JPH04115945A - Laminated sheet and manufacture thereof - Google Patents

Laminated sheet and manufacture thereof

Info

Publication number
JPH04115945A
JPH04115945A JP23670290A JP23670290A JPH04115945A JP H04115945 A JPH04115945 A JP H04115945A JP 23670290 A JP23670290 A JP 23670290A JP 23670290 A JP23670290 A JP 23670290A JP H04115945 A JPH04115945 A JP H04115945A
Authority
JP
Japan
Prior art keywords
resin
elasticity
modulus
thermosetting resin
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23670290A
Other languages
Japanese (ja)
Other versions
JP2508389B2 (en
Inventor
Koichi Hiraoka
宏一 平岡
Tatsu Sakaguchi
坂口 達
Shigeru Ito
繁 伊藤
Kazunori Mitsuhashi
光橋 一紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP23670290A priority Critical patent/JP2508389B2/en
Publication of JPH04115945A publication Critical patent/JPH04115945A/en
Application granted granted Critical
Publication of JP2508389B2 publication Critical patent/JP2508389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To suppress the lowering of glass transition temp., rigidity at the time of heating and chemical resistance while attaining to lower the modulus of elasticity by compounding an inorg. filler coated with a thermosetting resin B having the modulus of elasticity lower than that of a thermoplastic resin A infiltrated in a glass nonwoven fabric with the thermosetting resin A. CONSTITUTION:The magnitude of the modulus of elasticity of a thermosetting resin B low in elasticity is determined by the relative comparison with the modulus of elasticity of a thermosetting resin A but, as the thermosetting resin B, for example, there are a tung oil modified phenol resin, a butyral modified phenol resin, a nitrile modified phenol resin, a vinylphenol modified epoxy resin, a nitrile phenol modified epoxy resin or a flexible epoxy resin. As an inorg. filler, there are aluminum hydroxide, alumina, magnesia or silica. In a laminated sheet, the resin B having the modulus of elasticity lower than that of the resin A has function relaxing the stress at the interface between the resin A and the inorg. filler and the modulus of the elasticity of the whole of the laminated sheet can be lowered.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、表面実装部品(SMD)を搭載する印刷配線
板の基板として適した積層板およびその製造法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a laminate suitable as a substrate for a printed wiring board on which surface mount devices (SMDs) are mounted, and a method for manufacturing the same.

従来の技術 電子・電気機器の高密度、高集積化ならびに小型化に伴
い、これらに組み込む印刷配線板に搭載し半田付けする
部品も挿入型のディスクリート部品から表面実装型のS
MDが増加してきた。印刷配線板の基板には、熱硬化性
樹脂を含浸したシート状基材を重ねて加熱加圧成形した
積層板が用いられているが、SMD対応基板としては、
冷熱サイクルの繰返しでSMDの半田接続部にクラック
が入るのを抑制できる弾性率の低い積層板が望ましい。
Conventional technology As electronic and electrical equipment becomes more dense, highly integrated, and miniaturized, the parts that are mounted and soldered on printed wiring boards incorporated into these equipment have changed from insert-type discrete components to surface-mounted S.
MD has been increasing. The substrate for printed wiring boards is a laminate made by stacking sheet-like substrates impregnated with thermosetting resin and forming them under heat and pressure.As an SMD compatible substrate,
It is desirable to use a laminate with a low modulus of elasticity that can prevent cracks from forming in the solder joints of the SMD due to repeated heating and cooling cycles.

積層板の低弾性率化を図る手段としては。As a means to lower the elastic modulus of the laminate.

(1)熱硬化性樹脂中に可撓性付与剤を分散させる。(1) A flexibility imparting agent is dispersed in a thermosetting resin.

(2)熱硬化性樹脂に可撓性付与剤を反応させる。(2) Reacting the thermosetting resin with a flexibility imparting agent.

等が検討されている。etc. are being considered.

