JPH04115470A - Power storage generator - Google Patents

Power storage generator

Info

Publication number
JPH04115470A
JPH04115470A JP2234543A JP23454390A JPH04115470A JP H04115470 A JPH04115470 A JP H04115470A JP 2234543 A JP2234543 A JP 2234543A JP 23454390 A JP23454390 A JP 23454390A JP H04115470 A JPH04115470 A JP H04115470A
Authority
JP
Japan
Prior art keywords
hydrogen
power
oxygen
electrode
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2234543A
Other languages
Japanese (ja)
Other versions
JP3102434B2 (en
Inventor
Tsutomu Maekawa
前川 務
Naoto Fukuyama
福山 直人
Seiichi Tanabe
清一 田辺
Takashi Shiba
剛史 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP02234543A priority Critical patent/JP3102434B2/en
Publication of JPH04115470A publication Critical patent/JPH04115470A/en
Application granted granted Critical
Publication of JP3102434B2 publication Critical patent/JP3102434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To efficiently perform power preservation by electrolyzing steam with the use of surplus power to produce and store hydrogen and at the time of power shortage supplying the hydrogen to a fuel cell for power generation. CONSTITUTION:The surplus power of a power source line 2 from a power regulation unit 3 is converted into a direct current and applied to a hydrogen electrode 8 and an oxygen electrode 9. Nextly, water is fed out from a water storage tank 15 by a pump 16 and made into steam having a temperature of not less than approximately 800 deg.C by heat exchangers 17, 18, 20, and the steam is fed to a hydrogen-electrode-side manifold 10 and electrolyzed there and then stored in a hydrogen storage tank 24. And then at the time of power shortage the hydrogen is supplied to the hydrogen-electrode-side manifold 10 from the hydrogen storage tank 24 and oxygen is supplied to an oxygen-electrode-side manifold 11 and power generation is performed in an oxygen hydrogen electro- chemical reactor 14, whereby since the steam is electrolyzed by the surplus power and the hydrogen is produced and stored and at the time of power shortage the power generation is performed by electro-chemical reaction of hydrogen, power storage may be efficiently performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、余剰電力を蓄えて電力不足時にこれを使用す
るための電力貯蔵発電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power storage power generation device for storing surplus power and using it in times of power shortage.

[従来の技術] 今日のエネルギー情勢を展望すると、資源的に乏しく環
境に悪影響を及ぼす化石燃料に代わって、原子力と自然
エネルギー(特に太陽エネルギー)が−次エネルギー源
となることが期待される。
[Prior Art] Looking at today's energy situation, it is expected that nuclear power and natural energy (particularly solar energy) will become the next energy source in place of fossil fuels, which are scarce in resources and have a negative impact on the environment.

原子力発電は、技術的・経済的に一定出力運転が望まし
く、原子力発電の比率が高くなると、電力余剰時に電力
を貯蔵し、不足時にこれを使用することの必要性が高ま
ってくる。
Nuclear power generation is technically and economically desirable to operate at a constant output, and as the proportion of nuclear power generation increases, the need to store electricity when there is a surplus and use it when there is a shortage increases.

従来、電力貯蔵と発電とを行うものとして、レドックス
フロー形電池による電力貯蔵発電システムがある。この
システムは、正極液にFe3+/Fe2+塩酸溶液、負
極液にCr”/Cr’+塩酸溶液を用い、充電時には正
f!液をF e ”−” F e ”+e、負極液をC
r”+e−+Cr’+とじ、放電時にはこの逆の反応を
行って充電と発電を行うものである。
2. Description of the Related Art Conventionally, there is a power storage power generation system using a redox flow battery as a system for storing power and generating power. This system uses a Fe3+/Fe2+ hydrochloric acid solution for the positive electrode liquid and a Cr''/Cr'+ hydrochloric acid solution for the negative electrode liquid. During charging, the positive f!
r''+e-+Cr'+, and during discharging, the reverse reaction is performed to perform charging and power generation.

L発明が解決しようとする課題] しかしながら、レドックスフロー形電池による電力貯蔵
発電システムは、貯蔵形態が、Fe3+/Fe2+塩酸
溶液、Cr”/Cr’+塩酸溶液であり、強酸やクロム
などによる腐蝕、保安、環境保護等に問題がある。
Problems to be Solved by the Invention] However, the power storage power generation system using redox flow batteries uses a Fe3+/Fe2+ hydrochloric acid solution or a Cr''/Cr'+ hydrochloric acid solution for storage, and is susceptible to corrosion due to strong acids, chromium, etc. There are problems with security, environmental protection, etc.

そこで近年、余剰電力で水を電気分解して水素を取り出
すと共にそれを貯蔵し、電力不足時にその貯蔵した水素
を燃料電池に供給して発電を行うことが提案されている
。この水素貯蔵による発電は、上述したレドックスフロ
ー形電池による電力貯蔵発電システムと違って水と水素
と酸素であり貯蔵等の扱いが容易であるが、発電効率は
極めて効率が悪いと見なされている。
Therefore, in recent years, it has been proposed to use surplus electricity to electrolyze water to extract hydrogen and store it, and to supply the stored hydrogen to a fuel cell to generate electricity when there is a power shortage. Unlike the power storage power generation system using redox flow batteries mentioned above, this hydrogen storage power generation system uses water, hydrogen, and oxygen and is easy to store and handle, but the power generation efficiency is considered to be extremely low. .

本発明は上記事情を考慮してなされたもので、電力余剰
時にこれを蓄え、必要時にこれを使用できると共に発電
効率のよい電力貯蔵発電装置を提供することを目的とす
る。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a power storage power generation device that can store surplus power and use it when necessary, and has high power generation efficiency.

[課題を解決するための手段] 本発明は、上記の目的を達成するために、電力余剰時の
電力を蓄え、これを電力不足時に使用するための電力貯
蔵発電装置において、水素極と酸素極とが電解質で挟ま
れて形成されると共にその極の両側にマニホールドが形
成された酸素水素電気化反応装置と、上記水素極側マニ
ホールドに水蒸気を供給する蒸気供給ラインと、製造さ
れた水素を貯蔵する水素貯蔵装置と、発電時に酸素水素
電気化反応装置の水素極側マニホールドに水素を供給す
る水素供給ライン及び酸素極側マニホールドに空気を供
給する空気供給ラインと、電解時に両極に余剰電力を直
流に変換して供給すると共に発電時の直流を交流に変換
する電力調整装置とを備えたものである。また電力余剰
時の電力を蓄え、これを電力不足時に使用するための電
力貯蔵発電装置において、水蒸気を原料とし、これを余
剰電力で電解して水素と酸素を製造する電解式水素製造
装置と、その電解式水素製造装置へ水蒸気を供給すると
共に製造された酸素を燃焼空気とするボイラプラントと
、製造された水素を貯蔵する水素貯蔵装置と、貯蔵され
た水素と空気中の酸素とを反応させて発電を行う燃料電
池と、余剰電力を直流に変換して電解式水素製造装置に
給電すると共に燃料電池からの直流を交流に変換する電
力調整装置とを備えたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a power storage power generation device for storing power during surplus power and using it in times of power shortage. an oxygen-hydrogen electrification reactor in which a hydrogen electrode is sandwiched between electrolytes and manifolds are formed on both sides of the electrode, a steam supply line that supplies steam to the manifold on the hydrogen electrode side, and a storage for the produced hydrogen. a hydrogen storage device that supplies hydrogen to the hydrogen electrode side manifold of the oxygen-hydrogen electrification reaction device during power generation, an air supply line that supplies air to the oxygen electrode side manifold of the oxygen-hydrogen electrification reaction device, and direct current that supplies excess power to both electrodes during electrolysis. It is equipped with a power adjustment device that converts and supplies direct current to alternating current during power generation. In addition, an electrolytic hydrogen production device that uses water vapor as a raw material and electrolyzes it with surplus power to produce hydrogen and oxygen, in a power storage power generation device that stores power when there is surplus power and uses it in times of power shortage; A boiler plant that supplies steam to the electrolytic hydrogen production device and uses the produced oxygen as combustion air, a hydrogen storage device that stores the produced hydrogen, and a reactor that causes the stored hydrogen to react with oxygen in the air. The system is equipped with a fuel cell that generates electricity using a fuel cell, and a power adjustment device that converts surplus power into direct current to feed the electrolytic hydrogen production device and converts the direct current from the fuel cell into alternating current.

二作用コ 上記の構成によれは、余剰電力で水蒸気を電気分解して
水素を製造し、その水素を貯蔵することで効率よく電気
分解すると共に製造した水素を長期に保存でき、また電
力不足時に燃料電池にその水素を供給して発電を行うこ
とで、保存した電力を使用できる。
Dual Actions The above configuration uses surplus electricity to electrolyze water vapor to produce hydrogen, and stores the hydrogen to efficiently electrolyze and store the produced hydrogen for a long period of time. The stored electricity can be used by supplying the hydrogen to a fuel cell to generate electricity.

E実施例] 以下、本発明の好適実施例を添付図面に基づいて説明す
る。
Embodiment E] Hereinafter, preferred embodiments of the present invention will be described based on the accompanying drawings.

第1図は本発明の一実施例を示すもので、基本的には電
解槽と燃料電池からなる電解式水素製造装置兼燃料電池
プラント1と、電解式水素製造装置兼燃料電池プラント
1と電源ライン2とを接続する電力調整装置3からなる
FIG. 1 shows an embodiment of the present invention, which basically consists of an electrolytic hydrogen production device/fuel cell plant 1 consisting of an electrolyzer and a fuel cell, an electrolytic hydrogen production device/fuel cell plant 1, and a power source. It consists of a power adjustment device 3 connected to a line 2.

先ず電解式水素製造装置兼燃料電池プラント1の電解槽
と燃料電池を共用する酸素水素電気化学反応装置4は、
第2図に示すように反応槽5の中央に反応三層膜6が設
けられたものからなる。この反応三層膜6は、電解質7
を水素[i8と酸素極9で挟んだ構造からなり、電解質
7としてはイ・lトリア安定化ジルコニア、水素極8と
してはNi多孔質板、酸素極9としてはLaMnOs<
ランタンマンカナイト)多孔質板であり、この他にも種
々の組合せがある。
First, the oxygen-hydrogen electrochemical reaction device 4 that shares the electrolyzer and fuel cell of the electrolytic hydrogen production device and fuel cell plant 1 is as follows.
As shown in FIG. 2, a three-layer reaction membrane 6 is provided in the center of a reaction tank 5. This reaction three-layer membrane 6 has an electrolyte 7
is sandwiched between hydrogen [i8 and an oxygen electrode 9, the electrolyte 7 is made of i-thria-stabilized zirconia, the hydrogen electrode 8 is made of Ni porous plate, and the oxygen electrode 9 is made of LaMnOs<
lanthanum mancanite) is a porous plate, and there are various other combinations.

反応槽5内には、反応三層膜6の水素極8側に水素極側
マニホールド10が形成され、酸素極り側に酸素極側マ
ニホールド11が形成される。
In the reaction tank 5, a hydrogen electrode side manifold 10 is formed on the hydrogen electrode 8 side of the reaction three-layer membrane 6, and an oxygen electrode side manifold 11 is formed on the oxygen electrode side.

この酸素水素電気化学反応装置4の電解時は、水素極側
マニホールド10に800℃以上の蒸気が供給され、水
素極8と酸素極9に直流電圧が印加されて、H2Oを下
式に示す反応で分解する。
During electrolysis in this oxygen-hydrogen electrochemical reaction device 4, steam at a temperature of 800°C or higher is supplied to the hydrogen electrode side manifold 10, a DC voltage is applied to the hydrogen electrode 8 and the oxygen electrode 9, and H2O is converted into a reaction represented by the following formula. Decompose it with.

この際、水素[i(陽′#l)側に水素カスが発生し、
また酸素極(陰極)側に酸素ガスか発生する6H20−
H2+ 1/20□     (1)なおこの時反応槽
5内では供給されたH2Oの全量か(1)式の反応で消
費されないため、水素極の出口側ではH2OとH2との
混合ガスが出ていくこととなる。
At this time, hydrogen scum is generated on the hydrogen [i (positive'#l) side,
Also, oxygen gas is generated on the oxygen electrode (cathode) side.
H2+ 1/20□ (1) At this time, in the reaction tank 5, the entire amount of H2O supplied is not consumed in the reaction of equation (1), so a mixed gas of H2O and H2 comes out at the outlet side of the hydrogen electrode. I have to go.

他方燃料電池として使用する際には、その水素極側マニ
ホールド10にH2を供給し、酸素極側マニホールド1
1に02を供給することで水の電気分解と逆の反応で発
電を行うようになっている。
On the other hand, when used as a fuel cell, H2 is supplied to the hydrogen electrode side manifold 10, and the oxygen electrode side manifold 1
By supplying 02 to 1, electricity is generated through a reaction opposite to the electrolysis of water.

この燃料電池としての反応槽5内では、上記(1)式の
逆の反応である(2)式の反応がなされ、水素極8と酸
素極9間に電圧0.6〜0.9■の直流電力が発生する
In the reaction tank 5 serving as a fuel cell, the reaction of equation (2), which is the reverse reaction of equation (1) above, takes place, and a voltage of 0.6 to 0.9 μ is applied between the hydrogen electrode 8 and the oxygen electrode 9. DC power is generated.

H2+1/202−H2O<2> さて第1図において、酸素水素電気化学反応装置4の水
素l7fl側マニホールド10には、水蒸気供給ライン
12と水素供給ライン13か接続され、酸素極側マニホ
ールド11には空気供給ライン14が接続される。
H2+1/202-H2O<2> Now, in FIG. 1, a steam supply line 12 and a hydrogen supply line 13 are connected to the hydrogen l7fl side manifold 10 of the oxygen-hydrogen electrochemical reaction device 4, and the oxygen electrode side manifold 11 is connected to the hydrogen supply line 12 and the hydrogen supply line 13. An air supply line 14 is connected.

水蒸気供給ライン12は、貯水槽15からの水がポンプ
16で圧送され、複数の熱交換器17゜18を通り、水
蒸気側バルブ19より熱交換器20を通って800℃以
上の水蒸気とされ水素極側マニホールド10に供給され
るようになっている。また生成されたH2及び未反応H
20は、熱交換器20を通り、分離装置21でH2Oと
H2とに分離され、HxOは貯水槽15に戻され、H2
は、コンプレッサー22で昇圧された後、水素供給ライ
ン13を逆向きに流れ、貯蔵用バルブ23を介してH2
貯槽24に貯蔵される。また水素供給ライン13は、H
2貯槽24からのH2がポンプ25にて水素側バルブ2
6を通り、さらに中間バルブ27を介し熱交換器20を
通って水素極側マニホールド10に導入されるようにな
っている。
In the steam supply line 12, water from a water storage tank 15 is pumped by a pump 16, passed through a plurality of heat exchangers 17 and 18, and then passed through a heat exchanger 20 from a steam side valve 19 to become steam at a temperature of 800°C or higher and hydrogen. It is supplied to the pole side manifold 10. Also, generated H2 and unreacted H
20 passes through the heat exchanger 20 and is separated into H2O and H2 by the separator 21, HxO is returned to the water storage tank 15, and H2
After being pressurized by the compressor 22, the H2
It is stored in the storage tank 24. Further, the hydrogen supply line 13 is
H2 from the 2 storage tank 24 is sent to the hydrogen side valve 2 by the pump 25.
6, further passes through an intermediate valve 27, a heat exchanger 20, and is introduced into the hydrogen electrode side manifold 10.

また酸素は、大気かエアフィルタ28を介してコンプレ
ッサー29に導入され昇圧され、熱交換器30を通して
酸素極側マニホールド11に導入される。またマニホー
ルド11に導入された後の未反応酸素を含む空気は、熱
交換器30を通して系外に排出されるようになっている
Further, oxygen is introduced into the compressor 29 through the air filter 28, is pressurized, and is introduced into the oxygen electrode side manifold 11 through the heat exchanger 30. Furthermore, air containing unreacted oxygen after being introduced into the manifold 11 is discharged to the outside of the system through a heat exchanger 30.

この第1図の実施例においては、電力余剰時は水の電気
分解による水素貯蔵運転を行う。先ず電力調整装置3よ
り電源ライン2の余剰電力を直流に変換して水素極8と
酸素極9に印加する。この水素貯蔵運転の際、水素供給
ライン13のバルブ26.27は閉じておき、水蒸気側
バルブ19及び貯蔵用バルブ23を開としておく。この
状態で水蒸気供給ライン12より水素極側マニホールド
10に水蒸気を供給する。すなわち、貯水槽15からの
水がポンプ16で圧送され、複数の熱交換器17.18
を通り、水蒸気側バルブ19より熱交換器20を通って
800℃以上の水蒸気とされ水素極側マニホールド10
に供給される。この際、水を加熱する熱交換器17.1
8はBWRなどの原子力発電で生じた蒸気や火力発電で
の蒸気などを熱源として用いる。また酸素極マニホール
ド11には、反応三層膜6の圧力バランスとして空気供
給ライン14より、水素極マニホールド10と同圧とな
るよう空気がキャリアガスとして供給される。
In the embodiment shown in FIG. 1, when there is surplus power, hydrogen storage operation is performed by electrolysis of water. First, the power adjustment device 3 converts the surplus power of the power supply line 2 into direct current and applies it to the hydrogen electrode 8 and the oxygen electrode 9. During this hydrogen storage operation, the valves 26 and 27 of the hydrogen supply line 13 are kept closed, and the water vapor side valve 19 and the storage valve 23 are kept open. In this state, water vapor is supplied from the water vapor supply line 12 to the hydrogen electrode side manifold 10. That is, water from the water storage tank 15 is pumped by the pump 16, and the water is pumped through the plurality of heat exchangers 17, 18.
The water vapor passes through the heat exchanger 20 from the water vapor side valve 19 and becomes water vapor at a temperature of 800° C. or higher, and then flows into the hydrogen electrode side manifold 10.
supplied to At this time, a heat exchanger 17.1 that heats the water
8 uses steam generated in nuclear power generation such as BWR or steam generated in thermal power generation as a heat source. In addition, air is supplied as a carrier gas to the oxygen electrode manifold 11 from an air supply line 14 to balance the pressure of the three-layer reaction membrane 6 so that the pressure is the same as that of the hydrogen electrode manifold 10.

水素極側マニホールド10で分解されたH2及び未反応
H20は、熱交換器20を通り分離装置21でH,Oと
H2とに分離され、H2Oは貯水槽15に戻され、H2
は、コンプレッサー22で昇圧された後、水素供給ライ
ン13を逆向きに流れ、貯蔵用バルブ23を介してH2
貯槽24に貯蔵される。また酸素は、反え三層膜6を通
って酸素側マニホールド11に流れ5熱交換器30を通
って系外に排出される。
H2 decomposed in the hydrogen electrode side manifold 10 and unreacted H20 pass through a heat exchanger 20 and are separated into H, O and H2 in a separator 21, and H2O is returned to the water storage tank 15 and H2
After being pressurized by the compressor 22, the H2
It is stored in the storage tank 24. Further, oxygen flows through the three-layer membrane 6 to the oxygen side manifold 11, passes through the heat exchanger 30, and is discharged to the outside of the system.

また電力不足時には、H2貯槽24に貯蔵された水素を
水素供給ライン13より水素極側マニホールド10に供
給し、また空気供給ライン14よつ酸素極側マニホール
ド11に酸素(空気)を供給して酸素水素電気化学反応
装置4にて発電を行う。この発電運転の際、水蒸気側バ
ルブ19及び貯蔵用バルブ23を閉じ、水素供給ライン
13のバルブ26.27を開としておく。H2貯槽24
からのH2は、ポンプ25にて水素側バルブ23を通り
、さらに中間バルブ27を介し熱交換器20を通って水
素極側マニホールド10に導入される。また酸素は、大
気がエアフィルタ28を介してコンプレッサー29に導
入され昇圧され、熱交換器30を通して酸素極側マニホ
ールド11に導入される。
In addition, when there is a power shortage, hydrogen stored in the H2 storage tank 24 is supplied from the hydrogen supply line 13 to the hydrogen electrode side manifold 10, and oxygen (air) is supplied to the air supply line 14 and the oxygen electrode side manifold 11 to provide oxygen. The hydrogen electrochemical reaction device 4 generates electricity. During this power generation operation, the steam side valve 19 and the storage valve 23 are closed, and the valves 26 and 27 of the hydrogen supply line 13 are left open. H2 storage tank 24
H2 is introduced into the hydrogen electrode side manifold 10 through the hydrogen side valve 23 via the pump 25, and further through the heat exchanger 20 via the intermediate valve 27. Further, atmospheric air is introduced into the compressor 29 through the air filter 28, the pressure is increased, and the oxygen is introduced into the oxygen electrode side manifold 11 through the heat exchanger 30.

酸素水素電気化学反応装置4では、反応三層膜6で上述
した(2)式の反応にて水素と酸素を反応させる。この
反応で生じた直流電力を電力調整装置3で交流電力に変
換し電源ライン2より不足電力を補う電力として使用さ
れる。
In the oxygen-hydrogen electrochemical reaction device 4, hydrogen and oxygen are reacted in the reaction of the above-mentioned formula (2) using the reaction three-layer film 6. The DC power generated by this reaction is converted into AC power by the power adjustment device 3, and is used as power to supplement the power shortage from the power supply line 2.

また水素極側マニホールド10の出口からはH2O,H
2の混合ガスが排出され、また酸素極側マニホールド1
1の出口からは02:a度の薄くなった空気がそれぞれ
別個に排出される。水素極側マニホールド10の出口か
らのH2O,H2の混合ガスは熱交換器10で入口カス
と熱交換されて熱回収された後、分離装置21でH2O
とH2とに分離され、H2Oは貯水槽15に戻され、H
2は、コンプレッサー22で昇圧された後、再度H2貯
槽24からのH2と共に中間バルブ27を介し水素極側
マニホールド10に循環される。
Also, from the outlet of the hydrogen electrode side manifold 10, H2O, H
2 mixed gas is discharged, and the oxygen electrode side manifold 1
02:a degree of thin air is discharged from each of the outlet ports 1 and 1 separately. The mixed gas of H2O and H2 from the outlet of the hydrogen electrode side manifold 10 undergoes heat exchange with the inlet scum in the heat exchanger 10 and recovers the heat, and then is converted into H2O in the separator 21.
and H2, H2O is returned to the water storage tank 15, and H2O is
2 is pressurized by the compressor 22, and then circulated to the hydrogen electrode side manifold 10 via the intermediate valve 27 together with H2 from the H2 storage tank 24.

また酸素極側マニホールド11の出口の02濃度の薄く
なった空気は、熱交換器30を通り、そこで入口側空気
と熱交換された後系外に排出される。
Furthermore, the air with a reduced O2 concentration at the outlet of the oxygen electrode side manifold 11 passes through the heat exchanger 30, where it exchanges heat with the inlet side air, and is then discharged to the outside of the system.

この水素製造運転と発電運転は、例えば午後6時から午
前6時までは余剰電力で運転し、午前6時から午後6時
の電力不足時は、発電運転を行って不足電力を補う運転
を行う。
For example, this hydrogen production operation and power generation operation are performed using surplus power from 6:00 pm to 6:00 am, and when there is a power shortage from 6:00 am to 6:00 pm, power generation operation is performed to compensate for the power shortage. .

第3図は、電解及び発電温度に対する印加電圧及び発生
電圧の関係を示し、ラインAは理論電圧ライン、ライン
Bは電解時の印加電圧ライン、ラインCは発電時の発生
電圧ラインを示す。この図において、温度を上昇させる
と電解及び印加電圧は低くなり、また印加電圧に対する
発電電圧の差も小さくなることが判る。従って高温で電
解及び発電を行うことで効率の良い運転が行える。
FIG. 3 shows the relationship between applied voltage and generated voltage with respect to electrolysis and power generation temperature, where line A is a theoretical voltage line, line B is an applied voltage line during electrolysis, and line C is a generated voltage line during power generation. In this figure, it can be seen that as the temperature increases, the electrolysis and applied voltage decrease, and the difference in the generated voltage with respect to the applied voltage also decreases. Therefore, efficient operation can be achieved by performing electrolysis and power generation at high temperatures.

第4図は本発明の他の実施例を示すものである。FIG. 4 shows another embodiment of the invention.

この第4図の実施例は、第1図の実施例と基本的に同一
であり、水蒸気供給ライン12の熱交換器18の熱源を
具体的に示したものである。
The embodiment shown in FIG. 4 is basically the same as the embodiment shown in FIG. 1, and specifically shows the heat source of the heat exchanger 18 in the steam supply line 12.

先ず電解時に、酸素水素電気化学反応装置4の水素極側
マニホールド10に送り込まれる水蒸気は800°C以
上の高温である必要がある。そのような水蒸気は、先ず
給水が貯水槽15からポンプ16を経て、第1の熱交換
器17で100〜200℃に加熱され、次いで第2の熱
交換器18で高温ガス冷却式原子炉40で発生した熱に
より700〜800℃に加熱され、水蒸気バルブ19を
介し入口側熱交換器20で、出口ガスと熱交換されて水
素極側マニホールド10に送り込まれる。
First, during electrolysis, the water vapor sent into the hydrogen electrode side manifold 10 of the oxygen-hydrogen electrochemical reaction device 4 needs to be at a high temperature of 800° C. or higher. Such water vapor is first supplied from a water storage tank 15 through a pump 16, heated to 100-200°C in a first heat exchanger 17, and then heated in a second heat exchanger 18 to a high-temperature gas-cooled nuclear reactor 40. It is heated to 700 to 800° C. by the heat generated, and is sent to the hydrogen electrode side manifold 10 after being heat exchanged with the outlet gas at the inlet side heat exchanger 20 via the steam valve 19.

この高温ガス冷却式原子炉40で発生した熱は、通常の
電力不足時には蒸気タービン41を作動するものである
。すなわち高温ガス冷却式原子炉40には一次ヘリウム
循環ライン42が接続され、そのライン42にヘリウム
熱交換器43が接続される。他方蒸気タービン41には
、その蒸気出入口に蒸気ライン44が接続され、出口側
より凝縮器45.循環ポンプ46.蒸気加熱器47が接
続され、その蒸気加熱器47の蒸気がライン44にてタ
ービン41に供給されるようになっている。
The heat generated by the high-temperature gas-cooled nuclear reactor 40 operates the steam turbine 41 during normal power shortages. That is, a primary helium circulation line 42 is connected to the high-temperature gas-cooled nuclear reactor 40, and a helium heat exchanger 43 is connected to the line 42. On the other hand, a steam line 44 is connected to the steam turbine 41 at its steam inlet and outlet, and a condenser 45 . Circulation pump 46. A steam heater 47 is connected, and steam from the steam heater 47 is supplied to the turbine 41 through a line 44.

またこの蒸気タービン41で発電l148を駆動するよ
うになっている。このヘリウム循環ライン42のヘリウ
ム熱交換器43と蒸気ライン44の蒸気加熱器47間を
結ぶタービン側二次ヘリウム循環ライン49が接続され
、他方そのタービン側二次ヘリウム循環ライン49と並
列にヘリウム熱交換器43と第2の熱交換器8を結ぶ電
解側二次ヘリウム循環ライン50が接続され、両ライン
49.50を切り替えるタービン側バルブ5152と電
解側バルブ53.54が接続される。
This steam turbine 41 also drives a power generation unit 1148. A turbine-side secondary helium circulation line 49 connecting the helium heat exchanger 43 of the helium circulation line 42 and the steam heater 47 of the steam line 44 is connected, and the helium heat exchanger 49 is connected in parallel with the turbine-side secondary helium circulation line 49. An electrolysis-side secondary helium circulation line 50 connecting the exchanger 43 and the second heat exchanger 8 is connected, and a turbine-side valve 5152 and an electrolysis-side valve 53.54 that switch both lines 49.50 are connected.

この第4図の実施例において、電力余剰時には、高温ガ
ス冷却式原子炉40で発生した熱は、蒸気供給ライン1
2の給水の加熱用として使用される。
In the embodiment shown in FIG. 4, when there is a surplus of power, the heat generated in the high-temperature gas-cooled nuclear reactor 40 is transferred to the steam supply line 1.
It is used for heating the water supply in step 2.

この場合タービン側バルブ51.ジ2が閉じられ、電解
側バルブ53.54が開とされる。高温カス冷却式原子
炉40で発生した熱でヘリウム循環ライン42のヘリウ
ムが加熱され、その熱がヘリウム熱交換器43で電解側
二次ヘリウム循環ライン50を循環する二次ヘリウムが
加熱され、その二次ヘリウムの熱で第2熱交換器18を
通る200℃程度に加熱された給水を800°Cに加熱
することとなる。
In this case, the turbine side valve 51. The valve 53, 54 on the electrolytic side is opened. Helium in the helium circulation line 42 is heated by the heat generated in the high-temperature gas-cooled nuclear reactor 40, and the heat is used in the helium heat exchanger 43 to heat the secondary helium circulating in the electrolysis side secondary helium circulation line 50. The feed water, which was heated to about 200°C passing through the second heat exchanger 18, is heated to 800°C by the heat of the secondary helium.

また電力不足時には、タービン側バルブ5152が開と
され、電解側バルブ53.54が閉とされる。高温ガス
冷却式原子炉40のヘリウム循環ライン42のヘリウム
は、ヘリウム熱交換器43でターヒン側二次ヘリウム循
環ライン49を循環する二次ヘリウムを加熱し、その二
次ヘリウムが蒸気加熱器47で蒸気ライン44の給水を
加熱し、その蒸気でタービン41が回されると共に発電
rJ448か駆動されることとなる。
Further, when there is a power shortage, the turbine side valve 5152 is opened and the electrolysis side valves 53 and 54 are closed. The helium in the helium circulation line 42 of the high-temperature gas-cooled nuclear reactor 40 heats the secondary helium circulating in the Tahin side secondary helium circulation line 49 in the helium heat exchanger 43, and the secondary helium is heated in the steam heater 47. The water supplied in the steam line 44 is heated, and the steam turns the turbine 41 and also drives the power generation rJ448.

この実施例においては、高温カス冷却式原子炉40は電
力余剰時も不足時も常時量カ一定運転か可能となる。
In this embodiment, the high-temperature waste-cooled nuclear reactor 40 can be operated at a constant amount of power at all times, both when there is a surplus of power and when there is a shortage of power.

第5図は本発明の他の実施例を示し、第4図に示した高
温カス冷却式原子炉40で発生した熱で、蒸気供給ライ
ン12の給水の加熱する代りに給水ラインにボイラを接
続したものである。
FIG. 5 shows another embodiment of the present invention, in which a boiler is connected to the water supply line instead of heating the feed water in the steam supply line 12 using the heat generated in the high-temperature gas-cooled nuclear reactor 40 shown in FIG. This is what I did.

先ずボイラ60は、給水ポンプ61からの給水が、給水
バルブ62を介し、ボイラ60内の伝熱管63で加熱さ
れ、気液分離ドラム64で気液分離され、その蒸気が蒸
気バルブ65より蒸気ライン66に流れ、蒸気タービン
67に供給されて発電機68を駆動した後、凝縮器69
に流れ、再度給水ポンプ61で循環されるようになって
いる。
First, in the boiler 60, water supplied from a water supply pump 61 is heated via a water supply valve 62 in a heat exchanger tube 63 in the boiler 60, separated into gas and liquid in a gas-liquid separation drum 64, and the steam is passed from a steam valve 65 to a steam line. 66 and is supplied to a steam turbine 67 to drive a generator 68, and then to a condenser 69.
The water is then circulated again by the water supply pump 61.

他方貯水槽15の水は、ポンプ16より給水ライン70
及び電解側給水バルブ71を介してボイラ60の伝熱管
63に給水できるようにされる。
On the other hand, the water in the water storage tank 15 is supplied from the pump 16 to the water supply line 70.
Water can be supplied to the heat exchanger tubes 63 of the boiler 60 via the electrolysis side water supply valve 71.

この酸素水素電気化学反応装置4の電解運転時には、給
水バルブ62及び蒸気バルブ65は閉じられ、貯水槽1
5の給水は、給水ポンプ16にて給水ライン70よりバ
ルブ71を介し伝熱管63を通って加熱され、気液分離
ドラム64で気液分離された蒸気が電解側バルブ72を
介して蒸気供給ライン73に流れ、さらに熱交換器20
を介して水素極マニホールド10に導かれ、電力調整装
置3からの余剰電力で電気分解される。この場合、水素
極側マニホールド10から排出されるH2OとH2との
混合ガスは、熱交換器20で、入口ガスと熱交換されて
熱回収された後、分離装置21でH2OとH2とに分離
され、H2Oは貯水槽15に戻され、H2は、コンプレ
ッサー22で昇圧された後、貯蔵ライン74より貯蔵用
バルブ23を介してH2貯槽24に貯蔵される。また酸
素は酸素極側マニホールド11より熱交換器30を通し
て、酸素リッチガスとしてボイラ60の燃焼用空気とし
て使用される。なおこの場合H2貯槽24に貯蔵されて
いるH2を適宜ポンプ25より水素利用ライン75及び
バルブ76を介してボイラ60の燃料として使用しても
よい。
During electrolysis operation of this oxygen-hydrogen electrochemical reaction device 4, the water supply valve 62 and the steam valve 65 are closed, and the water storage tank 1
The water supplied in No. 5 is heated by the water supply pump 16 from the water supply line 70 through the valve 71 and through the heat transfer tube 63, and the steam separated into gas and liquid by the gas-liquid separation drum 64 is passed through the electrolysis side valve 72 to the steam supply line. 73 and further to the heat exchanger 20
is guided to the hydrogen electrode manifold 10 via the hydrogen electrode manifold 10, and is electrolyzed using surplus power from the power conditioning device 3. In this case, the mixed gas of H2O and H2 discharged from the hydrogen electrode side manifold 10 undergoes heat exchange with the inlet gas in the heat exchanger 20 and recovers the heat, and then is separated into H2O and H2 in the separator 21. The H2O is returned to the water storage tank 15, and after being pressurized by the compressor 22, the H2 is stored in the H2 storage tank 24 from the storage line 74 via the storage valve 23. Further, oxygen is passed through the heat exchanger 30 from the oxygen electrode side manifold 11 and is used as combustion air in the boiler 60 as an oxygen-rich gas. In this case, H2 stored in the H2 storage tank 24 may be used as fuel for the boiler 60 via the hydrogen utilization line 75 and valve 76 from the pump 25 as appropriate.

また発電運転の際には、H2貯槽24に貯蔵される水素
は、ポンプ25より水素供給ライン13及び水素供給バ
ルブ77を介して水素極側マニホールド10に供給され
、酸素は空気供給ライン14より酸素極側マニホールド
11に供給されて発電が行われる。この場合ボイラ60
は、給水バルブ62及び蒸気バルブ65が開かれてター
ビン67が駆動されて発電機が駆動される。
During power generation operation, hydrogen stored in the H2 storage tank 24 is supplied from the pump 25 to the hydrogen electrode side manifold 10 via the hydrogen supply line 13 and hydrogen supply valve 77, and oxygen is supplied from the air supply line 14 to the hydrogen electrode side manifold 10. Power is generated by being supplied to the pole side manifold 11. In this case boiler 60
In this case, the water supply valve 62 and the steam valve 65 are opened, the turbine 67 is driven, and the generator is driven.

第6図は、本発明のさらに他の実施例を示すもので、酸
素水素電気化学反応装置4の代りに電解槽4aと燃料電
池4bの二つに別けて構成したものである。この第6図
は基本的には電解式水素製造装置IAと、燃料電池プラ
ントIBと、これら電解式水素製造装置IAと燃料電池
プラントIBと電源ライン2とを接続する電力調整装置
3からなる。
FIG. 6 shows still another embodiment of the present invention, in which the oxygen-hydrogen electrochemical reaction device 4 is divided into two parts: an electrolytic cell 4a and a fuel cell 4b. 6 basically consists of an electrolytic hydrogen production device IA, a fuel cell plant IB, and a power adjustment device 3 that connects the electrolytic hydrogen production device IA, the fuel cell plant IB, and the power line 2.

先ず電解式水素製造装置IAは、水を水蒸気の状態で電
気分解して水素と酸素に電気分解するH20電解槽4a
からなり、その電解槽4a内の電極が電力調整装置3の
交直変換機3aに接続される。電解槽4aへ供給する原
料である水蒸気は貯水槽15aから給水ポンプ16aに
て給水ライン70よりバルブ71を介して伝熱管63で
加熱され、気液分離ドラム64で気液分離された蒸気が
電解側バルブ72を介して蒸気供給ライン73に流れ、
さらに熱交換器20aを介して電解槽4aに導かれ、そ
こで電力調整装置3からの余剰電力で電気分解される。
First, the electrolytic hydrogen production device IA includes an H20 electrolytic cell 4a that electrolyzes water in a steam state into hydrogen and oxygen.
The electrodes in the electrolytic cell 4a are connected to the AC/DC converter 3a of the power adjustment device 3. Water vapor, which is a raw material to be supplied to the electrolytic cell 4a, is heated from a water storage tank 15a by a water supply pump 16a through a water supply line 70 through a valve 71 and a heat transfer tube 63, and the vapor is separated into gas and liquid by a gas-liquid separation drum 64 and then electrolyzed. flows through a side valve 72 to a steam supply line 73;
Further, it is guided to the electrolytic cell 4a via the heat exchanger 20a, where it is electrolyzed using surplus power from the power adjustment device 3.

この電解槽4a内でH2Oは、上記(1)式に示す反応
で分解され、水素極(陽′!1llllに水素ガスが発
生し、また酸素極(陰極)側に酸素ガスが発生する。
In this electrolytic cell 4a, H2O is decomposed by the reaction shown in equation (1) above, and hydrogen gas is generated at the hydrogen electrode (anode'), and oxygen gas is also generated at the oxygen electrode (cathode) side.

なおこの時な解槽4a内では供給されたH2Oの全量が
(1)式の反応で消費されないため、水素極の出口側で
はH2OとH2との混合ガスが出ていくこととなる。
At this time, in the decomposition tank 4a, the entire amount of H2O supplied is not consumed in the reaction of equation (1), so a mixed gas of H2O and H2 comes out at the outlet side of the hydrogen electrode.

この混合カスは、熱交換器20aで、入口カスと熱交換
されて熱回収された後、分離装!21aでH2OとH2
とに分離され、H2Oは貯水槽15aに戻され、H2は
、コンプレッサー12aで昇圧された後、H2貯槽24
aに貯蔵される。
This mixed dregs is heat exchanged with the inlet dregs in the heat exchanger 20a and heat is recovered, and then separated! H2O and H2 at 21a
H2O is returned to the water storage tank 15a, and H2 is pressurized by the compressor 12a and then transferred to the H2 storage tank 24.
stored in a.

また酸素は酸素極側より熱交換器30aを通して系外に
排出されるようになっている。
Further, oxygen is discharged from the oxygen electrode side to the outside of the system through the heat exchanger 30a.

他方燃料電池プラントIBは、電解質を水素極と酸素極
で挟んで形成された燃料電池4bからなり、その水素極
にH2を供給し、酸素極に02を供給することで水の電
気分解と逆の反応で発電を行うようになっている。
On the other hand, the fuel cell plant IB consists of a fuel cell 4b formed by sandwiching an electrolyte between a hydrogen electrode and an oxygen electrode, and supplies H2 to the hydrogen electrode and 02 to the oxygen electrode, which is the reverse of water electrolysis. The reaction generates electricity.

先ずH2貯槽13b内のH2は、ポンプ25bにて熱交
換器20bを通って燃料電池4bの水素極側に導入され
、他方酸素は、大気がエアフィルタ28bを介してコン
プレッサー29bに導入され昇圧され、熱交換器30b
を通して燃料電池4bの酸素極側に導入される。
First, H2 in the H2 storage tank 13b is introduced into the hydrogen electrode side of the fuel cell 4b by a pump 25b through a heat exchanger 20b, while oxygen is pressurized by atmospheric air introduced into a compressor 29b via an air filter 28b. , heat exchanger 30b
is introduced into the oxygen electrode side of the fuel cell 4b through the fuel cell 4b.

この燃料電池4bで発生した直流電力は、電力調整装置
3の直交変換器3bにて交流に変換され、電源ライン2
より不足電力を補うための電力として供給される。
The DC power generated by this fuel cell 4b is converted into AC by the orthogonal converter 3b of the power adjustment device 3, and the power supply line 2
It is supplied as electricity to make up for power shortages.

なお燃料電池4bの水素極の出口からはH2O。Note that H2O is released from the outlet of the hydrogen electrode of the fuel cell 4b.

H2の混合ガスが排出され、また酸素極の出口からは0
2濃度の薄くなった空気がそれぞれ別個に排出される。
A mixed gas of H2 is discharged, and from the outlet of the oxygen electrode, 0
Two concentrations of diluted air are discharged separately.

水素極の出口からのH2O,H2の混合ガスは熱交換器
20bで入口ガスと熱交換されて熱回収された後、分離
装置21bでH2OとH2とに分離され、H2Oは貯水
槽15bに戻され、H2は、コンプレッサー22bで昇
圧された後、再度H2貯槽24bからのH2と共に燃料
電池4bの水素極側に循環される。また酸素極の出口の
02濃度の薄くなった空気は、熱交換器30bを通り、
そこで入口側空気と熱交換された後系外に排出される。
The mixed gas of H2O and H2 from the outlet of the hydrogen electrode is heat exchanged with the inlet gas in the heat exchanger 20b and the heat is recovered, and then separated into H2O and H2 in the separator 21b, and the H2O is returned to the water storage tank 15b. After the H2 is pressurized by the compressor 22b, it is circulated again to the hydrogen electrode side of the fuel cell 4b together with H2 from the H2 storage tank 24b. In addition, the air with reduced O2 concentration at the outlet of the oxygen electrode passes through the heat exchanger 30b,
There, it exchanges heat with the air on the inlet side and is then discharged outside the system.

貯水槽15bに戻されたH2Oは、ポンプ16bにて電
解式水素製造装置IAの貯水槽15aに移送され、また
電解式水素製造装置IAのH2貯槽24aに貯蔵された
H2は、ポンプ25aよりバルブ76bを介して適宜燃
料電池プラントIBのH2貯槽24bに移送されるよう
になっており、また適宜水素利用ライン75.バルブ7
6aを介してボイラ60に燃料として供給される。
The H2O returned to the water storage tank 15b is transferred to the water storage tank 15a of the electrolytic hydrogen production device IA by the pump 16b, and the H2 stored in the H2 storage tank 24a of the electrolytic hydrogen production device IA is transferred from the pump 25a to the water storage tank 15a of the electrolytic hydrogen production device IA. 76b to the H2 storage tank 24b of the fuel cell plant IB as appropriate, and the hydrogen utilization line 75. valve 7
It is supplied as fuel to the boiler 60 via 6a.

なお電解式水素製造装置IAの電解槽4aには、エアフ
ィルタ15a、コンプレッサー16a、熱交換器17a
を介して空気が供給できるようになっている。
The electrolytic cell 4a of the electrolytic hydrogen production device IA includes an air filter 15a, a compressor 16a, and a heat exchanger 17a.
Air can be supplied through the

以上において、電力が余剰な時に、電解式水素製造装置
IAを運転する。すなわち電源ライン2から直交変換器
3aを介して電解槽4aに余剰電力を供給し、ボイラ6
0から蒸気供給ライン73を介して電解槽4aに供給さ
れた水蒸気を電気分解してH2を製造し、そのH2をH
2貯槽24aに貯蔵すると共に適宜燃料電池プラントI
BのH2貯槽24bに移送する。また電力が不足する時
には、燃料電池プラントIBを運転し、H2貯槽24b
のH2を燃料電池4bの水素極側に供給し同時に空気を
酸素極に供給して発電を行い、得られた電力を直交変換
器3bを介して電源ライン2に供給する。
In the above, the electrolytic hydrogen production apparatus IA is operated when there is surplus electricity. That is, surplus power is supplied from the power supply line 2 to the electrolytic cell 4a via the orthogonal converter 3a, and the boiler 6
0 through the steam supply line 73 to the electrolytic cell 4a to produce H2, and convert the H2 into H2.
2 storage tank 24a and, as appropriate, the fuel cell plant I.
Transfer to the H2 storage tank 24b of B. In addition, when there is a power shortage, the fuel cell plant IB is operated and the H2 storage tank 24b is operated.
H2 is supplied to the hydrogen electrode side of the fuel cell 4b, and at the same time, air is supplied to the oxygen electrode to generate power, and the obtained power is supplied to the power supply line 2 via the orthogonal converter 3b.

この第6図の実施例においては、電解式水素製造装置I
Aと燃料電池プラントIBとを電力貯蔵運転と発電運転
を交互に切り替えて運転するが、両者は独立しているた
め、双方を同時にラップした状態でも運転できる。
In the embodiment shown in FIG. 6, the electrolytic hydrogen production apparatus I
A and the fuel cell plant IB are operated by alternately switching between power storage operation and power generation operation, but since both are independent, they can be operated even when both are wrapped at the same time.

3発明の効果] 以上説明したことから明らかなように本発明によれば次
のごとき優れた効果を発揮する。
3 Effects of the Invention] As is clear from the above explanation, the present invention exhibits the following excellent effects.

(1)余剰電力で水蒸気を電解して水素として貯蔵する
ことで、貯蔵時の減耗損失が少なく、全体として極めて
高効率な電力貯蔵装置とすることができる。
(1) By electrolyzing water vapor using surplus electricity and storing it as hydrogen, there is little loss attrition during storage, and the overall efficiency of the power storage device is extremely high.

(2)貯蔵した水素を電気化学反応で発電することで効
率の良い発電が行える。
(2) Efficient power generation can be achieved by generating electricity using stored hydrogen through an electrochemical reaction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図は第1
図の酸素水素電気化学反応装置の詳細断面図、第3図は
第2図の酸素水素電気化学反応装置の温度に対する理論
、電解及び発電電圧特性を示す図、第4図は第1図の変
形例を示す系統図、第5図は第1図の池の変形例を示す
系統図、第6図は第5図の変形例を示す系統図である。 図中52は電源ライン、3は電力調整装置、4は酸素水
素電気化学反応装置、7は電解質、8は水素極、9は酸
素極、10は水素極側マニホールド、11は酸素極側マ
ニホールド、12は水蒸気供給ライン、13は水素供給
ライン、14は空気供給ライン、15は貯水槽、24は
H2貯槽である。
Fig. 1 is a system diagram showing one embodiment of the present invention, and Fig. 2 is a system diagram showing an embodiment of the present invention.
Figure 3 is a detailed cross-sectional view of the oxygen-hydrogen electrochemical reaction device shown in Figure 2. Figure 3 is a diagram showing the theory, electrolysis and power generation voltage characteristics for temperature of the oxygen-hydrogen electrochemical reaction equipment shown in Figure 2. Figure 4 is a modification of Figure 1. A system diagram showing an example, FIG. 5 is a system diagram showing a modification of the pond in FIG. 1, and FIG. 6 is a system diagram showing a modification of the pond in FIG. In the figure, 52 is a power supply line, 3 is a power adjustment device, 4 is an oxygen-hydrogen electrochemical reaction device, 7 is an electrolyte, 8 is a hydrogen electrode, 9 is an oxygen electrode, 10 is a hydrogen electrode side manifold, 11 is an oxygen electrode side manifold, 12 is a steam supply line, 13 is a hydrogen supply line, 14 is an air supply line, 15 is a water storage tank, and 24 is an H2 storage tank.

Claims (1)

【特許請求の範囲】 1、電力余剰時の電力を蓄え、これを電力不足時に使用
するための電力貯蔵発電装置において、水素極と酸素極
とが電解質で挟まれて形成されると共にその極の両側に
マニホールドが形成された酸素水素電気化反応装置と、
上記水素極側マニホールドに水蒸気を供給する蒸気供給
ラインと、製造された水素を貯蔵する水素貯蔵装置と、
発電時に酸素水素電気化反応装置の水素極側マニホール
ドに水素を供給する水素供給ライン及び酸素極間マニホ
ールドに空気を供給する空気供給ラインと、電解時に両
極に余剰電力を直流に変換して供給すると共に発電時の
直流を交流に変換する電力調整装置とを備えたことを特
徴とする電力貯蔵発電装置。 2、電力余剰時の電力を蓄え、これを電力不足時に使用
するための電力貯蔵発電装置において、水蒸気を原料と
し、これを余剰電力で電解して水素と酸素を製造する電
解式水素製造装置と、その電解式水素製造装置へ水蒸気
を供給すると共に製造された酸素を燃焼空気とするボイ
ラプラントと、製造された水素を貯蔵する水素貯蔵装置
と、貯蔵された水素と空気中の酸素とを反応させて発電
を行う燃料電池と、余剰電力を直流に変換して電解式水
素製造装置に給電すると共に燃料電池からの直流を交流
に変換する電力調整装置とを備えたことを特徴とする電
力貯蔵発電装置。
[Claims] 1. In a power storage power generation device for storing power during surplus power and using it in times of power shortage, a hydrogen electrode and an oxygen electrode are formed sandwiched between electrolytes, and the electrodes are An oxygen-hydrogen electrification reactor with manifolds formed on both sides,
a steam supply line that supplies steam to the hydrogen electrode side manifold; a hydrogen storage device that stores the produced hydrogen;
A hydrogen supply line that supplies hydrogen to the hydrogen electrode side manifold of the oxygen-hydrogen electrification reactor during power generation, an air supply line that supplies air to the oxygen electrode manifold, and surplus power that is converted into DC and supplied to both electrodes during electrolysis. What is claimed is: 1. A power storage power generation device characterized by comprising: a power adjustment device that converts direct current to alternating current during power generation; 2. An electrolytic hydrogen production device that uses water vapor as a raw material and electrolyzes it with surplus electricity to produce hydrogen and oxygen, in a power storage power generation device that stores electricity when there is surplus electricity and uses it in times of electricity shortage. , a boiler plant that supplies steam to the electrolytic hydrogen production device and uses the produced oxygen as combustion air, a hydrogen storage device that stores the produced hydrogen, and a reactor that reacts the stored hydrogen with oxygen in the air. A power storage device characterized by comprising: a fuel cell that generates electricity by converting surplus power into direct current, and a power adjustment device that converts surplus power into direct current to supply power to an electrolytic hydrogen production device, and converts direct current from the fuel cell into alternating current. Power generator.
JP02234543A 1990-09-06 1990-09-06 Power storage and generator Expired - Fee Related JP3102434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02234543A JP3102434B2 (en) 1990-09-06 1990-09-06 Power storage and generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02234543A JP3102434B2 (en) 1990-09-06 1990-09-06 Power storage and generator

Publications (2)

Publication Number Publication Date
JPH04115470A true JPH04115470A (en) 1992-04-16
JP3102434B2 JP3102434B2 (en) 2000-10-23

Family

ID=16972676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02234543A Expired - Fee Related JP3102434B2 (en) 1990-09-06 1990-09-06 Power storage and generator

Country Status (1)

Country Link
JP (1) JP3102434B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126742A (en) * 1999-10-27 2001-05-11 Sanyo Electric Co Ltd Fuel cell electric power generating apparatus
WO2003085769A1 (en) * 2002-04-05 2003-10-16 Canon Kabushiki Kaisha Charger, fuel battery, and method for charging fuel battery
WO2005001957A2 (en) * 2003-06-23 2005-01-06 Praxair Technology, Inc. Hydrogen storage and supply method
JP2007145638A (en) * 2005-11-28 2007-06-14 Toshiba Corp Hydrogen production system and hydrogen production method
JP2010011732A (en) * 2008-06-25 2010-01-14 Siemens Ag Energy storing system and method therefor to store and supply energy
JP2019522325A (en) * 2016-07-12 2019-08-08 エルジー フューエル セル システムズ インクLg Fuel Cell Systems Inc. Regeneration of fuel cell electrodes
JP2019216093A (en) * 2018-06-12 2019-12-19 パナソニックIpマネジメント株式会社 Fuel cell system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474010B (en) * 2018-11-15 2022-07-26 中广核研究院有限公司 Grid-connected micro-grid system with hydrogen energy recycling function and control method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126742A (en) * 1999-10-27 2001-05-11 Sanyo Electric Co Ltd Fuel cell electric power generating apparatus
WO2003085769A1 (en) * 2002-04-05 2003-10-16 Canon Kabushiki Kaisha Charger, fuel battery, and method for charging fuel battery
WO2005001957A2 (en) * 2003-06-23 2005-01-06 Praxair Technology, Inc. Hydrogen storage and supply method
WO2005001957A3 (en) * 2003-06-23 2006-02-16 Praxair Technology Inc Hydrogen storage and supply method
US7316859B2 (en) * 2003-06-23 2008-01-08 Praxair Technology, Inc. Storage system and method for supplying hydrogen to a polymer membrane fuel cell
JP2007145638A (en) * 2005-11-28 2007-06-14 Toshiba Corp Hydrogen production system and hydrogen production method
JP2010011732A (en) * 2008-06-25 2010-01-14 Siemens Ag Energy storing system and method therefor to store and supply energy
JP2019522325A (en) * 2016-07-12 2019-08-08 エルジー フューエル セル システムズ インクLg Fuel Cell Systems Inc. Regeneration of fuel cell electrodes
JP2019216093A (en) * 2018-06-12 2019-12-19 パナソニックIpマネジメント株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP3102434B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
CN110690855A (en) Energy system of novel net zero energy consumption building based on hydrogen energy storage
KR101911873B1 (en) Integrated hydrogen power system
KR101314238B1 (en) Hydrogen production system using high temperature steam electrolysis connected with nuclear power plant, electrolyzer of water and fuel cell power generation system
JPS61263065A (en) Fuel cell system
KR101163704B1 (en) Fuel cell system using hydrogen from electrolyzer of sea water
CN110273161B (en) Electrolytic ammonia hydrogen production system
CN113278987B (en) SOEC and AEL electrolysis coupling solid circulation hydrogen storage and release system
CN115395047A (en) Methane-electricity-hydrogen reversible solid oxide fuel cell system with shared system components
JPH04115470A (en) Power storage generator
ES2325848B1 (en) HYDROGEN AND ELECTRICAL ENERGY PRODUCTION SYSTEM FROM PHOTOVOLTAIC ENERGY.
CN112003309B (en) Electric power peak shaving system
CN210420193U (en) Hydrogen production device based on distributed photo-thermal water electrolysis and hydrogen fuel cell system
CN110093618A (en) Based on distributed photo-thermal device for preparing hydrogen and hydrogen fuel cell system and working method
JP2006299323A (en) Water electrolytic device
KR20110136196A (en) Fuel cell system using hydrogen from electrolyzer of sea water
CN114725428A (en) Zero-carbon-emission solid oxide fuel cell and renewable energy source combined power generation system with ammonia gas as carrier
CN215365999U (en) Megawatt power station
KR101215336B1 (en) Fuel cell system using hydrogen from electrolyzer of sea water
JPH06276701A (en) Electric power storing device
KR102387117B1 (en) Electric power generating system using heat and new recycled energy
CN210736904U (en) Ammonia electrolysis hydrogen production system
CN114032563A (en) Wave energy power supply-based maritime solid oxide electrolytic cell co-electrolysis system
JPH04349356A (en) Electric power storage system by hydrogen energy
CN220673400U (en) Compressed air and electrolyzed water collaborative energy storage peak shaving system coupled with fuel cell-gas turbine generator set
WO2023053546A1 (en) Hydrogen production system and hydrogen production method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees