JPH04115221A - Faraday rotating element - Google Patents

Faraday rotating element

Info

Publication number
JPH04115221A
JPH04115221A JP23497790A JP23497790A JPH04115221A JP H04115221 A JPH04115221 A JP H04115221A JP 23497790 A JP23497790 A JP 23497790A JP 23497790 A JP23497790 A JP 23497790A JP H04115221 A JPH04115221 A JP H04115221A
Authority
JP
Japan
Prior art keywords
yoke
magnetization
faraday
coil
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23497790A
Other languages
Japanese (ja)
Inventor
Shigeru Takeda
茂 武田
Satoshi Makio
諭 牧尾
Masahiko Sakakibara
正彦 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP23497790A priority Critical patent/JPH04115221A/en
Publication of JPH04115221A publication Critical patent/JPH04115221A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the rotating element which has high reliability, can be driven with a low electric power and has the high extinction ratio of output light by including a coil for converting the magnetization state of a material (FR) having a magneto-optical effect into the space enclosed with a yoke and the FR and setting the magnetization direction of a permanent magnet having a structure to hold the FR at the direction perpendicular to the propagation direction of light. CONSTITUTION:The circular cylindrical Faraday rotor FR 4 is built in a cylindrical Faraday rotator holder 1. This holder 1 is constituted of the permanent magnet and the magnetization direction thereof is nearly perpendicular to the propagation direction of the light. This magnetization state is substantially not changed by the magnetic field generated by the coil 10. The coil 10 for inverting the magnetization of the FR 4 is wound around the FR 4. The yoke 9 having light pass holes 12a, 12b at the center is so disposed as to include the FR and to include the coil 10 as well. The lead wires 10a, 10b of the coil 10 are taken out to the outside of the yoke 9 and the magnetization state of the FR 4 can be easily changed by passing a current thereto. The easy inversion of the magnetization of the FR 4 to invert the current is possible as well. Since this Faraday rotating element has no mechanically moving parts in such a manner, the element has the high reliability and the driving with the low electric power is possible.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、光の偏波面を電流により連続的に変化させ
る機能を有するファラデー回転素子に関するものである
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a Faraday rotation element that has the function of continuously changing the plane of polarization of light using an electric current.

「従来技術」 コヒーレント光通信は、現在の光強度変調方式の10倍
以上の高感度受信を有することや、波長の異なる100
チャンネル以上の同時通信を1本のファイバーで可能な
ことから、テレビ電話、テレビ会議など音声と映像を同
時に伝送する長距離多重通信方式どして期待されている
``Prior art'' Coherent optical communication has high sensitivity reception that is more than 10 times that of the current optical intensity modulation method, and has 100
Since it is possible to simultaneously communicate more than one channel with a single fiber, it is expected to be used in long-distance multiplex communication systems that simultaneously transmit audio and video, such as in videophones and video conferences.

コヒーレント光通信の受信方式では、ファイバーを伝搬
してきた信号光と受信側に置いた局部発振光を干渉させ
るヘテロダイン検波方式がとられる。二つの光を効率よ
く干渉させるためには、二つの光の偏波面を精度よく一
致させる必要がある。
The reception method for coherent optical communication uses a heterodyne detection method in which signal light propagating through a fiber interferes with local oscillation light placed on the receiving side. In order to cause two lights to interfere efficiently, it is necessary to match the planes of polarization of the two lights with high accuracy.

ところが、実際に敷設されたファイバーは、温度変化、
振動、たわみなどが生じ易く、受信側での信号光の偏光
面か変動し、最終的な受信効率か落ちるのが弱点とされ
ている。
However, the fibers actually installed are subject to temperature changes,
Its weak point is that it is susceptible to vibrations and deflections, and the plane of polarization of the signal light on the receiving side fluctuates, reducing the final reception efficiency.

この問題を解決するために、偏波面のずれを回路的に補
正する偏波ダイパーシティ方式と自動制御により信号光
の偏波面を直接光学的に一定にする方式が考えられてい
る。
In order to solve this problem, two methods have been considered: a polarization diversity method that corrects the shift in the polarization plane using a circuit, and a method that directly optically makes the polarization plane of the signal light constant using automatic control.