発明が解決しようとする課題 上記従来の技術では、積層板の低弾性率化を図って、冷
熱サイクルにおける積層板の平面方向膨張収縮の際の内
部応力を低減することができるが、積層板を構成する樹
脂のガラス転移温度が低下し、加熱時の剛性が小さくな
るとともに、耐薬品性も悪くなってしまう。これらの特
性の低下は、積層板を印刷配線板の基板として加工する
ときの障害となる。
Problems to be Solved by the Invention In the above-mentioned conventional techniques, it is possible to lower the elastic modulus of the laminate and reduce the internal stress when the laminate expands and contracts in the plane direction during the cooling/heating cycle. The glass transition temperature of the constituent resin decreases, the rigidity during heating decreases, and the chemical resistance also deteriorates. Deterioration of these properties becomes an obstacle when processing the laminate as a substrate for a printed wiring board.

本発明が解決しようとする課題は、樹脂を含浸する基材
としてその一部ないし全部にガラス不織布を用いた積層
板において、その低弾性率化を図りつつ、ガラス転移温
度、加熱時の剛性、耐薬品性の低下を抑制することであ
る。
The problem to be solved by the present invention is to reduce the modulus of elasticity of a laminate using glass nonwoven fabric for part or all of the base material impregnated with resin, while improving the glass transition temperature, rigidity during heating, etc. The goal is to suppress the decline in chemical resistance.

さらには、積層板の耐熱性、耐湿性も良くすることであ
る。
Furthermore, it is also important to improve the heat resistance and moisture resistance of the laminate.

課題を解決するための手段 本発明に係る積層板は、ガラス不織布に含浸させた熱硬
化性樹脂A中に、樹脂Aより弾性率の低い熱硬化性樹脂
Bで被覆した無機充填材を配合したことを特徴とする。
Means for Solving the Problems The laminate according to the present invention contains an inorganic filler coated with a thermosetting resin B having a lower elastic modulus than the resin A, in a thermosetting resin A impregnated into a glass nonwoven fabric. It is characterized by

積層板は、その表面に金属箔を一体に貼付だものであっ
ても良い。
The laminate may have a metal foil integrally attached to its surface.

上記積層板の製造法で特に特徴とするところは、ガラス
不織布に含浸させる熱硬化性樹脂Aのワニス中に、樹脂
Aより弾性率の低い熱硬化性樹脂Bで被覆し、かつ樹脂
Bが完全に硬化している無機充填材を配合する点である
。無機充填材は、樹脂Bで被覆する前に、表面をシラン
系カップリング剤で処理しておくのが好ましい。
The above-mentioned method for manufacturing laminates is particularly characterized in that the nonwoven glass fabric is coated with thermosetting resin B, which has a lower elastic modulus than resin A, in the varnish of thermosetting resin A that is impregnated into the glass nonwoven fabric, and resin B is completely The point is to mix in an inorganic filler that has been hardened. The surface of the inorganic filler is preferably treated with a silane coupling agent before being coated with resin B.

作用 本発明に係る積層板では、樹脂Aより弾性率の低い樹脂
Bが、樹脂Aと無機充填材の界面で応力緩和の働きをし
、積層板全体の弾性率を下げることができる。
Function In the laminate according to the present invention, resin B, which has a lower elastic modulus than resin A, acts as a stress reliever at the interface between resin A and the inorganic filler, and can lower the elastic modulus of the entire laminate.

樹脂Bを樹脂Aに直接配合し樹脂A中に分散させた、所
謂、海島構造(樹脂Aが海部分、樹脂Bが島部分)の不
拘−2成分系では、樹脂A、Bは別の自由体積分率をも
ち、従って別のガラス転移温度をもつことになり、力学
挙動も2成分の合成されたものとなってしまう。しかし
、本発明に係る積層板のように、硬い無機充填材が樹脂
中に分散している系では、ガラス転移温度等の力学的性
質は海成分の樹脂Aに近似することになり、ガラス転移
温度、加熱時剛性の低下がないものと推測される。
In a two-component system with a so-called sea-island structure (resin A is the sea part and resin B is the island part), where resin B is directly blended with resin A and dispersed in resin A, resins A and B have different freedoms. It has a different volume fraction and therefore has a different glass transition temperature, and its mechanical behavior becomes a composite of two components. However, in a system in which a hard inorganic filler is dispersed in the resin, such as the laminate according to the present invention, the mechanical properties such as the glass transition temperature are similar to those of the sea component resin A, and the glass transition It is assumed that there is no decrease in rigidity when heated.

また、無機充填材を被覆した樹脂Bを完全に硬化させて
から樹脂Aのワニスに配合すると、樹脂Bがワニス中に
溶は出すことがないし、樹脂Aの架橋反応に関与するこ
ともないので、樹脂A本来の特性を損なうことがない。
Furthermore, if Resin B coated with an inorganic filler is completely cured and then added to Resin A varnish, Resin B will not dissolve into the varnish and will not participate in the crosslinking reaction of Resin A. , without impairing the original properties of resin A.

さらに、完全硬化しておくことにより吸湿劣化がなく樹
脂B被覆無機充填材の貯蔵安定性も良い。
Further, by completely curing, there is no deterioration due to moisture absorption, and the storage stability of the resin B-coated inorganic filler is also good.

実施例 次に、本発明に係る実施例を説明する。Example Next, embodiments according to the present invention will be described.

低弾性の熱硬化性樹脂Bの弾性率の大きさは、熱硬化性
樹脂Aの弾性率との相対比較で決まるものであるが、熱
硬化性樹脂Bとして例示すれば、桐油変性フェノール樹
脂、ブチラール変性フェノール樹脂、ニトリル変性フェ
ノール樹脂、ビニルフェノール変性エポキシ樹脂、ニト
リルフェノール変性エポキシ樹脂、可撓性エポキシ樹脂
等である。
The magnitude of the elastic modulus of the low-elastic thermosetting resin B is determined by a relative comparison with the elastic modulus of the thermosetting resin A. Examples of the thermosetting resin B include tung oil-modified phenolic resin, These include butyral-modified phenol resin, nitrile-modified phenol resin, vinylphenol-modified epoxy resin, nitrile-phenol-modified epoxy resin, flexible epoxy resin, and the like.

無機充填材は、水酸化アルミニウム、タルク、アルミナ
、マグネシア、シリカ等である。
Inorganic fillers include aluminum hydroxide, talc, alumina, magnesia, silica, and the like.

実施例1 樹脂Bとして、ポリビニルブチラール変性フェノール樹
脂を用意し、これをメチルエチルケトン/トルエン=5
0150の溶媒に溶かして樹脂分2重量%の溶液を調製
した。
Example 1 A polyvinyl butyral modified phenol resin was prepared as resin B, and this was mixed with methyl ethyl ketone/toluene = 5
0150 to prepare a solution having a resin content of 2% by weight.

水酸化アルミニウムをらいかい機で撹拌しながら、水酸
化アルミニウムの重量に対して樹脂分が2重量%となる
ように上記溶液を滴下した。その後130℃で1時間乾
燥して、完全に硬化したポリビニルブチラール変性フェ
ノール樹脂で表面が被覆された水酸化アルミニウムを得
た。
While stirring the aluminum hydroxide with a strainer, the above solution was added dropwise so that the resin content was 2% by weight based on the weight of the aluminum hydroxide. Thereafter, it was dried at 130° C. for 1 hour to obtain aluminum hydroxide whose surface was coated with a completely cured polyvinyl butyral modified phenol resin.

そして、次のような配合でガラス不織布(50g/m)
に含浸する樹脂ワニスを調製した。
Then, glass nonwoven fabric (50g/m) was made with the following composition.
A resin varnish to be impregnated with was prepared.

(1)臭素化エポキシ樹脂   100重量部(2)フ
ェノールノボラック樹脂 20重量部(3)硬化促進剤
(2E4MZ)    0.1重量部(4)水酸化アル
ミニウム    90重量部(5)アセトン     
    40重量部ガラス不織布基材に上記樹脂ワニス
を含浸乾燥し、樹脂量88重量%のプリプレグIを用意
し、一方上記水酸化アルミニウムを配合しない同様の樹
脂ワニスをガラス織布(205/m)に含浸乾燥して樹
脂量40重量%のプリプレグ■を用意した。
(1) Brominated epoxy resin 100 parts by weight (2) Phenol novolak resin 20 parts by weight (3) Curing accelerator (2E4MZ) 0.1 part by weight (4) Aluminum hydroxide 90 parts by weight (5) Acetone
40 parts by weight of a glass nonwoven fabric base material was impregnated with the above resin varnish and dried to prepare prepreg I with a resin content of 88% by weight, while a glass woven fabric (205/m) was coated with the same resin varnish without the above aluminum hydroxide. A prepreg (2) with a resin content of 40% by weight was prepared by impregnation and drying.

プリプレグIを6プライ重ねたその両側にプリプレグ■
を1プライ重ねさらに最表面に18μmの銅箔を載置し
て、加熱加圧成形により1.6I厚さの両面銅張積層板
を得た。
Prepreg on both sides of 6 plies of prepreg I
A double-sided copper-clad laminate with a thickness of 1.6I was obtained by stacking one ply of the above and placing a 18 μm copper foil on the outermost surface, followed by heating and pressure molding.

実施例2 実施例1において、水酸化アルミニウムの重量に対して
ポリビニルブチラール変性フェノール樹脂分が5重量%
となるようにした以外は同様にして、両面銅張積層板を
得た。
Example 2 In Example 1, the polyvinyl butyral modified phenol resin content was 5% by weight based on the weight of aluminum hydroxide.
A double-sided copper-clad laminate was obtained in the same manner except that

実施例3 水酸化アルミニウムをアミノシランで処理した(水酸化
アルミニウム重量に対して、3重量%使用)後ポリビニ
ルブチラール変性フェノール樹脂で被覆するようにした
以外、実施例2と同様にして両面網張積層板を得た。
Example 3 A double-sided mesh laminate was produced in the same manner as in Example 2, except that aluminum hydroxide was treated with aminosilane (used at 3% by weight based on the weight of aluminum hydroxide) and then coated with polyvinyl butyral-modified phenolic resin. I got it.

実施例4 実施例1において、水酸化アルミニウムの重量に対して
ポリビニルブチラール変性フェノール樹脂分が10重量
%となるようにした以外は同様にして、両面銅張積層板
を得た。
Example 4 A double-sided copper-clad laminate was obtained in the same manner as in Example 1, except that the polyvinyl butyral modified phenol resin content was 10% by weight based on the weight of aluminum hydroxide.

実施例5 ポリビニルブチラール変性フェノール樹脂に代えて、可
撓性エポキシ樹脂(ダイマー酸グリシジルエステル)を
用いた以外は、実施例2と同様にして両面銅張積層板を
得た。
Example 5 A double-sided copper-clad laminate was obtained in the same manner as in Example 2, except that a flexible epoxy resin (dimer acid glycidyl ester) was used in place of the polyvinyl butyral-modified phenol resin.

実施例6 水酸化アルミニウムをエポキシシランで処理した(水酸
化アルミニウム重量に対して、3重量%使用)後可撓性
エポキシ樹脂で被覆するようにした以外、実施例5と同
様にして両面銅張積層板を得た。
Example 6 Both sides were copper-clad in the same manner as in Example 5, except that aluminum hydroxide was treated with epoxy silane (3% by weight based on the weight of aluminum hydroxide) and then coated with flexible epoxy resin. A laminate was obtained.

従来例1 実施例1において、水酸化アルミニウムをポリビニルブ
チラール変性フェノール樹脂で被覆しないこと以外は、
同様にして両面銅張積層板を得た。
Conventional Example 1 In Example 1, except that aluminum hydroxide was not coated with polyvinyl butyral modified phenolic resin,
A double-sided copper-clad laminate was obtained in the same manner.

従来例2 従来例1において、ダイマー酸変性エポキシ樹脂を10
重量部配合して硬化反応に関与させた。
Conventional Example 2 In Conventional Example 1, the dimer acid-modified epoxy resin was
It was added in parts by weight to participate in the curing reaction.

比較例1 実施例2において、ポリビニルブチラール変性フェノー
ル樹脂で水酸化アルミニウムを被覆する代わりに、同量
のポリビニルブチラール変性フェノール樹脂をマトリッ
クス樹脂である臭素化エポキシ樹脂中に平均粒径20μ
m(Max、40μm、Min、5μ)で海鳥構造に分
散させたこと以外は、同様にして両面銅張積層板を得た
Comparative Example 1 In Example 2, instead of coating aluminum hydroxide with polyvinyl butyral modified phenolic resin, the same amount of polyvinyl butyral modified phenolic resin was added to a brominated epoxy resin as a matrix resin with an average particle size of 20 μm.
A double-sided copper-clad laminate was obtained in the same manner, except that the particles were dispersed in a seabird structure with m (Max, 40 μm, Min, 5 μm).

比較例2 実施例5において、可撓性エポキシ樹脂で水酸化アルミ
ニウムを被覆する代わりに、同量の可撓性エポキシ樹脂
をマトリックス樹脂である臭素化エポキシ樹脂中に平均
粒径2oμm(Max、40μm、Min、5μ)で海
鳥構造に分散させたこと以外は、同様にして両面銅張積
層板を得た。
Comparative Example 2 In Example 5, instead of coating aluminum hydroxide with a flexible epoxy resin, the same amount of flexible epoxy resin was added to a brominated epoxy resin as a matrix resin with an average particle size of 20 μm (Max, 40 μm). A double-sided copper-clad laminate was obtained in the same manner, except that the particles were dispersed in a seabird structure.

上記各側における積層板の特性および積層板を印刷配線
板に加工してSMDを搭載したときの半田接続信頼性を
第1表に示す。
Table 1 shows the characteristics of the laminate on each side and the solder connection reliability when the laminate is processed into a printed wiring board and an SMD is mounted thereon.

発明の効果 上述のように、本発明に係る積層板は、低弾性率化を図
って、SMD対応基板として半田接続信頼性の高いもの
であるが、ガラス転移温度や加熱時剛性の低下がなく耐
薬品性も良いので、印刷配線板へ加工するときに特性上
問題となることがない。
Effects of the Invention As described above, the laminate according to the present invention has a low elastic modulus and has high solder connection reliability as an SMD compatible substrate, but there is no decrease in glass transition temperature or rigidity when heated. It also has good chemical resistance, so there will be no problems with its properties when processing it into printed wiring boards.

また、樹脂Bは、無機充填材の樹脂A中への分散に伴っ
て樹脂A中に均一に分散することになり、分散の粒径も
無機充填材の粒径を選択するだけで制御することができ
る。樹脂Bを樹脂Aに直接配合するだけでは、海鳥構造
的な均一分散は難しい。
Furthermore, resin B will be uniformly dispersed in resin A as the inorganic filler is dispersed in resin A, and the particle size of the dispersion can be controlled simply by selecting the particle size of the inorganic filler. I can do it. Just by directly blending resin B with resin A, it is difficult to achieve uniform dispersion in the seabird structure.

無機充填材を樹脂Bで被覆する前に、無機充填材表面を
シラン系カップリング剤で処理することにより、積層板
の耐湿性、耐熱性を一層良くすることができる。
By treating the surface of the inorganic filler with a silane coupling agent before coating the inorganic filler with resin B, the moisture resistance and heat resistance of the laminate can be further improved.

Claims (4)

【特許請求の範囲】[Claims] (1)熱硬化性樹脂を含浸した基材を重ねて一体化した
ものであって、重ねた基材の一部ないし全部がガラス不
織布で構成されている積層板において、 ガラス不織布に含浸させた熱硬化性樹脂A中に、樹脂A
より弾性率の低い熱硬化性樹脂Bで被覆した無機充填材
を配合したことを特徴とする積層板。
(1) In a laminate that is made by stacking and integrating base materials impregnated with a thermosetting resin, and in which part or all of the stacked base materials are made of nonwoven glass fabric, the nonwoven glass fabric is impregnated. Resin A in thermosetting resin A
A laminate comprising an inorganic filler coated with a thermosetting resin B having a lower modulus of elasticity.
(2)少なくとも一方の表面に金属箔が一体化されてい
る請求項1記載の積層板。
(2) The laminate according to claim 1, wherein a metal foil is integrated on at least one surface.
(3)熱硬化性樹脂のワニスを含浸した基材を重ねて加
熱加圧成形により一体化する方法であって、重ねる基材
の一部ないし全部にガラス不織布を用いる積層板の製造
法において、 ガラス不織布に含浸させる熱硬化性樹脂Aのワニス中に
、樹脂Aより弾性率の低い熱硬化性樹脂Bで被覆し、か
つ樹脂Bが完全に硬化している無機充填材を配合するこ
とを特徴とする積層板の製造法。
(3) A method for manufacturing a laminate in which base materials impregnated with a thermosetting resin varnish are stacked and integrated by heating and pressure molding, in which a glass nonwoven fabric is used for part or all of the stacked base materials, It is characterized by blending into the varnish of thermosetting resin A that is impregnated into the glass nonwoven fabric, an inorganic filler coated with thermosetting resin B, which has a lower elastic modulus than resin A, and in which resin B is completely cured. A method for manufacturing a laminate.
(4)無機充填材を樹脂Bで被覆する前に、無機充填材
表面をシラン系カップリング剤で処理することを特徴と
する請求項3記載の積層板の製造法。
(4) The method for manufacturing a laminate according to claim 3, characterized in that before coating the inorganic filler with resin B, the surface of the inorganic filler is treated with a silane coupling agent.
JP23670290A 1990-09-06 1990-09-06 Laminated board and manufacturing method thereof Expired - Fee Related JP2508389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23670290A JP2508389B2 (en) 1990-09-06 1990-09-06 Laminated board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23670290A JP2508389B2 (en) 1990-09-06 1990-09-06 Laminated board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04115945A true JPH04115945A (en) 1992-04-16
JP2508389B2 JP2508389B2 (en) 1996-06-19

Family

ID=17004501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23670290A Expired - Fee Related JP2508389B2 (en) 1990-09-06 1990-09-06 Laminated board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2508389B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383522B1 (en) * 1995-07-14 2003-08-02 린텍 가부시키가이샤 Pressure Sensitive Adhesive Sheet
CN109265926A (en) * 2018-09-10 2019-01-25 南亚电子材料(昆山)有限公司 A kind of material for copper-clad plate toughness and it is used for copper-clad plate resin combination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383522B1 (en) * 1995-07-14 2003-08-02 린텍 가부시키가이샤 Pressure Sensitive Adhesive Sheet
CN109265926A (en) * 2018-09-10 2019-01-25 南亚电子材料(昆山)有限公司 A kind of material for copper-clad plate toughness and it is used for copper-clad plate resin combination

Also Published As

Publication number Publication date
JP2508389B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
KR101937994B1 (en) Thermosetting resin composition for semiconductor pakage and Prepreg using the same
JP3520604B2 (en) Composite laminate
WO2004102589A1 (en) Insulating material, film, circuit board and method for manufacture thereof
JP2003246849A (en) Epoxy resin composition, and prepreg, laminate board and printed wiring board using the same
JPH04115945A (en) Laminated sheet and manufacture thereof
JPH0197633A (en) Manufacture of laminated plate for printed circuit
JPH1022683A (en) Electromagnetic wave shielding sheet, electromagnetic wave shielding material, printed circuit board, and electromagnetic wave shielding method
JPH06100707A (en) Production of laminated sheet
JP3077491B2 (en) Manufacturing method of metal-foil-clad laminate and metal foil used therefor
JP2787846B2 (en) Printed circuit laminate
JP3107278B2 (en) Manufacturing method of metal foil-clad laminate and metal foil for metal foil-clad laminate
JP3906547B2 (en) Copper-clad laminate, multilayer laminate
JPH01152138A (en) Production of laminate for printed circuit
JP2734912B2 (en) Copper-clad laminate for surface mount printed wiring boards
JPH0521957A (en) Multilayered copper-clad board
JP3823649B2 (en) Prepreg, laminated board and printed wiring board using amide group-containing organic fiber substrate
JP2742124B2 (en) Manufacturing method of printed circuit board
JP4178796B2 (en) Method for producing metal-clad laminate
JP3596819B2 (en) Printed circuit laminate
JPS6259021A (en) Manufacture of laminated sheet for printed circuit
JPH11106530A (en) Production of prepreg for printed-wiring board and metal-clad laminated sheet using it
JPS60127348A (en) Epoxy resin composition and electrical laminated board
JPH07100360B2 (en) Copper clad laminate
JPS6330538A (en) Production of laminated sheet
JPH08103984A (en) Copper-clad laminated plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees