JPH04115376A - Image tracking device - Google Patents

Image tracking device

Info

Publication number
JPH04115376A
JPH04115376A JP2236173A JP23617390A JPH04115376A JP H04115376 A JPH04115376 A JP H04115376A JP 2236173 A JP2236173 A JP 2236173A JP 23617390 A JP23617390 A JP 23617390A JP H04115376 A JPH04115376 A JP H04115376A
Authority
JP
Japan
Prior art keywords
maximum value
image
correlation
target
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2236173A
Other languages
Japanese (ja)
Inventor
Hisao Nanba
難波 久男
Yoshio Matsuura
松浦 義雄
Kazutoshi Togano
戸叶 一利
Hiroyuki Fujiwara
宏之 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2236173A priority Critical patent/JPH04115376A/en
Publication of JPH04115376A publication Critical patent/JPH04115376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To attain highly accurate image correlation tracking even when a target moving distance from a target position is less than an image sampling interval by finding out the maximum value of a correlation value image with a target reference image and finding out an estimated maximum value extremely close to a real maximum value based upon respective correlation values of the position of the maximum value and its adjacent point position. CONSTITUTION:An image correlation arithmetic means 20 finds out the maximum value of a correlation value image by target extracting processing based upon correlation processing between an image obtained by an image pickup sensor and a target reference image. An estimation arithmetic means 21 estimates an estimated maximum value extremely close to a real maximum value based upon respective correlation values of the maximum value position and its adjacent point position and outputs the estimated maximum value position as a target position. Since correlation value distribution is approximated to a quadratic curve based upon the correlation maximum value position and its adjacent point position and the maximum value extremely approximate to a real value is estimated, the target can be traced with accuracy of the interval less than the sampling interval even if the sampling interval is larger than a set target moving distance.

Description

【発明の詳細な説明】 〔概要〕 画像センサ取得画像と参照画像との相関処理によって目
標物を抽出し、この抽出座標に応じて撮像センサの視軸
を変向して目標物を追尾する画像追尾装置に関し、 目標物の運動距離が画像サンプリング間隔以下の場合で
も高精度に画像相関追尾することを目的とし、 求められた相関値画像の最大値位置及び該最大値位置の
隣接点位置における夫々の相関値に基づいて、実際の最
大値に極く近い推定最大値を推定で求め、該推定最大値
位置を目標物位置として出力する推定演算手段を設けた
構成とする。
[Detailed Description of the Invention] [Summary] An image in which a target object is extracted by correlation processing between an image acquired by an image sensor and a reference image, and the visual axis of the image sensor is changed in accordance with the extracted coordinates to track the target object. Regarding the tracking device, the aim is to perform image correlation tracking with high precision even when the moving distance of the target is less than the image sampling interval, and to perform image correlation tracking with high precision even when the moving distance of the target is less than the image sampling interval. Based on the correlation value of , an estimated maximum value that is very close to the actual maximum value is estimated, and the estimated maximum value position is output as the target object position.

〔産業上の利用分野〕[Industrial application field]

本発明は、撮像センサ取得画像と参照画像との相関処理
によって目標物を抽出し、この抽出座標に応じて撮像セ
ンサの視軸を変向して目標物を追尾する画像追尾装置に
関する。
The present invention relates to an image tracking device that extracts a target object through correlation processing between an image acquired by an image sensor and a reference image, and tracks the target object by changing the visual axis of the image sensor according to the extracted coordinates.

このような画像追尾装置として、例えば航空機等に搭載
して地上の目標物を追尾する画像追尾装置か知られてい
る。この場合、特に、運動速度が速い目標物に対しても
高精度に追尾することが必要である。
As such an image tracking device, an image tracking device that is mounted on an aircraft or the like to track a target on the ground is known. In this case, it is especially necessary to track a target with high accuracy even if the moving speed is fast.

〔従来の技術〕[Conventional technology]

第6図は従来の一例のブロック図を示す。同図において
、撮像センサlにより取得された画像データはAD変換
器2にてサンプリングされ、アドレス発生器3にて発生
された書込みアドレスに従ってフレームメモリ4に蓄積
される。続いて、フレームメモリ5に予め蓄積されてい
る目標物に対応した形状の参照画像及びフレームメモリ
4に蓄積されているセンサ取得画像はアドレス発生器3
にて発生された読出しアドレスに従って読出され、画像
相関演算器6に供給されてここで相関演算か行なわれ、
相関値か出力される。この相関値は、X方向及びX方向
について第7図に示すような丘陵状の2曲面分布をなす
FIG. 6 shows a block diagram of a conventional example. In the figure, image data acquired by an image sensor 1 is sampled by an AD converter 2 and stored in a frame memory 4 according to a write address generated by an address generator 3. Next, the reference image of the shape corresponding to the target object stored in advance in the frame memory 5 and the sensor acquired image stored in the frame memory 4 are sent to the address generator 3.
The image is read out according to the read address generated by the image correlation calculator 6, where a correlation calculation is performed.
Correlation value is output. This correlation value forms a two-curved hilly distribution in the X direction and the X direction as shown in FIG.

このようにして得られた相関値は最大値検出器7にて相
関最大値を検出され、目標座標演算器8に供給されてこ
こで目標物座標を求められる。続いて、追尾指令演算器
9において目標物座標に基づいて目標物位置予測等の処
理が行なわれて追尾指令か求められ、この追尾指令は視
軸変向機構(ジンバル)10に送られてこれを作動させ
る。
The maximum correlation value of the thus obtained correlation value is detected by the maximum value detector 7, and is supplied to the target coordinate calculator 8, where the coordinates of the target object are determined. Next, the tracking command calculation unit 9 performs processing such as predicting the target object position based on the target object coordinates to obtain a tracking command, and this tracking command is sent to the visual axis deflection mechanism (gimbal) 10 and Activate.

撮像センサ1は視軸変向機構10の動作によって目標物
を捕捉し続ける。
The image sensor 1 continues to capture the target object through the operation of the visual axis deflection mechanism 10.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

いま、説明を簡略化するためにX方向のみについての相
関値を考えてみるに、X方向の画素中心点をXo Z 
X+  −+ Xs 、・・・、該画素中心点における
相関値をCo ”r C1Z  Ct −+ ・・・と
すると1、相関値分布は例えば第5図に示すようになっ
たとする。この場合、画素中心点x0X+  +X* 
 l・・・、はAD変換器2におけるサンプリング点に
相当し、Xs−とX+−との間、X、−とXt ′との
間、・・・はサンプリング間隔△Xとなる。
Now, to simplify the explanation, let's consider the correlation value only in the X direction. Let the pixel center point in the X direction be Xo Z
X+ −+ Pixel center point x0X+ +X*
. . . corresponds to sampling points in the AD converter 2, and between Xs- and X+-, between X, - and Xt', . . . are sampling intervals ΔX.

ところで、従来例は相関値が最大となる画素位置を目標
物位置とする方法であるため、サンプリング間隔△Xが
目標物の運動距離よりも大きい場合、第5図に示すよう
に最大値がサンプリング点とサンプリング点との間に位
置してしまうこともあり、このような場合、目標物を捕
捉できないという問題点があった。
By the way, in the conventional example, the pixel position where the correlation value is maximum is determined as the target object position, so if the sampling interval ΔX is larger than the movement distance of the target object, the maximum value is the sampling point as shown in Fig. The target object may be located between the target object and the sampling point, and in such a case, there is a problem that the target object cannot be captured.

本発明は、目標物の運動距離が画像サンプリング間隔以
下の場合でも高精度に画像相関追尾できる画像追尾装置
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an image tracking device that can perform image correlation tracking with high precision even when the moving distance of a target is less than or equal to the image sampling interval.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理図を示す。同図中、2゜は画像相
関演算手段で、撮像センサ取得画像と目標物参照画像と
の相関処理に基づいた目標物抽出処理で相関値画像の最
大値を求める。21は推定演算手段で、上記求められた
相関値画像の最大値位置及び該最大値位置の隣接点位置
における夫々の相関値に基づいて、実際の最大値に極く
近い推定最大値を推定で求め、該推定最大値位置を目標
物位置として出力する。
FIG. 1 shows a diagram of the principle of the present invention. In the figure, 2° is an image correlation calculation means, which calculates the maximum value of the correlation value image through target extraction processing based on correlation processing between the image captured by the imaging sensor and the target reference image. Reference numeral 21 denotes an estimation calculating means, which estimates an estimated maximum value that is very close to the actual maximum value based on the maximum value position of the correlation value image obtained above and the respective correlation values at adjacent point positions of the maximum value position. and outputs the estimated maximum value position as the target object position.

〔作用〕[Effect]

第5図に示す如く、画像相関演算手段20で求められた
相関最大値をCm(X軸座標Xt−)+その隣接点にお
ける相関値をC+(x軸座標X+  ”)、Cm  (
X軸座標Xり ′)、サンプリング間隔を△X、相関最
大値C8の座標と推定最大値座標との差分をX、推定最
大値座標をXとすると、推定演算手段21では以下の演
算が行なわれる。
As shown in FIG. 5, the maximum correlation value obtained by the image correlation calculation means 20 is Cm (X-axis coordinate Xt-) + the correlation value at the adjacent point is C+ (x-axis coordinate X+''), Cm (
Assuming that the X-axis coordinate is X'), the sampling interval is ΔX, the difference between the coordinate of the maximum correlation value C8 and the estimated maximum value coordinate is It will be done.

x :)(、−−X △X C −〇。x:)(,--X △X C −〇.

このようにして、本発明では相関最大値位置及びその隣
接点位置に基づいて相関値分布を2次曲面近似を用いて
近似し、相関画像内の最大値位置をサンプリング間隔以
下の精度で推定する。
In this way, in the present invention, the correlation value distribution is approximated using quadratic surface approximation based on the correlation maximum value position and its adjacent point positions, and the maximum value position in the correlation image is estimated with an accuracy equal to or less than the sampling interval. .

〔実施例〕〔Example〕

第2図は本発明の一実施例のブロック図を示し、同図中
、第6図と同一構成部分には同一番号を付してその動作
説明を省略する。第2図中、破線にて包囲した部分はマ
イクロプロセッサ又はデジタル・シグナル・ブロセッザ
にて構成されている。
FIG. 2 shows a block diagram of an embodiment of the present invention. In the figure, the same components as those in FIG. 6 are given the same numbers, and the explanation of their operation will be omitted. In FIG. 2, the portion surrounded by a broken line is constituted by a microprocessor or digital signal processor.

第2@において、画像相関演算器6で得られた相関値及
び最大値検出器7で得られた相関最大値は差分演算器1
1に供給され、ここで、最大位置及びその隣接点位置の
夫々の相関値に基づいて画像のX方向及びX方向につい
て夫々の方向で差分値が求められる。即ち、画像相関演
算器6で得られた相関値分布が第3図に示す如くであっ
たとすると、差分演算器11においで、最大値検出器7
で得られた相関最大値IE0 (第5図において説明し
たように、最大値E。のサンプリング点は実際の最大値
から外れた位置にある)と最大値E。のX方向及びX方
向の夫々の隣接点相関値El、E2゜E、、E4とから
、Es−E4.E、−E。9E4−E、、E、−E!、
E、−E、、E、−Eoなる相関差分値が求められた。
In the second @, the correlation value obtained by the image correlation calculator 6 and the correlation maximum value obtained by the maximum value detector 7 are calculated by the difference calculator 1.
1, and here, a difference value is determined in each of the X and X directions of the image based on the correlation values of the maximum position and its adjacent point positions. That is, if the correlation value distribution obtained by the image correlation calculator 6 is as shown in FIG.
The maximum correlation value IE0 (as explained in FIG. 5, the sampling point of the maximum value E is located away from the actual maximum value) and the maximum value E. From the adjacent point correlation values El, E2°E, , E4 in the X direction and the X direction, Es-E4. E, -E. 9E4-E,,E,-E! ,
Correlation difference values E, -E, , E, -Eo were determined.

差分演算器11で得られた相関差分値はピーク推定器1
2に供給され、ここで実際の相関最大値に極く近い推定
最大値が推定演算される。第4図に相関値模式図を示す
如く、最大値検出器7で得られた相関最大値E0の座標
を(xo、yo)。
The correlation difference value obtained by the difference calculator 11 is sent to the peak estimator 1
2, where an estimated maximum value that is very close to the actual maximum correlation value is estimated. As shown in the correlation value schematic diagram in FIG. 4, the coordinates of the maximum correlation value E0 obtained by the maximum value detector 7 are (xo, yo).

X方向のサンプリング間隔を△x、y方向のサンプリン
グ間隔を△y、推定最大値の座標を(X。
The sampling interval in the X direction is Δx, the sampling interval in the y direction is Δy, and the coordinate of the estimated maximum value is (X.

9)、推定最大値座標と最大値検出器7で得られた相関
最大値E0の座標とのX方向及びX方向の差分を夫々X
、Yとすると、推定最大値の座標(x、y)は、 (x、 9) = (XO+X、  3’o +Y)2
      Es  −2Eo  +E4  。
9), the difference in the X direction and the X direction between the estimated maximum value coordinate and the coordinate of the maximum correlation value E0 obtained by the maximum value detector 7 is
, Y, the coordinates (x, y) of the estimated maximum value are (x, 9) = (XO+X, 3'o +Y)2
Es −2Eo +E4.

れて追尾指令か求められる。この追尾指令は視軸変向機
構10に供給され、撮像センサlの視軸を目標物に向1
′Jる。、二の場合、本発明では、第6図に示す従来例
のように最大値検出器7で求められた相関最大値をその
まま目標物位置とするのではなく、求められた相関最大
値E。とその隣接点相関値E、〜E4どに基づいて実際
の相関最大値に極く近い推定最大値を目標物位置として
いるため、サンプリング間隔が目標物運動距離よりも大
きく設定されていても、目標物をサンプリング間隔以下
の精度で追尾することができる。
A tracking command is requested. This tracking command is supplied to the visual axis changing mechanism 10, which directs the visual axis of the image sensor l toward the target.
'Jru. , 2, in the present invention, instead of using the maximum correlation value obtained by the maximum value detector 7 as the target object position as in the conventional example shown in FIG. 6, the obtained correlation maximum value E is used. Since the estimated maximum value, which is very close to the actual maximum correlation value, is set as the target object position based on the correlation values E, ~E4, etc. of the adjacent points, even if the sampling interval is set larger than the target object movement distance, It is possible to track a target with an accuracy less than the sampling interval.

となる。即ち、最大値検出器7で得られた相関最大値E
6とこの隣接点相関値E、−E4とに基づいて実際の相
関値分布を2次曲面近似を用いて近似し、実際の相関最
大値に極く近い推定最大値を求める。
becomes. That is, the maximum correlation value E obtained by the maximum value detector 7
6 and the adjacent point correlation values E and -E4, the actual correlation value distribution is approximated using quadratic surface approximation to obtain an estimated maximum value that is very close to the actual maximum correlation value.

このようにして求められた推定最大値は目標物座標とし
て追尾指令演算器9に供給され、目標物座標に基づいて
目標物位置予測等の処理が行なわ〔発明の効渠〕 以」−説明した如く、本発明によれば、相関最大値位置
及びその隣接点位置に基づいて相関値分布を2次曲面近
似して実際の最大値に極く近い最大値を推定しているた
め、サンプリング間隔が目標物運動距離よりも大きく設
定されていても、目標物をサンプリング間隔以下の精度
で追尾でき、従来例と同じサンプリング間隔のAD変換
器を用いても従来例に比して高精度の画像追尾を行なう
ことかできる。
The estimated maximum value obtained in this way is supplied to the tracking command calculator 9 as the target object coordinates, and processing such as predicting the target object position is performed based on the target object coordinates. According to the present invention, the correlation value distribution is approximated to a quadratic surface based on the maximum correlation value position and its adjacent point positions to estimate the maximum value that is very close to the actual maximum value, so the sampling interval can be reduced. Even if the target movement distance is set larger than the target object movement distance, the target can be tracked with an accuracy less than the sampling interval, and even if an AD converter with the same sampling interval as the conventional example is used, image tracking is more accurate than the conventional example. It is possible to do this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の一実施例のブロック図、第3図は本発
明における2次曲面近似を説明する図、 第4図は本発明における相関値模式図、第5図は相関値
分布を一次元にて示した図、第6図は従来の一例のブロ
ック図、 第7図は相関値分布を二次元にて示した図である。 7は最大値検出器、 9は追尾指令演算器、 10は視軸変更機構、 11.21aは差分演算器、 12.21bはピーク推定器、 20は画像相関演算手段、 21は推定演算手段 を示す。 特許$願人 富 士 通 株式会社 図において、 1は撮像センサ、 2はAD変換器、 4はフレームメモリ(センサ取得画像)、5はフレーム
メモリ(参照画像)、 6は画像相関演算器、 本発明:こおける2次曲面近似を説明する2第 図 本発明の原理図 第1図 E3(X3.Y3) 本発明Iこおける相関値模式図 第4図
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is a diagram explaining quadratic surface approximation in the present invention, and Fig. 4 is a correlation value model in the present invention. 5 is a diagram showing the correlation value distribution in one dimension, FIG. 6 is a block diagram of an example of the conventional technology, and FIG. 7 is a diagram showing the correlation value distribution in two dimensions. 7 is a maximum value detector, 9 is a tracking command calculator, 10 is a visual axis changing mechanism, 11.21a is a difference calculator, 12.21b is a peak estimator, 20 is an image correlation calculation means, 21 is an estimation calculation means show. Patent applicant: Fujitsu Limited In the figure, 1 is an image sensor, 2 is an AD converter, 4 is a frame memory (sensor acquired image), 5 is a frame memory (reference image), 6 is an image correlation calculator, this book Invention: Fig. 2 explaining quadratic surface approximation in this case Principle diagram of the invention Fig. 1 E3 (X3.Y3) Schematic diagram of correlation values in this invention I Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)画像相関演算手段(20)にて、撮像センサ取得
画像と目標物参照画像との相関処理に基づいた目標物抽
出処理で相関値画像の最大値を求め、該最大値の画像上
の位置を目標物位置として目標物を追尾する画像追尾装
置において、 上記求められた相関値画像の最大値位置及び該最大値位
置の隣接点位置における夫々の相関値に基づいて、実際
の最大値に極く近い推定最大値を推定で求め、該推定最
大値位置を目標物位置として出力する推定演算手段(2
1)を設けてなることを特徴とする画像追尾装置。
(1) In the image correlation calculation means (20), the maximum value of the correlation value image is determined by the target object extraction process based on the correlation process between the image sensor acquired image and the target object reference image, and In an image tracking device that tracks a target with the position as the target position, the actual maximum value is determined based on the maximum value position of the correlation value image obtained above and the respective correlation values at the adjacent point positions of the maximum value position. Estimating calculation means (2) for calculating the closest estimated maximum value by estimation and outputting the estimated maximum value position as the target object position.
An image tracking device comprising: 1).
(2)上記推定演算手段(21)は、上記最大値位置と
上記隣接点位置との差分値を求める差分演算器(21a
)と、該差分値、上記最大値位置の座標値、サンプリン
グ間隔から上記推定最大値を求めるピーク推定器(21
b)とにて構成したことを特徴とする請求項1記載の画
像追尾装置。
(2) The estimation calculation means (21) includes a difference calculation unit (21a) that calculates a difference value between the maximum value position and the adjacent point position.
), a peak estimator (21
The image tracking device according to claim 1, characterized in that it comprises the following.
JP2236173A 1990-09-06 1990-09-06 Image tracking device Pending JPH04115376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2236173A JPH04115376A (en) 1990-09-06 1990-09-06 Image tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2236173A JPH04115376A (en) 1990-09-06 1990-09-06 Image tracking device

Publications (1)

Publication Number Publication Date
JPH04115376A true JPH04115376A (en) 1992-04-16

Family

ID=16996853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2236173A Pending JPH04115376A (en) 1990-09-06 1990-09-06 Image tracking device

Country Status (1)

Country Link
JP (1) JPH04115376A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001830A1 (en) * 1992-07-03 1994-01-20 Snell & Wilcox Limited Correlation signal processing
US5838365A (en) * 1994-09-20 1998-11-17 Fujitsu Limited Tracking apparatus for tracking image in local region
CN105096318A (en) * 2015-07-06 2015-11-25 王跃宣 Mobile mini-size object extracting machine and extracting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001830A1 (en) * 1992-07-03 1994-01-20 Snell & Wilcox Limited Correlation signal processing
US5838365A (en) * 1994-09-20 1998-11-17 Fujitsu Limited Tracking apparatus for tracking image in local region
CN105096318A (en) * 2015-07-06 2015-11-25 王跃宣 Mobile mini-size object extracting machine and extracting method

Similar Documents

Publication Publication Date Title
KR940001014B1 (en) Apparatus and method for tracking a target
JP4002919B2 (en) Moving body height discrimination device
KR100296760B1 (en) Moving direction measuring device and tracking device
JP4909991B2 (en) Frame-by-frame and pixel-by-pixel computer image camera frame matching model generation graphics image
JPH07120425B2 (en) Method and apparatus for detecting motion target using 2-frame subtraction
KR20150119337A (en) Generation of 3d models of an environment
JP6708730B2 (en) Mobile
JP2559939B2 (en) Three-dimensional information input device
Koyuncu et al. Vehicle speed detection by using camera and image processing software
JPH0614698B2 (en) Automatic tracking camera
JPH04115376A (en) Image tracking device
KR100994366B1 (en) Method for tracking a movement of a moving target of image tracking apparatus
KR100377357B1 (en) System for tracking target using image feedback and Method therefor
JP3512894B2 (en) Relative moving amount calculating apparatus and relative moving amount calculating method
Dalmia et al. High-speed extraction of 3D structure of selectable quality using a translating camera
Huber et al. Quantitative interpretation of image velocities in real time
JP3230292B2 (en) Three-dimensional object shape measuring device, three-dimensional object shape restoring device, three-dimensional object shape measuring method, and three-dimensional object shape restoring method
CN117495900B (en) Multi-target visual tracking method based on camera motion trend estimation
JPH0973543A (en) Moving object recognition method/device
Aschwanden Methods for real-time tracking of uncooperative targets
JPH045955B2 (en)
JP3347087B2 (en) 3D structure reconstruction method from 2D video
Dalmia et al. Acquisition of 3D structure of selectable quality from image streams
JPH0991433A (en) Object monitor
KR20230057109A (en) Processing method and device of sensing data