前者の偏波ダイパーシティ方式は回路が複雑になること
及び応答速度が遅い等の欠点がある。後者の光学的な方
式については、これまで、ニオブ酸リチウムなどの電気
光学効果を用いる方法、ファイバーを機械的に圧縮する
方法、波長板を機械的に回転する方法等が報告されてい
る。これらの方法には一長一短があり、現段階でどれが
最も効率的な方法であると決めることはできない。長期
的な信頼性を考えた場合、機械的な可動部分がある方式
はすたれ、次第に電子的、電磁気的な方式に置き替わっ
てゆくと考えられる。
The former polarization diversity method has drawbacks such as a complicated circuit and slow response speed. Regarding the latter optical method, a method using electro-optic effects such as lithium niobate, a method of mechanically compressing a fiber, a method of mechanically rotating a wave plate, etc. have been reported so far. These methods have advantages and disadvantages, and it is not possible at this stage to determine which method is the most efficient. When considering long-term reliability, it is thought that systems with mechanical moving parts will become obsolete and will be gradually replaced by electronic and electromagnetic systems.

上記の偏波面制御の方法以外に、偏波面を電磁気的に回
転する方法として、古くから磁気光学効果の−っである
ファラデー効果を利用する方法か知られている。
In addition to the method for controlling the plane of polarization described above, there is a known method for electromagnetically rotating the plane of polarization that utilizes the Faraday effect, which is one of the magneto-optical effects.

ファラデー効果には常磁性体によるものと強磁性体によ
るものかある。前音のファラデー効果による偏波面の回
転角は常磁性体に加えられる磁場に比例し、制御し易い
という利点を有するか、90度以上の回転角を得ようと
すると大きな磁界(大きな電力)と大きな試料寸法が必
要となり実用的でない。
The Faraday effect can be caused by paramagnetic materials or ferromagnetic materials. The angle of rotation of the plane of polarization due to the Faraday effect of the front sound is proportional to the magnetic field applied to the paramagnetic material, so it has the advantage of being easy to control, or if you try to obtain a rotation angle of more than 90 degrees, it will require a large magnetic field (large power). It is not practical as it requires a large sample size.

後者のファラデー効果による偏波面の回転角は強磁性体
の光の進行方向の正味の磁化に比例し、90度以上の回
転角を得ようとしても小さな試料寸法で充分である。し
かし、強磁性体の磁化状態は、一般的に強磁性体に加え
られる磁場に対して非線形な挙動を示し、電磁気的な制
御を行うことが著しく困難である。特に、強磁性体の正
味の磁化が零に近い不飽和状態では多磁区構造が生じ易
く、これを偏波面制御素子として使用した場合、出力光
は楕円偏波をとなり、消光比を著しく劣化させる傾向が
ある。
The rotation angle of the plane of polarization due to the latter Faraday effect is proportional to the net magnetization of the ferromagnetic material in the direction in which the light travels, and even if a rotation angle of 90 degrees or more is to be obtained, a small sample size is sufficient. However, the magnetization state of a ferromagnetic material generally exhibits nonlinear behavior with respect to the magnetic field applied to the ferromagnetic material, making it extremely difficult to control it electromagnetically. In particular, in an unsaturated state where the net magnetization of a ferromagnetic material is close to zero, a multi-domain structure is likely to occur, and when this is used as a polarization control element, the output light becomes elliptically polarized, significantly degrading the extinction ratio. Tend.

第9図は既に本発明者等によって出願されたコア型磁気
回路を有するファラデー回転素子の構造を示す。本構造
では、中空のヨーク9の中央部分にYIG単結晶等のフ
ァラデー回転子(FR)’4を配し、線輪10がFR4
の周りに巻かれている。
FIG. 9 shows the structure of a Faraday rotary element having a core type magnetic circuit, which has already been filed by the present inventors. In this structure, a Faraday rotator (FR) '4 made of YIG single crystal or the like is arranged in the center of the hollow yoke 9, and the wire ring 10 is FR4.
wrapped around.

この磁気回路はヨーク9とFR4により閉磁路が形成さ
れており、きわめて少ない電力でFR4を磁気的に飽和
させることが可能である。
In this magnetic circuit, a closed magnetic path is formed by the yoke 9 and the FR4, and it is possible to magnetically saturate the FR4 with an extremely small amount of electric power.

第10図は、第9図の従来構造を有するファラデー回転
素子の動作特性を示す。この図から分かるように、約6
0mA(電力約0.3mW)の微小電流でファラデー回
転角を45度に飽和させることができるが、電流零の近
傍のファラデー回転角が急激に変化する領域では、動作
が不安定なだけではなく、消光比が17dBと著しく劣
化し、コヒーレント光通信等の偏波面制御素子として使
用する場合、好ましくない。
FIG. 10 shows the operating characteristics of the Faraday rotation element having the conventional structure shown in FIG. As you can see from this figure, about 6
It is possible to saturate the Faraday rotation angle to 45 degrees with a minute current of 0mA (power approximately 0.3mW), but in the region where the Faraday rotation angle changes rapidly near zero current, the operation is not only unstable. , the extinction ratio is significantly degraded to 17 dB, which is not preferable when used as a polarization plane control element for coherent optical communication or the like.

「発明が解決しようとしている問題点」上に述べたよう
に、従来のファラデー効果を用いたファラデー回転素子
は、常磁性体の場合、大きな電力か必要であること及び
寸法がきわめて大きくなること、強磁性体の場合、消光
比の劣化をともなうなどの問題点かあった。
"Problems to be Solved by the Invention" As stated above, conventional Faraday rotary elements using the Faraday effect require a large amount of electric power and are extremely large in size in the case of paramagnetic materials. In the case of ferromagnetic materials, there were problems such as deterioration of extinction ratio.

本発明の目的は、これらの問題点を解決するために、新
しい構造の磁気回路を有するファラデー回転素子を提供
することである。
An object of the present invention is to provide a Faraday rotation element having a magnetic circuit with a new structure in order to solve these problems.

「l¥Ut点を解決するための手段」 上記目的を達成するために、本発明のファラデー回転素
子は、中空のヨークの中心を貫通するように光の通過孔
を設け、該中空のヨークの内部の中心に磁気光学効果を
有する物質(F R)を設け、前記FRと前記ヨークに
より閉磁路に近い磁気回路を形成するとともに、前記ヨ
ークとFRに囲まれた空間にFRの磁化状態を変化させ
るための線輪を内包し、かつ前記FRを近接して保持す
る構造物が永久磁石により構成されているとともに前記
永久磁石の磁化の方向が光の伝搬方向に対して直角方向
であることを特徴としている。
"Means for solving the l\Ut point" In order to achieve the above object, the Faraday rotation element of the present invention is provided with a light passage hole penetrating the center of the hollow yoke. A substance (FR) having a magneto-optical effect is provided at the center of the interior, and the FR and the yoke form a magnetic circuit close to a closed magnetic circuit, and the magnetization state of the FR is changed in the space surrounded by the yoke and the FR. The structure containing the wire ring for causing the FR and holding the FR in close proximity is constituted by a permanent magnet, and the direction of magnetization of the permanent magnet is perpendicular to the propagation direction of the light. It is a feature.

「効果」 本発明の構成を用いれば、極めて信頼性が高く、低電力
で駆動でき、かつ出力光の消光比の高いファラデー回転
素子を提供する二とかできる「実施例」 以F本発明を実施例を用いて詳細に説明する。
"Effects" By using the configuration of the present invention, it is possible to provide a Faraday rotation element that is extremely reliable, can be driven with low power, and has a high extinction ratio of output light. This will be explained in detail using an example.

第1図は、本発明のファラデー回転素子の原理構造を示
す実施例の−っである。
FIG. 1 is an embodiment showing the principle structure of the Faraday rotation element of the present invention.

第2図の斜視図に示すように、円柱状ファラデー回転子
FR4は円筒状ファラデー回転子ホルダー1の中に内蔵
されている。本実施例の場合、FR4はYIG単結晶に
より構成されている。また、本発明の特徴であるホルダ
ー1は永久磁石より構成されており、その磁化方向は光
の伝搬方向とほぼ垂直である。この磁化状態は線輪10
によって発生する磁界によってはほとんど変化しない。
As shown in the perspective view of FIG. 2, the cylindrical Faraday rotator FR4 is housed in the cylindrical Faraday rotator holder 1. As shown in the perspective view of FIG. In this embodiment, FR4 is made of YIG single crystal. Further, the holder 1, which is a feature of the present invention, is composed of a permanent magnet, and its magnetization direction is approximately perpendicular to the propagation direction of light. This magnetization state is wire ring 10
It hardly changes depending on the magnetic field generated by the magnetic field.

FR4の磁化を反転させるために線輪10がFR4の周
りに巻かれている。この周りに、中心に光の通過孔12
a、12bを有するヨーク9か中心にFR4を内包し、
かつ線輪】Oも内包するように配されている。
A wire ring 10 is wrapped around the FR4 to reverse the magnetization of the FR4. Around this, there is a light passage hole 12 in the center.
FR4 is included in the center of the yoke 9 having a and 12b,
It is arranged so that it also includes O.

ヨーク9は、本実施例の場合、軟磁性材料であるハーマ
ロ−イ警こより構ハ′X、ごれている。二のヨーク9と
Flし1はほぼ閉磁路に近い磁気回路の4F)成となっ
ている。
In this embodiment, the yoke 9 is made of a soft magnetic material such as Hermalloy, and is therefore dirty. The second yoke 9 and the second yoke 1 form a 4F configuration of a magnetic circuit that is almost a closed magnetic path.

線輪lOのリード線10 a + ] Obはヨーク9
の外に取り出され、これに電流を流すこと1こよりF 
R,4の磁化状態を容易に変化させることができる。従
って、電流を反転させるとFR4の磁化の反転も容易に
てきる。
Lead wire 10 a + of wire ring lO] Ob is yoke 9
F
The magnetization state of R,4 can be easily changed. Therefore, when the current is reversed, the magnetization of FR4 can also be easily reversed.

第1図の本発明の構造と第9図の従来技術の構造を比較
すると明かなように、両者の違いは材質か永久磁石のF
Rホルダー1を付加した点である。
As is clear from comparing the structure of the present invention shown in Fig. 1 with the structure of the prior art shown in Fig. 9, the difference between the two is the material or the F of the permanent magnet.
This is the addition of R holder 1.

第9図の従来構造でも、FRホルダーとして非磁性体の
ものを使用する二とがある。本発明の磁気回路では、ホ
ルダー1の永久磁石の磁化方向か光の伝搬方向(光軸)
に対して垂直であることが特徴である。
In the conventional structure shown in FIG. 9, there is also a second method in which a non-magnetic material is used as the FR holder. In the magnetic circuit of the present invention, the magnetization direction of the permanent magnet of the holder 1 or the propagation direction of light (optical axis)
It is characterized by being perpendicular to.

第3図は、本発明のファラデー回転素子の他の実施例を
示す。この場合、円筒型の永久磁石2が線輪10の外側
に配されている。第4図は、第3図のAA’ 断面図で
ある。永久磁石2の磁化の方向は、円筒型の一つの半径
方向に沿っている。
FIG. 3 shows another embodiment of the Faraday rotation element of the present invention. In this case, a cylindrical permanent magnet 2 is arranged outside the wire ring 10. FIG. 4 is a sectional view taken along line AA' in FIG. 3. The direction of magnetization of the permanent magnet 2 is along one radial direction of the cylinder.

この場合、上記実施例に比較して永久磁石2かドR4よ
り離れるので、FR4に印加される磁界は弱くなる。し
かし、第4図の断面図に示すように、外周ヨーク9によ
り円筒型磁石2の外側の磁荷が事実土兄えなくなるので
、その分FR4に印加される磁界は強くなる。
In this case, since the permanent magnet 2 is further away from the magnet FR4 than in the above embodiment, the magnetic field applied to the magnet FR4 becomes weaker. However, as shown in the cross-sectional view of FIG. 4, the magnetic charge on the outside of the cylindrical magnet 2 is effectively prevented by the outer circumferential yoke 9, so that the magnetic field applied to the FR 4 becomes stronger accordingly.

これはヨーク9が無い場合は円筒型磁石の外側の磁荷に
よる磁界が、内面の磁荷による磁界と反対方向となり、
FR4に印加される磁界を弱めるように作用するからで
ある。
This is because if there is no yoke 9, the magnetic field due to the magnetic charges on the outside of the cylindrical magnet will be in the opposite direction to the magnetic field due to the magnetic charges on the inside.
This is because it acts to weaken the magnetic field applied to FR4.

第5図は、第3図の本発明の構造を有するファラデー回
転素子の動作特性を示す。印加電流が+200mAでフ
ァラデー回転角は飽和値の+50度に達し、印加電流を
零に戻した場合、ファラデー回転角はほぼ0度となり、
その間はほぼ直線的に変化する。印加電流を反転し一2
00mAにするとファラデー回転角は、同様に飽和値の
一50度に達する。
FIG. 5 shows the operating characteristics of the Faraday rotation element having the structure of the invention shown in FIG. When the applied current is +200 mA, the Faraday rotation angle reaches the saturation value of +50 degrees, and when the applied current is returned to zero, the Faraday rotation angle becomes almost 0 degrees,
During that time, it changes almost linearly. Reverse the applied current and
At 00 mA, the Faraday rotation angle similarly reaches the saturation value of 150 degrees.

一方、出ツノ光の消光比は±100mAで30dB以上
あるのに対して、電流か零近傍でも28dB以下にはな
らなかった。これは、第1.0図の従来技術の動作特性
と比較して明らかなように、本発明の構造では、電流零
近傍で消光比は約10dBの改善効果があった。これは
、FRホルダー1による直角方向のバイアス磁界のため
に、電流零近傍での多磁区構造の生成か抑えられたため
と考えられる。
On the other hand, the extinction ratio of the output horn light was more than 30 dB at ±100 mA, but it did not become less than 28 dB even when the current was near zero. As is clear from comparison with the operating characteristics of the prior art shown in FIG. 1.0, the structure of the present invention has an effect of improving the extinction ratio by about 10 dB near zero current. This is considered to be because the generation of a multi-domain structure near zero current was suppressed due to the bias magnetic field in the orthogonal direction by the FR holder 1.

第6図、第7図は本発明の他の実施例を示す図である。FIGS. 6 and 7 are diagrams showing other embodiments of the present invention.

これらは線輪10の容積を増加させるために中空のヨー
ク9の中心部分に突起11を設けた場合である。ヨーク
9は組立が容易なように分割部13て分割組立可能とな
っている。第8図はコイルの発熱を外部に逃がすために
周辺部に切り込み14を設けた場合である。
These are cases in which a protrusion 11 is provided at the center of the hollow yoke 9 in order to increase the volume of the wire ring 10. The yoke 9 can be divided and assembled using a dividing portion 13 for easy assembly. FIG. 8 shows a case where a notch 14 is provided at the periphery in order to release the heat generated by the coil to the outside.

「発明の効果」 このように本発明のファラデー回転素子は、機械的な可
動部分がないことから高い信頼性有し、かつ低電力駆動
が可能であることから、特徴ある光関連の重要部品とし
て産業界の諸要求に応えるものである。
"Effects of the Invention" As described above, the Faraday rotary element of the present invention has high reliability because it has no mechanically moving parts, and can be driven with low power, so it can be used as a unique and important optical-related component. It meets the various demands of industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は不発明の実施例の構造を示す図、第
5図は本発明の実施例の動作特性を示す特性図、第6図
乃至第8図は本発明の他の実施例を示す図、第9図は従
来技術の構造を説明するための図、及び第10図は従来
技術の動作特性を説明するための図である。 1;ファラデー回転子(FR,)ホルダー(永久磁石)
、2;円筒型磁石 4:ファラデー回転子(FR)、10.線輪、9:ヨー
ク、 10a、10b;電流端子11;突起、12;通
過孔、 13;分割部分、14;周辺の切込み
1 to 4 are diagrams showing the structure of an embodiment of the invention, FIG. 5 is a characteristic diagram showing the operating characteristics of the embodiment of the invention, and FIGS. 6 to 8 are diagrams showing other embodiments of the invention. FIG. 9 is a diagram showing an example, and FIG. 9 is a diagram for explaining the structure of the prior art, and FIG. 10 is a diagram for explaining the operating characteristics of the prior art. 1; Faraday rotator (FR,) holder (permanent magnet)
, 2; Cylindrical magnet 4: Faraday rotator (FR), 10. Wire ring, 9: Yoke, 10a, 10b; Current terminal 11; Protrusion, 12; Passing hole, 13; Divided portion, 14; Peripheral notch

Claims (1)

【特許請求の範囲】 1)中空のヨークの中心を貫通するように光の通過孔を
設け、該中空のヨークの内部の中心に磁気光学効果を有
する物質(FR)を設け、前記FRと前記ヨークにより
閉磁路に近い磁気回路を形成するとともに、前記ヨーク
とFRに囲まれた空間にFRの磁化状態を変化させるた
めの線輪を内包したファラデー回転素子において、光の
伝搬方向(光軸)とほぼ垂直なバイアス磁界を前記FR
に印加したことを特徴とするファラデー回転素子。 2)第1項記載のファラデー回転素子において、前記バ
イアス磁界の印加方法が、前記FRに近接し、これを保
持する構造物が永久磁石により構成されていることによ
り実現されていることを特徴とするファラデー回転素子
。 3)第1項記載のファラデー回転素子において、前記バ
イアス磁界の印加方法が、前記線輪の外側に配された永
久磁石により実現されていることを特徴とするファラデ
ー回転素子。
[Claims] 1) A light passage hole is provided so as to pass through the center of a hollow yoke, a material (FR) having a magneto-optical effect is provided at the center of the inside of the hollow yoke, and the FR and the In a Faraday rotation element that forms a magnetic circuit close to a closed magnetic path by a yoke and includes a wire ring for changing the magnetization state of the FR in a space surrounded by the yoke and the FR, the direction of propagation of light (optical axis) The bias magnetic field almost perpendicular to the FR
A Faraday rotator element characterized in that a voltage is applied to the Faraday rotator. 2) In the Faraday rotation element according to item 1, the method of applying the bias magnetic field is realized by a structure that is close to the FR and that holds it constituted by a permanent magnet. Faraday rotating element. 3) The Faraday rotator element according to item 1, wherein the method of applying the bias magnetic field is realized by a permanent magnet placed outside the wire ring.
JP23497790A 1990-09-05 1990-09-05 Faraday rotating element Pending JPH04115221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23497790A JPH04115221A (en) 1990-09-05 1990-09-05 Faraday rotating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23497790A JPH04115221A (en) 1990-09-05 1990-09-05 Faraday rotating element

Publications (1)

Publication Number Publication Date
JPH04115221A true JPH04115221A (en) 1992-04-16

Family

ID=16979216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23497790A Pending JPH04115221A (en) 1990-09-05 1990-09-05 Faraday rotating element

Country Status (1)

Country Link
JP (1) JPH04115221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760946A (en) * 1994-01-21 1998-06-02 Fujitsu Limited Optical isolator, faraday rotator suitable for use in the same, and laser diode module incorporating the same
JP2003014800A (en) * 2001-07-05 2003-01-15 Nec Tokin Corp Electric field sensing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760946A (en) * 1994-01-21 1998-06-02 Fujitsu Limited Optical isolator, faraday rotator suitable for use in the same, and laser diode module incorporating the same
JP2003014800A (en) * 2001-07-05 2003-01-15 Nec Tokin Corp Electric field sensing device

Similar Documents

Publication Publication Date Title
US5739943A (en) Polarization control unit
KR930010691B1 (en) Faraday rotator and optic switch with front apparatus
KR970066614A (en) Optical Variable Attenuator
JPH10161076A (en) Optical device using magnetooptical effect
US4856878A (en) Magnetic configuration for Faraday rotators
JPH04115221A (en) Faraday rotating element
WO2003073156A1 (en) Optical attenuator modulator
US5375009A (en) Optical isolator device having a wider cutoff wavelength band for a return light beam
JPS60200225A (en) Faraday rotator
JP2784896B2 (en) Polarization plane switch and optical switch using the same
JPS59197013A (en) Faraday rotor
JPH03142415A (en) Light intensity modulating element
JP3534891B2 (en) Manufacturing method of optical isolator
JP3936451B2 (en) Optical attenuator module
JPH02201419A (en) Faraday rotation element and optical switch using same
JPH01133027A (en) Optical parts
JPH02201416A (en) Optical isolator
JP2001272639A (en) Optical device
JPS5745517A (en) Optical isolator
JP2946071B2 (en) Mechanical optical switch
JPH02201420A (en) Faraday rotation element and optical switch using it
JPH11242248A (en) Magneto-optics photonic switch
JPS58207022A (en) Optical isolator
JPS56168625A (en) Memory type magnetooptic thin film switch
JP2001174754A (en) Optical isolator and optical circulator