JPH04115533A - Manufacture of semiconductor element and thermal cvd device - Google Patents

Manufacture of semiconductor element and thermal cvd device

Info

Publication number
JPH04115533A
JPH04115533A JP2233337A JP23333790A JPH04115533A JP H04115533 A JPH04115533 A JP H04115533A JP 2233337 A JP2233337 A JP 2233337A JP 23333790 A JP23333790 A JP 23333790A JP H04115533 A JPH04115533 A JP H04115533A
Authority
JP
Japan
Prior art keywords
inner tube
gas
tube
oc2h5
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2233337A
Other languages
Japanese (ja)
Inventor
Nobuhiko Inoue
信彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2233337A priority Critical patent/JPH04115533A/en
Publication of JPH04115533A publication Critical patent/JPH04115533A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a high-quality Ta2O5 film to be formed by reducing an amount of C within a CVD-Ta2O5 film by using an O3 gas as a species for oxidizing of Ta(OC2H5)5. CONSTITUTION:A wafer 3 is placed on a boat 3a and it is placed on a temperature-preserving cylinder 2, an outer tube 1 and an inner tube 4 are heated by a heater 12, and an intake tube 6 is heated by a heater 9. O3 gas is taken into the inner tube 4 within a furnace through a intake tube 5 and is filled into a container 7. Ta(OC2H5)5 8 is introduced into the inner tube 4 through the intake tube 6 with Ar as a carrier gas. The Ta(OC2H5)5/O3 mixed gas which is introduced into the inner tube 4 is reacted with O3 gas as an oxidation activation seed, thus forming Ta2O5 film on the wafer 3. Thus, since O3 which is more active than O2 is utilized as an active species for oxidizing Ta(OC2H5)5, the amount of C contained within CVD-Ta2O5 film to be formed can be reduced and leak current can be restricted, thus enabling electrical characteristics to be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、D−RAM (ダイナミック−ランダム・
アクセス・メモリ)における蓄積容量形成用絶縁膜を高
品質に製造できる半導体素子の製造方法および熱CVD
装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to D-RAM (dynamic-random
Semiconductor device manufacturing method and thermal CVD capable of manufacturing high quality insulating film for storage capacitor formation in (access memory)
It is related to the device.

〔従来の技術] D−RAMにおける蓄積容量(cs)形式用絶縁膜(以
下Cs用絶縁膜と称する)としては、現在はLPCVD
法により形成されたSi:+)L膜が主ニ使用すレテイ
ルカ、「応用物理J Vol、5B、No、11゜19
89 P 1622〜1628に示すようにタンタル酸
化膜(以下Ta、Jのみ記す)のCs用絶縁膜への適用
が広く検討されている。特にTa(OC2H5)5 +
 0□の熱反応(〜600°C)で得られるCVD膜は
段差被覆性がよいため、デバイスの3次元化によって高
集積化を進めているD−RAMへの適用が進められてい
る。
[Prior Art] At present, LPCVD is used as an insulating film for storage capacitor (CS) type (hereinafter referred to as Cs insulating film) in D-RAM.
The Si:+)L film formed by the method is mainly used in Reteilka, Applied Physics J Vol.
As shown in 89P 1622-1628, the application of tantalum oxide films (hereinafter only Ta and J will be referred to) as insulating films for Cs has been widely studied. Especially Ta(OC2H5)5 +
Since the CVD film obtained by a thermal reaction of 0□ (~600° C.) has good step coverage, it is being applied to D-RAMs, which are becoming highly integrated due to three-dimensional devices.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の反応により得られるTa、O。 However, Ta, O obtained by the above reaction.

膜では、膜中に多量のCを含むことになる。反応を完全
に進めるため、温度を650°C以上にすると、Tax
es膜は−様なアモルファス膜ではなく、リーク電流の
多い多結晶膜になり、Cs用絶縁膜としては適さなくな
る。
The film will contain a large amount of C in the film. Tax
The ES film is not a --like amorphous film but a polycrystalline film with a large leakage current, making it unsuitable as an insulating film for Cs.

したがって、Ta(OC2H5)5  Oz系CV D
  TazOs膜中のC含有は不可避とされていた。
Therefore, Ta(OC2H5)5Oz-based CV D
C inclusion in the TazOs film was thought to be unavoidable.

また、CV D  Taxes膜を得るための従来のC
VD炉の構造では、材料ガス導入口に近い方のガス温度
がどうしても低めになり、100枚、150枚のウェハ
を同時にバッチ処理すると、ウェハ間の形成膜厚に差が
生じる。
Also, conventional C to obtain CV D Taxes film
In the structure of a VD furnace, the gas temperature closer to the material gas inlet is inevitably lower, and when batch processing 100 or 150 wafers at the same time, a difference occurs in the film thickness formed between the wafers.

請求項1の発明は、前記従来技術が持っている問題のう
ち、形成したC V D  Taxes膜中に多量のC
が含まれるリーク電流が多いという問題点について解決
した半導体素子の製造方法を提供するものである。
The invention of claim 1 solves the problem of the prior art, in that a large amount of C in the formed C VD Taxes film.
The present invention provides a method for manufacturing a semiconductor device that solves the problem of a large amount of leakage current.

また、請求項2の発明は前記従来技術が持っている問題
点のうち、CVD炉のガス導入口近傍のガス温度が低い
ことに起因するウェハ間の形成膜厚に差が生じるという
問題点について解決した熱CVD装置を提供するもので
ある。
Further, the invention of claim 2 addresses the problem of the difference in film thickness between wafers caused by the low gas temperature near the gas inlet of the CVD furnace, which is one of the problems of the prior art. The present invention provides a thermal CVD apparatus that solves the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

請求項1の発明は前記問題点を解決するために、半導体
素子の製造方法において、Ta(OC2H5)5  O
□系の代りにTa (OCzHs) s + Os系を
熱反応させるようにしたものである。
In order to solve the above problem, the invention of claim 1 provides a method for manufacturing a semiconductor device, in which Ta(OC2H5)5O
Instead of the □ system, a Ta (OCzHs) s + Os system is subjected to a thermal reaction.

また、請求項2の発明は、前記問題点を解決するために
、熱CVD装置において、温度の低いガス程下方から導
入する炉壁下部に仕切板を設けたものである。
Moreover, in order to solve the above-mentioned problem, the invention according to claim 2 is a thermal CVD apparatus in which a partition plate is provided at the lower part of the furnace wall, into which lower temperature gas is introduced from below.

〔作 用〕[For production]

請求項1の発明によれば、以上のように半導体素子の製
造方法において、03を酸化種として用いることにより
、CV D  Taxes膜中にC量が少なくなり、高
品質なTaxes IQを形成することができ、リーク
電流を抑制することができ、したがって、前記問題点を
除去できる。
According to the invention of claim 1, in the method for manufacturing a semiconductor device as described above, by using 03 as an oxidizing species, the amount of C in the CVD Taxes film is reduced, and a high quality Taxes IQ can be formed. Therefore, the leakage current can be suppressed, and the above-mentioned problem can therefore be eliminated.

また、請求項2の発明によれば、以上のように熱CVD
装置を構成したので、炉壁下部の仕切板により、温度の
低いガスはど下方の仕切板から導入され、炉内の多数の
ウェハ間の膜厚を均一にでき、したがって、前記問題点
を除去できる。
Further, according to the invention of claim 2, as described above, thermal CVD
With this structure, the low-temperature gas is introduced from the partition plate at the bottom of the furnace wall, making it possible to make the film thickness uniform among the many wafers in the furnace, thus eliminating the above-mentioned problem. can.

〔実施例〕〔Example〕

以下、この発明の半導体素子の製造方法および熱CVD
装置の実施例について図面に基づき説明する0図はこの
発明の半導体素子の製造方法に適用される熱CVD装置
の構成説明図である。
Hereinafter, a method for manufacturing a semiconductor element of the present invention and a thermal CVD method will be described.
Embodiments of the apparatus will be explained based on the drawings. FIG. 0 is a diagram illustrating the configuration of a thermal CVD apparatus applied to the method of manufacturing a semiconductor element of the present invention.

図中の1はドーム状の炉本体をなすアウタチューブであ
り、このアウタチューブ1の底部の中央には、保温筒2
が設けられ、この保温筒2の上面にボー)3aに載置さ
れた多数枚のウェハ3が重ねられるようになっている。
1 in the figure is an outer tube forming the dome-shaped furnace body, and in the center of the bottom of this outer tube 1 is a heat insulating cylinder 2.
is provided, and a large number of wafers 3 placed on a bow 3a are stacked on the top surface of this heat-insulating cylinder 2.

アウタチューブ1内において、上記保温筒2゜ウェハ3
を内包するように、インナチューブ4がアウタチューブ
1と同心状になるように、インナチューブ1内に配置さ
れている。
Inside the outer tube 1, the heat insulating cylinder 2゜wafer 3
The inner tube 4 is arranged within the inner tube 1 so as to be concentric with the outer tube 1 so as to enclose the inner tube 4 .

このアウタチューブ1およびインナチューブ4の底部近
傍において、アウタチューブlを貫通してインナチュー
ブ4に吸入管5が連結されており、この吸入管5を通し
て、O3ガスがインナチューブ4内に吸入されるように
なっている。
A suction pipe 5 is connected to the inner tube 4 through the outer tube 1 near the bottom of the outer tube 1 and the inner tube 4, and O3 gas is sucked into the inner tube 4 through this suction pipe 5. It looks like this.

この吸入管5の上方において、別の吸入管6の一端がア
ウタチューブ1を貫通してインナチューブ4に連結され
ている。この吸入管6の他端は容器7内に挿入されてい
る。
Above this suction pipe 5, one end of another suction pipe 6 passes through the outer tube 1 and is connected to the inner tube 4. The other end of this suction pipe 6 is inserted into a container 7.

容器7内にはTa (OCzHs) s 8が充填され
、この容器7にはArが注入されるようになっている。
The container 7 is filled with Ta (OCzHs) s 8, and Ar is injected into the container 7.

また、容器7とアウタチューブ1間において、吸入管6
の外周面には、ヒータ9が巻装され、吸入管6を加熱し
ており、この吸入管6を通して容器7内のTa(OCi
Hs)s 8が加熱されながらインナチューブ4内に吸
入されるようになっている。
Also, between the container 7 and the outer tube 1, the suction pipe 6
A heater 9 is wrapped around the outer circumferential surface of the container 7 to heat the suction pipe 6.
Hs)s 8 is drawn into the inner tube 4 while being heated.

上記インナチューブ4の底部近傍において、吸入管5と
6の間に位置する部位には、炉壁下部を仕切るドーナツ
板状の仕切板10が取り付けられている。この仕切板1
0の内径側と保温筒2の外面間には、所定の間隔が設け
られており、吸入管5から吸入されたより、低温のO3
ガスや吸入管6から吸入されたTa(OC2H5)5 
8などが保温筒2の外周面に循環しなからウェハ3方向
に上昇するようになっている。
Near the bottom of the inner tube 4, a donut-shaped partition plate 10 is attached to a portion located between the suction pipes 5 and 6 to partition the lower part of the furnace wall. This partition plate 1
A predetermined gap is provided between the inner diameter side of the O3 and the outer surface of the heat insulating cylinder 2.
Ta(OC2H5)5 inhaled from gas or suction pipe 6
8 etc. do not circulate around the outer circumferential surface of the heat insulating cylinder 2, but rise toward the wafer 3.

また、アウタチューブlの底部近傍には排気管11が連
結されている。このアウタチューブ1の外周面にもヒー
タ12が配設されており、このヒータ12により、アウ
タチューブ1およびインナチューブ4の内部を加熱する
ようになっている。
Further, an exhaust pipe 11 is connected near the bottom of the outer tube l. A heater 12 is also provided on the outer peripheral surface of the outer tube 1, and the heater 12 heats the inside of the outer tube 1 and the inner tube 4.

このような熱CVD装置を用いて、LPCVDTazO
s膜を形成する場合に、まず、ボート3aにウェハ3を
多数枚載置して保温筒2上に置き、ヒータ12でアウタ
チューブ1およびインナチューブ4を加熱するとともに
、ヒータ9により、吸入管6を加熱する。
Using such a thermal CVD equipment, LPCVDTazO
When forming the S film, first, a large number of wafers 3 are placed on the boat 3a and placed on the heat insulating tube 2, the outer tube 1 and the inner tube 4 are heated by the heater 12, and the suction tube is heated by the heater 9. Heat 6.

この状態でO3ガスは分解しない程度に十分あたためら
れてから吸入管5を通して、炉内のインナチューブ4内
に吸入され、ウェハ3のある部位に入っていく。03ガ
スの流量は100 ACC+a程度である。
In this state, the O3 gas is sufficiently warmed to the extent that it does not decompose, and then is sucked into the inner tube 4 in the furnace through the suction pipe 5, and enters a certain part of the wafer 3. The flow rate of 03 gas is about 100 ACC+a.

一方、容器7内に充填されたTa(OCJs) s 8
の方は〜120°Cに保たれた状態からArをキャリア
ガスとして、200 ACC劉程度流すことにより、吸
入管6を経てインナチューブ4内に導入される。ここで
、炉までのガスラインすなわち、吸入管6はヒータ9に
より150°C程度に保つ必要がある。
On the other hand, Ta(OCJs) s 8 filled in the container 7
This is introduced into the inner tube 4 through the suction pipe 6 by flowing about 200 ACC with Ar as a carrier gas while the temperature is maintained at ~120°C. Here, the gas line to the furnace, that is, the suction pipe 6, needs to be maintained at about 150°C by the heater 9.

上記のようにして、インナチューブ4内に導入してTa
(OCzlls)s/ Ox混合ガスをヒータ12の加
熱により、500°C〜600°CでO3ガスを酸化活
性種として反応させて、Taxes膜をウェハ3に形成
する0反応圧力はO310 Torr〜O350 To
rr程度とする。
Introduce Ta into the inner tube 4 as described above.
(OCzlls)s/Ox mixed gas is heated by the heater 12 to react with O3 gas as an oxidizing active species at 500°C to 600°C to form a Taxes film on the wafer 3. The reaction pressure is O310 Torr to O350. To
It should be about rr.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、請求項1の発明によれば、Ta
 (OCzHs) sの酸化活性種として0□よりも活
性なO3を利用するようにしたので、Ta (OC2H
5) sの酸化性雰囲気中での熱反応により形成される
CVD−TazJ膜中の含有C量の減少が期待でき、リ
ーク電流を抑制して電気的特性の向上が可能となる。
As explained above, according to the invention of claim 1, Ta
Since O3, which is more active than 0□, is used as the oxidation active species of (OCzHs)s, Ta (OCzHs)
5) It is expected that the amount of C contained in the CVD-TazJ film formed by the thermal reaction of s in an oxidizing atmosphere will be reduced, and leakage current can be suppressed to improve electrical characteristics.

また、請求項2の発明によれば、炉壁の下部に仕切板を
設け、温度の低いガスはど仕切板の下部から炉内に導入
するようにしたので、冷えたままのO3ガスが炉内の反
応部に直接入ることが避けられ、インナチューブ内で加
温されてから反応部に入り、形成膜厚のウェハ間均−性
の向上が見込まれる。
Further, according to the invention of claim 2, a partition plate is provided at the lower part of the furnace wall, and the low temperature gas is introduced into the furnace from the lower part of the partition plate, so that the cold O3 gas is fed into the furnace. Since the inner tube is heated within the inner tube and then enters the reaction section, it is expected that the uniformity of the formed film thickness among wafers will be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の熱CVD装置の一実施例の構成説明図で
ある。 l・・・アウタチューブ、2・・・保温筒、3・・・ウ
ェハ、4・・・インナチューブ、5.6・・・吸入管、
7・・・容器、13 =Ta(OC2H5)5、9.1
2・・・ヒータ、10 ・・・仕切板。 4:イン大手ユーク゛。 8 : To(cO2H5)5 9、+2:ヒータ 10イtトηネ及 本発明のオ鼻威訟屯8月図
The figure is an explanatory diagram of the configuration of an embodiment of the thermal CVD apparatus of the present invention. l...Outer tube, 2...Heat insulation tube, 3...Wafer, 4...Inner tube, 5.6...Suction pipe,
7... Container, 13 = Ta (OC2H5) 5, 9.1
2... Heater, 10... Partition plate. 4: In-major user. 8: To (cO2H5) 5 9, +2: Heater 10 t η and the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)ダイナミック−ランダム・アクセス・メモリにお
ける蓄積容量形成用絶縁膜に適用するTa(OC_2H
_5)_5の酸化種として、O_3ガスを用いることを
特徴とする半導体素子の製造方法。
(1) Ta (OC_2H) applied to insulating film for storage capacitor formation in dynamic random access memory
_5) A method for manufacturing a semiconductor device, characterized in that O_3 gas is used as the oxidizing species of _5.
(2)(a)ヒータにより加熱されるアウタチューブ内
に設置され、熱処理用のウェハをその上部に載置する保
温筒を内部に有する第1のインナチューブと、 (b)このインナチューブの下部に設けられた仕切板と
、 (c)この仕切板の下方において、上記インナチューブ
に連結され低温のO_3ガスを導入する第1の吸入管と
、 (d)上記仕切板の上方において、上記インナチューブ
に連結されTa(OC_2H_5)_5を加温しながら
上記インナチューブ内に導入する第2の吸入管と、より
なる熱CVD装置。
(2) (a) A first inner tube that is installed inside an outer tube that is heated by a heater and has a heat-insulating tube inside which a wafer for heat treatment is placed on top; (b) a lower part of this inner tube; (c) Below the partition plate, a first suction pipe connected to the inner tube and introducing low-temperature O_3 gas; (d) Above the partition plate, a first suction pipe provided in the inner tube. A thermal CVD apparatus comprising a second suction pipe connected to the tube and introducing Ta(OC_2H_5)_5 into the inner tube while heating it.
JP2233337A 1990-09-05 1990-09-05 Manufacture of semiconductor element and thermal cvd device Pending JPH04115533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2233337A JPH04115533A (en) 1990-09-05 1990-09-05 Manufacture of semiconductor element and thermal cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2233337A JPH04115533A (en) 1990-09-05 1990-09-05 Manufacture of semiconductor element and thermal cvd device

Publications (1)

Publication Number Publication Date
JPH04115533A true JPH04115533A (en) 1992-04-16

Family

ID=16953570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2233337A Pending JPH04115533A (en) 1990-09-05 1990-09-05 Manufacture of semiconductor element and thermal cvd device

Country Status (1)

Country Link
JP (1) JPH04115533A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038674A1 (en) * 1997-02-27 1998-09-03 Micron Technology, Inc. Methods and apparatus for forming a high dielectric film and the dielectric film formed thereby
US6566147B2 (en) 2001-02-02 2003-05-20 Micron Technology, Inc. Method for controlling deposition of dielectric films
US6884475B2 (en) 2000-05-26 2005-04-26 Micron Technology, Inc. Chemical vapor deposition method for depositing a high k dielectric film
US6888188B2 (en) 2001-08-17 2005-05-03 Micron Technology, Inc. Capacitor constructions comprising perovskite-type dielectric materials and having different degrees of crystallinity within the perovskite-type dielectric materials
US6943392B2 (en) 1999-08-30 2005-09-13 Micron Technology, Inc. Capacitors having a capacitor dielectric layer comprising a metal oxide having multiple different metals bonded with oxygen
US6982103B2 (en) 2001-07-13 2006-01-03 Micron Technology, Inc. Chemical vapor deposition methods of forming barium strontium titanate comprising dielectric layers, including such layers having a varied concentration of barium and strontium within the layer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6325017B1 (en) 1997-02-27 2001-12-04 Micron Technology, Inc. Apparatus for forming a high dielectric film
US7192889B2 (en) 1997-02-27 2007-03-20 Micron Technology, Inc. Methods for forming a high dielectric film
WO1998038674A1 (en) * 1997-02-27 1998-09-03 Micron Technology, Inc. Methods and apparatus for forming a high dielectric film and the dielectric film formed thereby
US6927179B2 (en) 1997-02-27 2005-08-09 Micron Technology, Inc. Methods and apparatus for forming a high dielectric film and the dielectric film formed thereby
US6943392B2 (en) 1999-08-30 2005-09-13 Micron Technology, Inc. Capacitors having a capacitor dielectric layer comprising a metal oxide having multiple different metals bonded with oxygen
US6884475B2 (en) 2000-05-26 2005-04-26 Micron Technology, Inc. Chemical vapor deposition method for depositing a high k dielectric film
US7052584B2 (en) 2000-05-26 2006-05-30 Micron Technology, Inc. Method of forming a capacitor
US6838293B2 (en) 2001-02-02 2005-01-04 Micron Technology, Inc. Method for controlling deposition of dielectric films
US6962824B2 (en) 2001-02-02 2005-11-08 Micron Technology, Inc. Method for controlling deposition of dielectric films
US6566147B2 (en) 2001-02-02 2003-05-20 Micron Technology, Inc. Method for controlling deposition of dielectric films
US6982103B2 (en) 2001-07-13 2006-01-03 Micron Technology, Inc. Chemical vapor deposition methods of forming barium strontium titanate comprising dielectric layers, including such layers having a varied concentration of barium and strontium within the layer
US7011978B2 (en) 2001-08-17 2006-03-14 Micron Technology, Inc. Methods of forming capacitor constructions comprising perovskite-type dielectric materials with different amount of crystallinity regions
US6888188B2 (en) 2001-08-17 2005-05-03 Micron Technology, Inc. Capacitor constructions comprising perovskite-type dielectric materials and having different degrees of crystallinity within the perovskite-type dielectric materials

Similar Documents

Publication Publication Date Title
US6296710B1 (en) Multi-port gas injector for a vertical furnace used in semiconductor processing
US5552337A (en) Method for manfacturing a capacitor for a semiconductor memory device having a tautalum oxide film
KR100222455B1 (en) Semiconductor device and method of fabricating method
US5310698A (en) Process for producing an arsenic-doped smooth polycrystalline silicon layer for very large scale integrated circuits
JP2786071B2 (en) Method for manufacturing semiconductor device
JP2754191B2 (en) Capacitor structure of semiconductor device and method of manufacturing the same
JPH0661449A (en) Manufacture of semiconductor device
JPH04112531A (en) Formation of capacitive insulating film
JPH04115533A (en) Manufacture of semiconductor element and thermal cvd device
JP2000100812A (en) Method for forming silicon nitride film
JPH05243524A (en) Manufacture of semiconductor device
US5677235A (en) Method for forming silicon film
JP3516918B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
US6448191B2 (en) Method of forming high dielectric constant thin film and method of manufacturing semiconductor device
TW403994B (en) Warm wall type reaction chamber portion and method for forming hemi-spherical grain layer using the same
JP4209563B2 (en) Method for forming silicon nitride film
US20030037731A1 (en) Apparatus of manufacturing a semiconductor device
JP2008022021A (en) Semiconductor device fabrication method
JPS63236335A (en) Vapor growth method for hafnium oxide film
JPH06163519A (en) Formation of tantalum oxide thin film
JP3173698B2 (en) Heat treatment method and apparatus
JPH10102256A (en) Cvd device
US6150226A (en) Semiconductor processing methods, methods of forming capacitors, methods of forming silicon nitride, and methods of densifying silicon nitride layers
JP2001144271A (en) Method for forming capacitor of semiconductor memory
JPH11163282A (en) Manufacture of semiconductor device