2 during air-fuel ratio feedback control. The present invention is characterized in that it includes a deterioration determination means IO that performs the above-mentioned update, and a determination prohibition means 11 that prohibits the deterioration determination described above when the number of updates of the learned value is equal to or less than a predetermined number of times.

作用 上記構成では、上流側空燃比センサlの出力に基づいて
フィードバック補正係数が求められ、これを用いて燃料
噴射量がフィードバック制御される。ここで、下流側空
燃比センサ2の出力に基づいて学習値が求められ、該学
習値によって上記フィードバック補正係数が補正される
。つまり、空燃比フィードバック制御の結果、なおも空
燃比の片寄りがある場合には、上記下流側空燃比センサ
2による学習補正によって、その片寄りが除去される。
Effect: In the above configuration, a feedback correction coefficient is determined based on the output of the upstream air-fuel ratio sensor l, and the fuel injection amount is feedback-controlled using this coefficient. Here, a learned value is determined based on the output of the downstream air-fuel ratio sensor 2, and the feedback correction coefficient is corrected using the learned value. That is, if the air-fuel ratio is still biased as a result of the air-fuel ratio feedback control, the bias is removed by the learning correction by the downstream air-fuel ratio sensor 2.

上記の学習値は、運転領域のいずれかの区画に所定期間
とどまっているときに更新されるので、その更新回数が
多いほど信頼性の高いものとなる。
The above learned value is updated when the vehicle remains in any section of the driving region for a predetermined period of time, so the greater the number of updates, the higher the reliability.

従って、更新回数がある値以上であれば、空燃比の片寄
りは殆どないものと考えられ、フィードバック制御によ
り理論空燃比を中心として比較的狭い範囲で周期的に変
化することになる。
Therefore, if the number of updates exceeds a certain value, it is considered that there is almost no deviation in the air-fuel ratio, and the air-fuel ratio changes periodically within a relatively narrow range around the stoichiometric air-fuel ratio due to feedback control.

そこで、このような状態で上流側空燃比センサIの出力
と下流側空燃比センサ2の出力とを比較することにより
、触媒の劣化診断が高精度に行える。
Therefore, by comparing the output of the upstream air-fuel ratio sensor I and the output of the downstream air-fuel ratio sensor 2 in such a state, catalyst deterioration diagnosis can be performed with high accuracy.

実施例 以下、この発明の一実施例を図面に基づいて詳細に説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described in detail based on the drawings.

第2図はこの発明の一実施例の機械的構成を示す構成説
明図であって、21は内燃機関、22はその吸気通路、
23は排気通路を示している。上記吸気通路22には、
各吸気ボートへ向けて燃料を供給する燃料噴射弁24が
気筒毎に配設されているとともに、スロットル弁25が
介装されており、その上流側に、吸入空気量を検出する
例えば熱線式のエアフロメータ26か配設されている。
FIG. 2 is a structural explanatory diagram showing the mechanical structure of an embodiment of the present invention, in which 21 is an internal combustion engine, 22 is an intake passage thereof,
23 indicates an exhaust passage. In the intake passage 22,
A fuel injection valve 24 for supplying fuel to each intake boat is arranged for each cylinder, and a throttle valve 25 is interposed, and on the upstream side thereof, a hot wire type, for example, for detecting the amount of intake air is installed. An air flow meter 26 is also provided.

上記排気通路23には、例えば三元触媒を用いた触媒コ
ンバータ27が介装されているとともに、該触媒コンバ
ータ27よりも上流位置に上流側0、センサ28が、下
流位置に下流側O,センサ29がそれぞれ配設されてい
る。この空燃比センサとしてのO,センサ28,29は
、排気中の残存酸素濃度に応じた起電力を発生するもの
で、特に、理論空燃比を境に起電力が急変し、理論空燃
比より過濃側(リッチ側)で高レベル(約1v程度)に
、希薄側(リーン側)で低レベル(約100!V程度)
となる。
A catalytic converter 27 using, for example, a three-way catalyst is interposed in the exhaust passage 23, and an upstream 0 sensor 28 is located upstream of the catalytic converter 27, and a downstream sensor 28 is located downstream of the catalytic converter 27. 29 are arranged respectively. The O sensors 28 and 29, which act as air-fuel ratio sensors, generate an electromotive force according to the residual oxygen concentration in the exhaust gas. High level (about 1V) on the rich side (about 1V), low level (about 100!V) on the lean side
becomes.

また、30は内燃機関の冷却水温を検出する水温センサ
、31は機関回転数を検出するために設けられた所定ク
ランク角毎にパルス信号を発するクランク角センサを示
している。
Further, 30 indicates a water temperature sensor that detects the temperature of the cooling water of the internal combustion engine, and 31 indicates a crank angle sensor that is provided to detect the engine rotational speed and generates a pulse signal at every predetermined crank angle.

上述した各種センサの検出信号が入力されるコントロー
ルユニット32は、所謂マイクロコンビコータシステム
を用いたもので、Otセンサ28゜29に基づく燃料噴
射弁24の噴射量制御つまりフィードバック制御方式に
よる空燃比制御を実行するとともに、後述するような触
媒の劣化診断を行い、所定レベル以上の劣化と判定した
場合には警告灯33を点灯させるようになっている。
The control unit 32 to which the detection signals of the various sensors described above are input uses a so-called micro combi coater system, and controls the injection amount of the fuel injection valve 24 based on the Ot sensors 28 and 29, that is, the air-fuel ratio is controlled by a feedback control method. At the same time, a deterioration diagnosis of the catalyst is performed as will be described later, and if it is determined that the deterioration has exceeded a predetermined level, a warning light 33 is turned on.

次に上記実施例における作用について説明する。Next, the operation of the above embodiment will be explained.

先ず、空燃比制御の概略を説明する。この空燃比制御は
、エアフロメータ26が検出した吸入空気量Qとクラン
ク角センサ31が検出した機関回転数NとからTp=Q
/Nとして基本パルス幅Tp(基本噴射量)を演算し、
かつこれに種々の増量補正やフィードバック補正を加え
て燃料噴射弁24の駆動パルス幅Ti(噴射量)を決定
するのであり、具体的には次式によってパルス幅T1が
求められる。
First, an outline of air-fuel ratio control will be explained. This air-fuel ratio control is performed based on the intake air amount Q detected by the air flow meter 26 and the engine rotation speed N detected by the crank angle sensor 31.
/N to calculate the basic pulse width Tp (basic injection amount),
Further, various increase corrections and feedback corrections are added to this to determine the drive pulse width Ti (injection amount) of the fuel injection valve 24. Specifically, the pulse width T1 is determined by the following equation.

T i =TpXCOEFXα+Ts ここでC0EFは各種増量補正係数であり、例えば水温
に応じた水温増量補正、高速高負荷時の空燃比補正など
からなる。Tsは、燃料噴射弁24の無効時間を補償す
るようにバッテリ電圧に応じて付加される電圧補正係数
である。
T i =TpXCOEFXα+Ts Here, C0EF is various increase correction coefficients, such as water temperature increase correction according to water temperature, air-fuel ratio correction at high speed and high load, etc. Ts is a voltage correction coefficient added according to the battery voltage so as to compensate for the invalid time of the fuel injection valve 24.

また、αは主に上流側O,センサ28の検出信号に基づ
いて演算されるフィードバック補正係数である。すなわ
ち、上流側O,センサ28の出力信号を所定のスライス
レベル(理論空燃比に対応する)と比較し、かつそのリ
ーン側およびリッチ側への反転に基づく疑似的な比例積
分制御によって求められる値で、1以上であればリッチ
側へ、1以下であればリーン側へ空燃比が制御される。
Further, α is a feedback correction coefficient calculated mainly based on the detection signal of the upstream side O and the sensor 28. That is, the value obtained by comparing the output signal of the upstream O sensor 28 with a predetermined slice level (corresponding to the stoichiometric air-fuel ratio) and performing pseudo proportional-integral control based on its reversal to the lean side and rich side. If it is 1 or more, the air-fuel ratio is controlled to the rich side, and if it is 1 or less, the air-fuel ratio is controlled to the lean side.

第6図の(a)は、上流側0.センサ28の出力信号の
一例を示し、(b)はこれに対応するフイードバック補
正係数αの変化を示している。上記フィードバック補正
係数αは、上述したように疑似的な比例積分制御により
求められるもので、上流側O,センサ28の出力が所定
のスライスレベルを横切ってリッチ側からリーン側へ反
転すると、補正係数αには一定の比例骨PLが加算され
、かつ所定の積分定数ILによる傾きで積分分が徐々に
加算されて行く。このフィードバック補正係数αは、前
述したように基本燃料噴射量’rpに乗じられるので、
実際の空燃比は徐々に濃化する。
(a) of FIG. 6 shows the upstream side 0. An example of the output signal of the sensor 28 is shown, and (b) shows the corresponding change in the feedback correction coefficient α. The feedback correction coefficient α is obtained by pseudo-proportional-integral control as described above, and when the output of the upstream O sensor 28 crosses a predetermined slice level and reverses from the rich side to the lean side, the correction coefficient α A constant proportional bone PL is added to α, and an integral is gradually added with a slope according to a predetermined integral constant IL. This feedback correction coefficient α is multiplied by the basic fuel injection amount 'rp as described above, so
The actual air-fuel ratio gradually enriches.

そして、次に上流側Otセンサ28の出力がリーン側か
らリッチ側へ反転すると、補正係数αから一定の比例骨
PRが減算され、かつ所定の積分定数IRによる傾きで
積分分が徐々に減算されて行く。このような作用の繰り
返しによって、実際の空燃比は、1〜2Hz程度の周期
で変化しつつ略理論空燃比近傍に維持される。
Then, when the output of the upstream Ot sensor 28 is reversed from the lean side to the rich side, a constant proportional bone PR is subtracted from the correction coefficient α, and the integral is gradually subtracted with a slope according to a predetermined integral constant IR. Go. By repeating such actions, the actual air-fuel ratio is maintained approximately near the stoichiometric air-fuel ratio while changing at a period of about 1 to 2 Hz.

尚、何らかの燃料増量を行う必要がある低水温時や高速
高負荷時、あるいは減速中のフューエルカット時等には
上記フィードバック補正係数αが1にクランプされ、実
質的にオーブンループ制御となる。
Incidentally, at low water temperatures, at high speeds and high loads, or at times of fuel cut during deceleration, etc., when it is necessary to increase the amount of fuel in some way, the feedback correction coefficient α is clamped to 1, essentially resulting in oven loop control.

一方、下流側O,センサ29の出力信号は、後述する触
媒の劣化診断のほかに、上流側O!センサ28によるフ
ィードバック制御の全体的な片寄りの学習補正のために
用いられる。
On the other hand, the output signal of the downstream side O sensor 29 can be used for diagnosing catalyst deterioration, which will be described later. It is used for learning correction of overall bias in feedback control by the sensor 28.

すなわち、上述した上流側Otセンサ28によるフィー
ドバック制御の結果、空燃比が全体としてリッチ傾向で
あれば、下流側0.センサ29の出力信号はリッチ側で
連続したものとなる。また空燃比が全体としてリーン傾
向であれば、下流側0、センサ29の出力信号はリーン
側で連続したものとなる。従って、この空燃比の全体的
な片寄りの傾向に応じて、各運転領域に予め学習値しP
を割り付けておき、リッチ→リーン反転時の比例骨PL
およびリーン−リッチ反転時の比例骨PIIを、それぞ
れ、 P t、= P L+ L P P R= P ta  L P として補正するのである。詳しくは、第3図に示すよう
に、機関回転数Nと負荷(例えば基本燃料噴射量Tp)
をパラメータとして運転領域を複数個(n個)の区画に
分け、それぞれの区画に対応する学習値LP、−LPn
が、車載バッテリにバックアップされた読み書き可能な
メモリ内に記憶されている。そして、この学習値の中で
そのときの運転条件に対応する値が読み出され、これに
よって上述のように比例骨PL、PRの補正がなされる
のである。
That is, if the air-fuel ratio as a whole tends to be rich as a result of the feedback control by the upstream side Ot sensor 28 described above, the downstream side 0. The output signal of the sensor 29 is continuous on the rich side. Further, if the air-fuel ratio as a whole tends to be lean, the output signal of the downstream side 0 and the sensor 29 will be continuous on the lean side. Therefore, depending on the overall tendency of the air-fuel ratio to be biased, a learned value is set in advance for each operating region.
Assign the proportional bone PL when reversing from rich to lean.
and the proportional bone PII at the time of lean-rich reversal are respectively corrected as P t,=PL+LPPR=PtaLP. In detail, as shown in Fig. 3, engine speed N and load (for example, basic fuel injection amount Tp)
Divide the operating region into multiple (n) sections using as a parameter, and calculate the learned values LP, -LPn corresponding to each section.
is stored in read/write memory backed up by the vehicle's on-board battery. Then, among the learned values, a value corresponding to the operating conditions at that time is read out, and the proportional bones PL and PR are corrected as described above.

尚、比例骨PL、Plに代えて、あるいはこれに加えて
積分定数1t、、I++を補正することもできる。
Incidentally, it is also possible to correct the integral constants 1t, , I++ instead of or in addition to the proportional bones PL and Pl.

そして、上記の学習値LPは、機関運転条件が運転領域
の各区画内に一定期間とどまっていたときに修正かつ更
新される。つまり、下流側0.センサ29の出力信号が
なおもリッチ側にあれば、学習値LPから所定量ΔL 
P *を差し引き、新たな学習値LPとして記憶内容を
更新する。同様に、下流側O,センサ29の出力信号が
なおもリーン側にあれば、学習値LPに所定量ΔL P
 Lを加算して、新たな学習値LPとして記憶内容を更
新する。
The learned value LP is corrected and updated when the engine operating condition remains within each section of the operating range for a certain period of time. In other words, the downstream side is 0. If the output signal of the sensor 29 is still on the rich side, the predetermined amount ΔL is reduced from the learned value LP.
P* is subtracted and the stored contents are updated as a new learned value LP. Similarly, if the output signal of the sensor 29 on the downstream side O is still on the lean side, the learning value LP is increased by a predetermined amount ΔLP
L is added and the stored contents are updated as a new learned value LP.

従って、上流側0.センサ28の経年変化や各部の個体
差による全体的な空燃比の片寄りが一層精度良く、かつ
応答性良く補正され、フィードバック補正係数αがα=
1を中心として周期変化するようになる。
Therefore, upstream side 0. The overall air-fuel ratio deviation due to aging of the sensor 28 and individual differences in each part is corrected with higher accuracy and responsiveness, and the feedback correction coefficient α becomes α=
It changes periodically around 1.

また上述した運転領域の各区画毎に、上記の学習値LP
の学習更新の度にインクリメントされる学習カウンタが
設けられており、その値L CNTによっ−て、十分に
学習が進行した状態か否か、特にその区画内で十分に学
習がなされたかどうかを判別できるようになっている。
In addition, for each section of the above-mentioned operation region, the above-mentioned learned value LP
A learning counter is provided that is incremented each time learning is updated, and the value L CNT is used to determine whether learning has progressed sufficiently, especially whether sufficient learning has been performed within that section. It is possible to distinguish.

次に、第4図は上記コントロールユニット32において
実行される触媒の劣化診断のプログラムを示すフローチ
ャートであり、以下、これを説明する。尚、このルーチ
ンは例えば一定時間毎に繰り返し実行される。
Next, FIG. 4 is a flowchart showing a catalyst deterioration diagnosis program executed in the control unit 32, which will be explained below. Note that this routine is repeatedly executed, for example, at regular intervals.

先ず、ステップ1では診断許可条件が成立したか否かを
判定する。この条件としては、■横開始動時の水温が所
定値以上であること、■機関暖機完了後所定時間が経過
していること、■下流側0.センサ29が活性化してい
ること(これは当該センサ29の出力レベルから判定さ
れる)の3条件があり、総ての条件を満たす場合に限っ
てステップ2へ進む。ステップ2では、そのときの運転
状態が空燃比フィードバック制御を行う領域内にあり、
かつ定常状態であるか否かの判定を行う。
First, in step 1, it is determined whether a diagnosis permission condition is satisfied. The conditions for this are: (1) the water temperature at the time of lateral start is above a predetermined value, (2) a predetermined time has elapsed after engine warm-up was completed, and (2) downstream side 0. There are three conditions: that the sensor 29 is activated (this is determined from the output level of the sensor 29), and only when all the conditions are met does the process proceed to step 2. In step 2, the operating state at that time is within the range where air-fuel ratio feedback control is performed;
And it is determined whether or not it is in a steady state.

つまり、■車速■SPが所定範囲内にあること、■車速
VSPの変化量ΔVSPが所定値以下であること、■機
関回転数Nが所定範囲内にあること、■機関負荷、例え
ば基本燃料噴射量’rpが所定範囲内にあること、を条
件としており、これら総ての条件が成立した場合に診断
領域内としてステップ3へ進む。ステップ3では、更に
そのときの該当する区画における学習カウンタLCNT
の値が所定値LCNTO以下であるか否かを判別する。
In other words, ■ Vehicle speed ■ SP is within a predetermined range, ■ Change amount ΔVSP in vehicle speed VSP is less than or equal to a predetermined value, ■ Engine speed N is within a predetermined range, ■ Engine load, e.g. basic fuel injection. The condition is that the amount 'rp is within a predetermined range, and if all of these conditions are met, the process proceeds to step 3 as being within the diagnostic range. In step 3, furthermore, the learning counter LCNT in the corresponding section at that time is
It is determined whether the value of is less than or equal to a predetermined value LCNTO.

ここで、学習カウンタ値LCNTが所定値LCNTO以
下である場合には、その区画での学習が十分に進行して
おらず、フィードバック制御時に理論空燃比から多少離
れた値を中心として空燃比が周期変化する可能性が残る
ので、劣化診断は行わない。
Here, if the learning counter value LCNT is less than or equal to the predetermined value LCNTO, learning in that section has not progressed sufficiently, and the air-fuel ratio changes periodically around a value somewhat distant from the stoichiometric air-fuel ratio during feedback control. Deterioration diagnosis is not performed because there is a possibility that it may change.

そして、学習カウンタ値LCNTか所定値LCNTOよ
り大きい場合には、実際の空燃比が理論空燃比近傍にか
なり精度良く保たれていると考えられるので、ステップ
4以降へ進んで診断を行う。
If the learning counter value LCNT is larger than the predetermined value LCNTO, it is considered that the actual air-fuel ratio is maintained fairly accurately near the stoichiometric air-fuel ratio, so the process proceeds to step 4 and subsequent steps for diagnosis.

ステップ4では、上流側O,センサ28と下流側O,セ
ンサ29の反転回数比H2RATEを演算する。詳しく
は、空燃比フィードバック制御に伴う上流側Otセンサ
28のリッチ、リーンの反転周波数f、と下流側O,セ
ンサ29のリプチ、リーンの反転周波数f、とを用いて
、 H2RATE=f2/f。
In step 4, the reversal frequency ratio H2RATE between the upstream side O, sensor 28 and the downstream side O, sensor 29 is calculated. Specifically, using the rich/lean reversal frequency f of the upstream O sensor 28 and the lip/lean reversal frequency f of the downstream O sensor 29 associated with air-fuel ratio feedback control, H2RATE=f2/f.

として求める。触媒コンバータ27における触媒の劣化
が進行すると、下流側O,センサ29の反転周波数f、
は高くなるので、上記反転回数比HzRATEが大とな
る。尚、各センサ28,29の反転周期を計測し、これ
から反転回数比HzRATEを求めることも勿論可能で
ある。
Find it as. When the deterioration of the catalyst in the catalytic converter 27 progresses, the downstream side O, the inversion frequency f of the sensor 29,
becomes high, so the above-mentioned inversion frequency ratio HzRATE becomes large. Of course, it is also possible to measure the reversal period of each sensor 28, 29 and calculate the reversal frequency ratio HzRATE from this.

そして、ステップ5で上記の反転回数比HzRATEを
所定の判定基準値CNGH2と比較する。
Then, in step 5, the above reversal frequency ratio HzRATE is compared with a predetermined determination reference value CNGH2.

ここで反転回数比HzRATEが判定基準値CNGH2
未満であれば、触媒が劣化していないものと判断し、警
告灯23は点灯させない。また後述するカウンタCCA
TNGの値をクリアする(ステップ6.7) これに対し、反転回数比HzRATEが判定基準値CN
GH2以上であれば、カウンタCCATNGの値をイン
クリメントし、かつこれを所定の判定回数CCATJと
比較する(ステップ8.9)。そして、所定回数CCA
TJに達した場合、つまり所定回数連続してH2RAT
E≧CNGHzの状態が検出されたら、触媒が劣化して
いるものと判断し、警告灯23を点灯させる(ステップ
10)。
Here, the reversal frequency ratio HzRATE is the judgment reference value CNGH2
If it is less than that, it is determined that the catalyst has not deteriorated, and the warning light 23 is not turned on. In addition, the counter CCA described later
Clear the value of TNG (step 6.7) On the other hand, the reversal frequency ratio HzRATE is the judgment reference value CN.
If it is GH2 or more, the value of the counter CCATNG is incremented and compared with a predetermined number of determinations CCATJ (step 8.9). Then, a predetermined number of times CCA
If TJ is reached, that is, H2RAT continues for a predetermined number of times.
When a state of E≧CNGHz is detected, it is determined that the catalyst has deteriorated, and the warning light 23 is turned on (step 10).

このように上記実施例では、上流側O,センサ28と下
流側0.センサ29の反転回数比を用いて触媒劣化を診
断するに際して、下流側O,センサ29を用いた学習が
十分に進行している状態つまり実際の空燃比が理論空燃
比近傍に精度良く保たれている状態において、その診断
を開始するようにしているので、常に一定のレベルで安
定した判定を行うことができる。
In this way, in the above embodiment, the upstream side O, the sensor 28 and the downstream side 0. When diagnosing catalyst deterioration using the ratio of the number of reversals of the sensor 29, it is necessary to check that the learning using the downstream O sensor 29 has progressed sufficiently, that is, the actual air-fuel ratio is maintained accurately near the stoichiometric air-fuel ratio. Since the diagnosis is started in the current state, stable judgments can always be made at a constant level.

発明の効果 以上の説明で明らかなように、この発明に係る内燃機関
の触媒劣化診断装置においては、触媒コンバータの上流
側空燃比センサと下流側空燃比センサの出力を比較して
触媒の劣化を判定するに際して、下流側空燃比センサを
用いた学習補正の更新が十分に行われていない場合に、
その診断が禁止されるため、実際の空燃比自体の片寄り
による診断精度の低下や判定基準のばらつきを防止でき
、−層信頼性の高い触媒劣化診断を行うことができる。
Effects of the Invention As is clear from the above explanation, the catalyst deterioration diagnosis device for an internal combustion engine according to the present invention compares the outputs of the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor of the catalytic converter to detect catalyst deterioration. When making a determination, if the learning correction using the downstream air-fuel ratio sensor has not been updated sufficiently,
Since such diagnosis is prohibited, it is possible to prevent a decrease in diagnostic accuracy due to deviation of the actual air-fuel ratio itself and to prevent variations in the determination criteria, and it is possible to perform catalyst deterioration diagnosis with high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成を示すクレーム対応図、第2図
はこの発明の一実施例を示す構成説明図、第3図は運転
領域と学習値の関係を示す説明図、第4図はこの実施例
における触媒劣化診断のプログラムを示すフローチャー
ト、第5図は触媒コンバークの上流側0.センサと下流
側O,センサの出力信号を比較して示す波形図、第6図
は上流側O、センサの出力信号とフィードバック補正係
数とを対比して示す波形図である。 l・・・上流側空燃比センサ、2・・・下流側空燃比セ
ンサ、3・・・基本燃料噴射量設定手段、4・・・補正
係数算出手段、5・・・記憶手段、6・・・学習補正手
段、7・・・燃料噴射量補正手段、8・・・学習更新手
段、9・・・学習回数係数手段、10・・・劣化判定手
段、II・・・判定禁止手段。 第2図 3] 第3図 1’P→ 第4図
Fig. 1 is a claim correspondence diagram showing the structure of the present invention, Fig. 2 is an explanatory view of the structure showing an embodiment of the invention, Fig. 3 is an explanatory drawing showing the relationship between the operating range and the learned value, and Fig. 4 is FIG. 5 is a flowchart showing a program for diagnosing catalyst deterioration in this embodiment. FIG. 6 is a waveform chart showing a comparison of the output signal of the sensor and the downstream side O, and FIG. 6 is a waveform chart showing a comparison of the output signal of the upstream side O, the sensor, and the feedback correction coefficient. L... Upstream air-fuel ratio sensor, 2... Downstream air-fuel ratio sensor, 3... Basic fuel injection amount setting means, 4... Correction coefficient calculation means, 5... Storage means, 6... Learning correction means, 7...Fuel injection amount correction means, 8...Learning update means, 9...Learning frequency coefficient means, 10...Deterioration determination means, II...Judgment prohibition means. Fig. 2 3] Fig. 3 1'P→ Fig. 4

Claims (1)

【特許請求の範囲】[Claims] (1)排気通路に介装された触媒コンバータの上流側に
配設された上流側空燃比センサと、触媒コンバータの下
流側に配設された下流側空燃比センサと、内燃機関の運
転条件に応じて基本燃料噴射量を設定する基本燃料噴射
量設定手段と、上流側空燃比センサの出力に基づいてフ
ィードバック補正係数を算出する補正係数算出手段と、
少なくとも機関回転数と負荷とをパラメータとする運転
領域の複数の区画に割り付けた学習値をそれぞれ記憶す
る記憶手段と、各区画の学習値を用いて上記フィードバ
ック補正係数を補正する学習補正手段と、このフィード
バック補正係数を用いて上記基本燃料噴射量を補正する
燃料噴射量補正手段と、機関運転条件がいずれかの区画
内に所定期間とどまっているときに、下流側空燃比セン
サの出力に基づいて上記記憶手段における学習値を修正
かつ更新する学習更新手段と、この更新の回数を各区画
毎に計数する学習回数計数手段とを備えてなる内燃機関
において、空燃比フィードバック制御中に上流側空燃比
センサの出力と下流側空燃比センサの出力とを比較して
触媒の劣化を判定する劣化判定手段と、上記学習値の更
新回数が所定回数以下のときに上記の劣化判定を禁止す
る判定禁止手段とを備えたことを特徴とする内燃機関の
触媒劣化診断装置。
(1) The upstream air-fuel ratio sensor installed upstream of the catalytic converter installed in the exhaust passage, the downstream air-fuel ratio sensor installed downstream of the catalytic converter, and the internal combustion engine operating conditions. basic fuel injection amount setting means for setting a basic fuel injection amount accordingly; correction coefficient calculation means for calculating a feedback correction coefficient based on the output of the upstream air-fuel ratio sensor;
storage means for storing learned values assigned to a plurality of sections of an operating range in which at least engine speed and load are parameters; learning correction means for correcting the feedback correction coefficient using the learned values for each section; a fuel injection amount correction means that corrects the basic fuel injection amount using the feedback correction coefficient; and a fuel injection amount correction means that corrects the basic fuel injection amount using the feedback correction coefficient; In an internal combustion engine comprising learning updating means for correcting and updating the learning value in the storage means, and learning number counting means for counting the number of updates for each section, an upstream air-fuel ratio is provided during air-fuel ratio feedback control. Deterioration determination means for determining deterioration of the catalyst by comparing the output of the sensor and the output of the downstream air-fuel ratio sensor, and determination prohibition means for prohibiting the deterioration determination when the number of updates of the learned value is less than or equal to a predetermined number of times. A catalyst deterioration diagnostic device for an internal combustion engine, comprising:
JP2235372A 1990-09-05 1990-09-05 Catalyst deterioration diagnosis device for internal combustion engine Expired - Fee Related JP2864699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2235372A JP2864699B2 (en) 1990-09-05 1990-09-05 Catalyst deterioration diagnosis device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2235372A JP2864699B2 (en) 1990-09-05 1990-09-05 Catalyst deterioration diagnosis device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH04116239A true JPH04116239A (en) 1992-04-16
JP2864699B2 JP2864699B2 (en) 1999-03-03

Family

ID=16985113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2235372A Expired - Fee Related JP2864699B2 (en) 1990-09-05 1990-09-05 Catalyst deterioration diagnosis device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2864699B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4328099A1 (en) * 1992-08-31 1994-03-10 Suzuki Motor Co Vehicle IC engine exhaust catalyser deterioration detector - increases feedback control value for engine air=fuel ratio when catalytic converter deterioration is detected
DE19500619A1 (en) * 1994-01-31 1995-08-03 Suzuki Motor Co Motor exhaust catalyst test
US5448886A (en) * 1992-11-04 1995-09-12 Suzuki Motor Corporation Catalyst deterioration-determining device for an internal combustion engine
JPH0828252A (en) * 1994-07-12 1996-01-30 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4328099A1 (en) * 1992-08-31 1994-03-10 Suzuki Motor Co Vehicle IC engine exhaust catalyser deterioration detector - increases feedback control value for engine air=fuel ratio when catalytic converter deterioration is detected
US5379587A (en) * 1992-08-31 1995-01-10 Suzuki Motor Corporation Apparatus for judging deterioration of catalyst of internal combustion engine
DE4328099C2 (en) * 1992-08-31 1999-03-11 Suzuki Motor Co Method for detecting the deterioration of the catalyst of an internal combustion engine
US5448886A (en) * 1992-11-04 1995-09-12 Suzuki Motor Corporation Catalyst deterioration-determining device for an internal combustion engine
DE19500619A1 (en) * 1994-01-31 1995-08-03 Suzuki Motor Co Motor exhaust catalyst test
US5531069A (en) * 1994-01-31 1996-07-02 Suzuki Motor Corporation Catalyst deterioration-determining device of an internal combustion engine
DE19500619C2 (en) * 1994-01-31 2001-12-20 Suzuki Motor Co Device for determining the deterioration of a catalyst of an internal combustion engine
JPH0828252A (en) * 1994-07-12 1996-01-30 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP2864699B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JP2893308B2 (en) Air-fuel ratio control device for internal combustion engine
JP3010921B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2998575B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP4941323B2 (en) Control device for internal combustion engine
JPH0598948A (en) Device for discriminating catalyst deterioration of internal combustion engine
JPH0718368B2 (en) Catalyst deterioration detection device for internal combustion engine
JPH05263686A (en) Catalyst degradation judging device of internal combustion engine
US5636514A (en) Catalyst deterioration-determining system for internal combustion engines
JPH0526085A (en) Air-fuel ratio controller for internal combustion engine
JPH04116241A (en) Performance monitor of hc sensor in internal combustion engine
KR100204831B1 (en) Method and apparatus for controlling air-fuel ratio of an internal combustion engine
JP3687126B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2861623B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP3149714B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JPH10159630A (en) Air-fuel ratio controller for engine
JPH04116239A (en) Catalystic deterioration diagnostic device for internal combustion engine
JP3663921B2 (en) Oxygen sensor diagnostic device
JP2720589B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2737482B2 (en) Degradation diagnosis device for catalytic converter device in internal combustion engine
JPH05171923A (en) Catalyst deterioration discriminating device for internal combustion engine
JP2722767B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JPH04318250A (en) Self-diagnostic device in fuel supplier for internal combustion engine
JP4291492B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04365952A (en) Deterioration detecting method for oxygen sensor
JP3075001B2 (en) Catalyst deterioration diagnosis device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees