JPH04115110A - Method for measuring length of underground pipe branched from common underground pipe for supplying gas - Google Patents

Method for measuring length of underground pipe branched from common underground pipe for supplying gas

Info

Publication number
JPH04115110A
JPH04115110A JP23627890A JP23627890A JPH04115110A JP H04115110 A JPH04115110 A JP H04115110A JP 23627890 A JP23627890 A JP 23627890A JP 23627890 A JP23627890 A JP 23627890A JP H04115110 A JPH04115110 A JP H04115110A
Authority
JP
Japan
Prior art keywords
gas
buried pipe
detection
branch
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23627890A
Other languages
Japanese (ja)
Inventor
Isao Saito
功 斉藤
Takanori Ito
伊藤 高則
Hiroshi Nakamura
浩 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP23627890A priority Critical patent/JPH04115110A/en
Publication of JPH04115110A publication Critical patent/JPH04115110A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure the length accurately even for complicated pipelines by computing the length of underground branched pipe based on the passing time of detecting gas through the underground branched pipe, the time for passing a detecting pipe by a specified distance, and the specified time. CONSTITUTION:A gas-meter cock 4 is opened, and detecting gas is filled in a supply pipe 2. Then, the gas 5 is in the filled state in the supply pipe 2. A part of the gas overflows through a service, tee 3 and flows into a main branch pipe 1. When the flow of supply gas 7 in the main branch pipe 1 is less, the overflowed gas 5 remains in the vicinity of the service tee 3. This becomes the cause of error in boundary measurement. When the gas 7 in the main branch pipe 1 is less, the gas 7 is made to flow out at a neighboring user house corresponding to another supply pipe 8 which is branched from the main branch pipe 1 at a position close to the supply pipe 2. Thus, the flow is generated. At this time, a boundary 9a is formed between the gas 5 on the side of the supply pipe 2 and the gas 7 on the side of the main branch pipe 1 at the part of the service tee 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガス供給用共通埋設管から分岐した分岐埋設
管の測長を行うための方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the length of a branch buried pipe branched from a common buried gas supply pipe.

(従来の技術) 例えば都市ガス供給系統に於いて、共通埋設管である本
支管から分岐した供給管の内面修理を行う場合には、そ
の長さを図る必要があり、従来このような供給管の測長
は、地上に於いてサービスチー等の分岐取出位置を推定
してメジャーにより平面的に行っている。
(Prior art) For example, in a city gas supply system, when repairing the inner surface of a supply pipe branched from a main branch pipe, which is a commonly buried pipe, it is necessary to measure its length. The length is measured on the ground using a tape measure by estimating the branch extraction position of the service tee, etc.

(発明が解決しようとする課題) メジャーによる地上からの測長では、切り回し等の曲が
り部を有する複雑な配管系では測ることができず、また
取出位置を推定して測長を行うので誤差が非常に大きい
(Problems to be Solved by the Invention) Length measurement from the ground using a tape measure cannot measure complex piping systems that have curved parts such as cuts, and the length measurement is performed by estimating the extraction position, which may result in errors. is very large.

本発明は、このような従来の課題を解決し、複雑な配管
系でも正確に測長を行える測長方法を提供することを目
的とするものである。
It is an object of the present invention to provide a length measuring method that can solve these conventional problems and accurately measure the length of even a complicated piping system.

(課題を解決するための手段) 上述した課題を解決するために、まず本発明の測長方法
は、ガス供給用共通埋設管から分岐した分岐埋設管に、
流路開閉手段を設けた測長端から供給ガスと識別可能な
検出用ガスを充填する過程と、充填により分岐埋設管か
ら共通埋設管に至った検出用ガスを、該共通埋設管を流
れる供給ガスにより移動させる過程と、前記分岐埋設管
の測長端に、前記流路開閉手段を介して同内径の検出管
を接続し、前記測長端に対応して第一のセンサを設置す
ると共に、該検出管に於いて前記第一のセンサから所定
距離を隔てた個所に第二のセンサを設置する過程と、前
記分岐埋設管内の検出用ガスを検出管を介して流出させ
て、その前後の境界の通過を、計時しながら前記第一及
び第二のセンサにより検出する過程とにより、前記検出
用ガスが前記分岐埋設管を通過する時間と、検出管の所
定距離を通過する時間を測定し、これらの時間の比と、
検出管の前記所定距離とから該分岐埋設管の長さを算出
するようにしたものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, first, the length measuring method of the present invention includes a method for measuring a length of a branch buried pipe branched from a common buried pipe for gas supply.
The process of filling a detection gas that can be distinguished from the supply gas from the measuring end provided with a flow path opening/closing means, and the supply of the detection gas that has reached the common buried pipe from the branch buried pipe through the filling and flows through the common buried pipe. a process of moving the branch buried pipe with gas, connecting a detection tube with the same inner diameter to the length measurement end of the branch buried pipe via the flow path opening/closing means, and installing a first sensor corresponding to the length measurement end; , installing a second sensor in the detection tube at a predetermined distance from the first sensor, and causing the detection gas in the branch buried pipe to flow out through the detection tube, before and after that. The time for the detection gas to pass through the branch buried pipe and the time for it to pass a predetermined distance of the detection pipe are measured by the process of detecting passage of the boundary by the first and second sensors while measuring the time. and the ratio of these times,
The length of the branch buried pipe is calculated from the predetermined distance of the detection pipe.

また本発明の他の測長方法は、ガス供給用共通埋設管か
ら分岐した分岐埋設管に、流路開閉手段を設けた測長端
から供給ガス及び空気と識別可能な検出用ガスを充填す
る過程と、充填により分岐埋設管から共通埋設管に至っ
た検出用ガスを、該共通埋設管を流れる供給ガスにより
移動させる過程と、前記分岐埋設管の測長端に、前記流
路開閉手段を介して同内径の検出管を接続し、該検出管
に於いて前記測長端から所定距離を隔てた個所にセンサ
を設置する過程と、前記分岐埋設管内の検出用ガスを検
出管を介して流出させて、その前後の境界の通過を、計
時しながら前記センサにより検出する過程とにより、検
出用ガスが前記分岐埋設管を通過する時間と、検出管の
所定距離を通過する時間を測定し、これらの時間の比と
、検出管の前記所定距離とから該分岐埋設管の長さを算
出するようにしたものである。
Another length measuring method of the present invention is to fill a branch buried pipe branched from a common buried pipe for gas supply with a detection gas that can be distinguished from the supply gas and air from the length measurement end provided with a flow path opening/closing means. a step of moving the detection gas that has reached the common buried pipe from the branch buried pipe by filling with the supply gas flowing through the common buried pipe; and a step of installing the flow path opening/closing means at the measuring end of the branch buried pipe. connecting a detection tube with the same inner diameter through the detection tube, and installing a sensor in the detection tube at a predetermined distance from the length measuring end; The time taken for the detection gas to pass through the branch buried pipe and the time taken for the detection gas to pass a predetermined distance of the detection pipe is measured by the process of letting the gas flow out and detecting the passage of the boundary before and after it with the sensor while measuring the time. The length of the branch buried pipe is calculated from the ratio of these times and the predetermined distance of the detection pipe.

上記の方法に於いて、検出用ガスの移動を行うための供
給ガスの流れは、測定を行う分岐埋設管に近接した位置
で共通埋設管から分岐した他の分岐埋設管から供給ガス
を流出させて発生させることができる。
In the above method, the flow of the supply gas for moving the detection gas is such that the supply gas flows out from another branch buried pipe that branches from the common buried pipe at a position close to the branch buried pipe where measurement is performed. can be generated.

また分岐埋設管からの検出用ガスの流出は、層流状態に
て移動させて行うことが好ましい。
Further, it is preferable that the detection gas be discharged from the branch buried pipe by moving it in a laminar flow state.

更に、上記の方法に於いて、測定端から充填する検出用
ガスは、圧力を供給ガスの圧力よりも若干高く設定する
と共に、量を地上での予測長から換算した分岐埋設管の
全容積の1.5倍〜2倍とすると良い。
Furthermore, in the above method, the pressure of the detection gas filled from the measurement end is set slightly higher than the pressure of the supply gas, and the amount is equal to the total volume of the branch buried pipe converted from the predicted length on the ground. It is good to set it to 1.5 times to 2 times.

また上記の方法に於いて、前記センサによる検出用ガス
の検出信号は、記録計に経時的に記録して、検出用ガス
が前記分岐埋設管を通過する時間と、検出管の所定距離
を通過する時間を測定することができる。
Further, in the above method, the detection signal of the detection gas by the sensor is recorded on a recorder over time, and the time when the detection gas passes through the branch buried pipe and the time when the detection gas passes through a predetermined distance of the detection pipe are recorded. time can be measured.

また上記の各センサは、検出管に予め設置しておくこと
ができる。
Moreover, each of the above-mentioned sensors can be installed in the detection tube in advance.

(作用) 測長端から充填することにより、分岐埋設管から共通埋
設管に至った検出用ガスは、共通埋設管を流れる供給ガ
スにより、該共通埋設管に沿って移動するので、分岐部
には供給ガスと検出用ガスとの明確な境界が生じ、従っ
て検出用ガスは分岐埋設管内にのみ、即ち測長範囲内に
のみ充填状態となる。
(Function) By filling from the measuring end, the detection gas that has reached the common buried pipe from the branch buried pipe moves along the common buried pipe by the supply gas flowing through the common buried pipe, so that it does not reach the branch part. In this case, there is a clear boundary between the supply gas and the detection gas, and therefore the detection gas is filled only in the branch buried pipe, that is, only within the length measurement range.

かかる状態に於いて、検出管を介して分岐埋設管内の検
出用ガスを流出させると、その流れと共に、その前端側
の境界、即ち空気との境界及び後端側の境界、即ち供給
ガスとの境界も移動する。
In such a state, when the detection gas in the branch buried pipe is made to flow out through the detection tube, the front end boundary, that is, the boundary with the air, and the rear end side boundary, that is, the boundary with the supply gas, will flow. Boundaries also move.

分岐埋設管の測長端に対応させた第一のセンサは、流出
の当初から前端側の検出用ガスを検出状態で、時間の経
過により後端側の境界が通過すると非検出状態となる。
The first sensor corresponding to the length measuring end of the branch buried pipe is in a state of detecting the detection gas on the front end side from the beginning of the outflow, and becomes a non-detecting state when the boundary on the rear end side passes over time.

従って、流出の開始時点から第一のセンサが非検出状態
となるまでの経過時間は、検出用ガスの後端側の境界が
、分岐部から測長端まで移動する所要時間に相当する。
Therefore, the elapsed time from the start of outflow until the first sensor enters the non-detection state corresponds to the time required for the boundary on the rear end side of the detection gas to move from the branch part to the length measurement end.

一方、第一のセンサを通過した後端側の境界は、所定時
間経過後に第二のセンサ部分を通過するので、第二のセ
ンサはこの時点で検出用ガスの非検出状態となる。従っ
て、第一のセンサが非検出状態となってから、次いで第
二のセンサが非検出状態となるまでの経過時間は、後端
側の境界が検出管の所定距離を移動する所要時間に相当
する。
On the other hand, since the boundary on the rear end side that has passed through the first sensor passes through the second sensor portion after a predetermined period of time has passed, the second sensor is in a non-detecting state of the detection gas at this point. Therefore, the elapsed time from when the first sensor becomes non-detecting state to when the second sensor becomes non-detecting state is equivalent to the time required for the rear edge side boundary to move a predetermined distance of the detection tube. do.

ところで検出管は分岐埋設管と同内径であり、検出管内
を流れる検出用ガスの流速は分岐埋設管内の流速と等し
いので、いずれの管を流れる場合にも、経過時間は管長
に比例する。従って前記経過時間の比は、分岐埋設管の
長さと検出管の所定距離の比に対応するので、これらの
比と所定距離とから、分岐埋設管の長さを算出すること
ができる。
By the way, the detection tube has the same inner diameter as the branch buried pipe, and the flow rate of the detection gas flowing in the detection tube is equal to the flow rate in the branch buried pipe, so the elapsed time is proportional to the length of the pipe no matter which tube it flows through. Therefore, since the ratio of the elapsed time corresponds to the ratio of the length of the branch buried pipe and the predetermined distance of the detection tube, the length of the branch buried pipe can be calculated from these ratios and the predetermined distance.

以上の動作に於いて、検出用ガスの移動を行うための供
給ガスの流れは、測定を行う分岐埋設管に近接した位置
で共通埋設管から分岐した他の分岐埋設管から供給ガス
を流出させることにより容易に発生させることができる
。また分岐埋設管からの検出用ガスの流出は層流状態に
て行えば、検出用ガス及び供給ガスは、層流移動により
明瞭な境界を保持することができる。更に、上記の方法
に於いて、測定端から充填する検出用ガスは、圧力を供
給ガスの圧力よりも若干高い程度に設定すれば、共通埋
設管内の供給ガスの圧力変動なしに検品用ガスの充填を
行うことができる。また、その充填量は地上での予測長
から換算した分岐埋設管の全容積の1.5倍〜2倍とす
れば、不十分な量による測定誤差を防止することができ
る。
In the above operation, the flow of the supply gas for moving the detection gas is such that the supply gas flows out from another branch buried pipe that branches from the common buried pipe at a position close to the branch buried pipe where measurement is performed. This can be easily generated. Further, if the detection gas flows out from the branch buried pipe in a laminar flow state, the detection gas and the supply gas can maintain a clear boundary due to laminar flow movement. Furthermore, in the above method, if the pressure of the detection gas filled from the measurement end is set to a level slightly higher than the pressure of the supply gas, the test gas can be filled without fluctuations in the pressure of the supply gas in the common buried pipe. Filling can be done. Moreover, if the filling amount is 1.5 to 2 times the total volume of the branch buried pipe calculated from the predicted length on the ground, measurement errors due to insufficient amount can be prevented.

また上記の方法に於いて、検出用ガスは、供給ガスと共
に空気とも識別可能なものとすると共に、第二のセンサ
は、それを検出可能とすれば、該第二のセンサは検出用
ガスの前端側及び後端側の境界のいずれも検出すること
ができ、従って第二のセンサのみで前記経過時間の両者
を測定することができ、前記第一のセンサを省略するこ
とができる。
Further, in the above method, if the detection gas is distinguishable from the supply gas and air, and the second sensor is capable of detecting it, the second sensor is configured to detect the detection gas. Both the front end side and rear end side boundaries can be detected, and therefore both the elapsed times can be measured using only the second sensor, and the first sensor can be omitted.

(実施例) 次に本発明の実施例を図について説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図〜第3図は本発明を都市ガス供給系統の埋設管に
適用した実施例を模式的に表したもので、かかる図に於
いて、符号1はガス供給用共通埋設管としての本支管で
ある。そして符号2はこの本支管lから分岐した分岐埋
設管、即ち供給管であり、符号3はサービスチーである
。また符号4はガスメータコックであり、本実施例に於
いては、このガスメータコック4を測長端の流路開閉手
段としている。
Figures 1 to 3 schematically represent an embodiment in which the present invention is applied to a buried pipe in a city gas supply system. It is a branch pipe. Reference numeral 2 is a branch buried pipe branched from this main branch pipe 1, that is, a supply pipe, and reference numeral 3 is a service pipe. Further, reference numeral 4 denotes a gas meter cock, and in this embodiment, this gas meter cock 4 is used as a channel opening/closing means at the length measuring end.

そこで、供給管2の測長を行う場合には、まずガスメー
タコック4に検出用ガス5を充填したボンベ6等を接続
する。検品用ガス5は、後述するように供給ガス7と識
別可能な、単一ガスもしくは混合ガスとし、その圧力は
供給ガス圧力よりも若干高く設定している。また検出用
ガスは、後述するように供給ガスと共に空気とも識別可
能なものとすることができる。
Therefore, when measuring the length of the supply pipe 2, a cylinder 6 or the like filled with the detection gas 5 is first connected to the gas meter cock 4. The inspection gas 5 is a single gas or a mixed gas that can be distinguished from the supply gas 7 as described later, and its pressure is set slightly higher than the supply gas pressure. Further, the detection gas can be distinguished from air as well as the supply gas, as will be described later.

しかして、ガスメータコック4を開として検出用ガス5
を供給管2内に充填すると、検出用ガス5は供給菅2内
に充填状態となると共に、一部はサービスチー3から溢
れて本支管l内に流入する。
Then, the gas meter cock 4 is opened and the detection gas 5 is opened.
When the supply pipe 2 is filled with the detection gas 5, the supply pipe 2 is filled with the detection gas 5, and a portion of the detection gas 5 overflows from the service channel 3 and flows into the main branch pipe 1.

このように供給管2に充填する検出用ガス5の量は、地
上での供給管2の予測長に管径を乗じた全容積の例えば
1.5〜2.0倍程度の量とすれば実際の充填量が不足
したり、また多すぎるということを防止することができ
る。
The amount of detection gas 5 to be filled into the supply pipe 2 is, for example, about 1.5 to 2.0 times the total volume obtained by multiplying the estimated length of the supply pipe 2 on the ground by the pipe diameter. It is possible to prevent the actual filling amount from being insufficient or too large.

以上の動作に於いて、付近の需要家に於ける供給ガス7
の使用量が少ないために、本支管1内の供給ガス7の流
れが少ない場合には、上述したように溢れた検出用ガス
5が、このサービスチー3近傍に残留するので、後述す
る境界測定の誤差要因となる。そこで本発明に於いては
、本文’lrl内の供給ガス7の流れが少ない場合には
、かかる流れを積極的に発生させる。即ち、実施例に於
いては、測定対象である供給管2に近接した位置で本支
管1から分岐した他の供給管8に対応する隣接の需要家
に於いて、供給ガス7を流出させることにより上述の流
れを発生させる。このため前述した充填により供給管2
から本支管1内に至った検出用ガス5は、供給ガス7に
より流されて移動し、サービスチー3近傍から分離する
ので、このサービスチー3個所には、供給管2側の検出
用ガス5と本支管1側の供給ガス7との明瞭な境界9a
が生じる。
In the above operation, the supplied gas 7 at the nearby consumer
If the flow of the supply gas 7 in the main branch pipe 1 is small due to the small amount of gas used, the overflowing detection gas 5 will remain in the vicinity of the service channel 3 as described above, so boundary measurement, which will be described later, will be carried out. This becomes an error factor. Therefore, in the present invention, when the flow of the supply gas 7 in the text 'lrl is small, such a flow is actively generated. That is, in the embodiment, the supply gas 7 is caused to flow out at an adjacent consumer corresponding to another supply pipe 8 branched from the main branch pipe 1 at a position close to the supply pipe 2 to be measured. This causes the above flow to occur. Therefore, due to the above-mentioned filling, the supply pipe 2
The detection gas 5 that has reached the main branch pipe 1 is moved by the supply gas 7 and is separated from the vicinity of the service ch 3. Therefore, the detection gas 5 on the supply pipe 2 side is A clear boundary 9a between the main branch pipe 1 side and the supply gas 7
occurs.

以上の動作と相前後して、前記ガスメータコック4に、
ボンベ6に代えて供給管2と同内径の検出管10を接続
する。そして該検出管10には、前記測長端に対応した
第一のセンサllaと、この第一のセンサllaから所
定距離を隔てた個所に第二のセンサllbを設置し、こ
れらのセンサ11a、llbの検出信号を経時的に測定
する測定装H12を設置する。また検出管10の端部に
は必要に応じてコック13を介して放散管14を接続し
ている。第二のセンサllbは、第一のセンサllaか
らの距離が既知、または容易に測定可能であれば、どこ
に設置してもよく、実施例に於いては、長さり、が既知
の検出管10の端部に設置している。またこれらの第一
及び第二のセンサlla、llbは予め検出管10に設
置しておけば、設置が容易である。そして、これらのセ
ンサlla、11.bはアナログ出力型の他、ON−○
FF出力型を適用することができる。また測定装置12
は、各センサlla、11.bによる検出信号を経時的
に測定可能であれば記録計等の適宜の測定装置を適用す
ることができる。
Around the same time as the above operation, the gas meter cock 4:
Instead of the cylinder 6, a detection tube 10 having the same inner diameter as the supply tube 2 is connected. In the detection tube 10, a first sensor lla corresponding to the length measuring end and a second sensor llb are installed at a predetermined distance from the first sensor lla, and these sensors 11a, A measurement device H12 is installed to measure the detection signal of llb over time. Further, a diffusion tube 14 is connected to the end of the detection tube 10 via a cock 13 as required. The second sensor llb may be installed anywhere as long as the distance from the first sensor lla is known or can be easily measured. It is installed at the end of the Moreover, if these first and second sensors lla and llb are installed in the detection tube 10 in advance, installation is easy. And these sensors lla, 11. In addition to analog output type, b is ON-○
An FF output type can be applied. Also, the measuring device 12
are each sensor lla, 11. An appropriate measuring device such as a recorder can be used as long as the detection signal obtained by b can be measured over time.

以上の状態に於いて、ガスメータコック4を開とすると
共に、検出管10と放散管14間に設けているコック1
3を開とすると、供給菅2内の検出用ガス5は、供給ガ
ス7の圧力により移動し、検出管10そして放散管14
を経て流出して、大気に放散する。そして、検出用ガス
5の流れと共に、その前端側の境界、即ち空気との境界
9b及び後端側の境界、即ち供給ガス7どの境界9aも
移動する。
In the above state, the gas meter cock 4 is opened, and the cock 1 provided between the detection tube 10 and the diffusion tube 14 is opened.
3 is opened, the detection gas 5 in the supply tube 2 is moved by the pressure of the supply gas 7, and the detection tube 10 and the diffusion tube 14 are moved.
It flows out through the air and dissipates into the atmosphere. As the detection gas 5 flows, its front end boundary, ie, the boundary 9b with air, and its rear end boundary, ie, any boundary 9a of the supply gas 7, move.

この際、供給v2の測長端に対応させた第一のセンサl
laは、流出の開始時点から前端側の検出用ガス5を検
出しており、この検出状態は、後端側の境界9aが通過
するまで継続する。従って、この間の経過時間T1 は
、検出用ガス5の後端側の境界9aが、本支管1との分
岐部であるサービスチー3から供給管2の測長端まで移
動する所要時間に相当する。一方、第一のセンサlla
を通過した後端側の境界9aは、所定時間経過後に第二
のセンサ1 ]、 b部分を通過するので、第二のセン
サllbはこの時点で検出用ガス5の非検出状態となる
。従ってこのように第一のセンサIlaが非検出状態と
なってから、次いで第二のセンサ]、 1 bが非検出
状態となるまでの経過時間T、は、後端側の境界9aが
検出管10の所定距離、この場合、長さり、の検出管1
0を移動する所要時間に相当する。また、これらの経過
時間T、 、 T。
At this time, the first sensor l corresponding to the length measurement end of the supply v2
la detects the detection gas 5 on the front end side from the start of outflow, and this detection state continues until the boundary 9a on the rear end side passes. Therefore, the elapsed time T1 during this period corresponds to the time required for the boundary 9a on the rear end side of the detection gas 5 to move from the service channel 3, which is the branch point with the main branch pipe 1, to the measuring end of the supply pipe 2. . On the other hand, the first sensor lla
The boundary 9a on the rear end side, which has passed through, passes through the second sensor 1],b portion after a predetermined time has elapsed, so the second sensor Ilb is in a non-detecting state of the detection gas 5 at this point. Therefore, the elapsed time T from when the first sensor Ila becomes non-detecting state to when the second sensor [1b] becomes non-detecting state is such that the rear end side boundary 9a is the detection tube. Detection tube 1 of a predetermined distance, in this case length, of 10
This corresponds to the time required to move 0. Also, these elapsed times T, , T.

は、前述した各センサlla、llbの検出信号を記録
計等の測定装置12により、例えば第4図(a)に示す
ように測定することができる。
The detection signals of the sensors lla and llb described above can be measured by a measuring device 12 such as a recorder, for example, as shown in FIG. 4(a).

従って、測定対象の供給管2の長さをLl  とすると
、L  :L、==T、  :T、が成り立つので、こ
れらの各経過時間T、、T、を前述した各センサlla
、11.bと、記録計等の測定装置12により測定して
、次式より、供給管2の長さをLlを算出することがで
きる。
Therefore, if the length of the supply pipe 2 to be measured is Ll, then L:L, ==T, :T holds true, so each of these elapsed times T, , T, is calculated by each sensor lla described above.
, 11. b and is measured by a measuring device 12 such as a recorder, and the length Ll of the supply pipe 2 can be calculated from the following equation.

L  =L、  (T  /T、 ) 尚、第4図(a、)に示す測定結果は、第二のセンサl
lbが、検出用ガス5を供給ガス7とのみ識別可能で、
空気とは識別ができない場合を示すもので、この場合に
は第二のセンサllbは、検出用ガス5の後端部の境界
9aを検出することはできるが、前端部の境界9bを検
出することができないので、前述した通り、第一のセン
サllaは必須である。
L = L, (T /T, ) Note that the measurement results shown in Figure 4 (a) are based on the second sensor l.
lb can distinguish the detection gas 5 only from the supply gas 7,
This indicates a case where the gas cannot be distinguished from air; in this case, the second sensor Ilb can detect the boundary 9a at the rear end of the detection gas 5, but cannot detect the boundary 9b at the front end. Therefore, as mentioned above, the first sensor lla is essential.

しかしながら、例えば検出用ガス5として、供給ガス7
と共に空気とも識別可能なガスを用い、そして第二のセ
ンサllbがこれらを識別可能であれば、第二のllb
は検出用ガス5の前端部の境界9bを検出することもで
きるので、例えば第4図(b)又は(C)に示すように
、第二のセンサllbだけで前述した経過時間T、 、
 T、を測定することができ、従ってこれらの場合には
、第一のセンサlla、llbは省略することができる
。尚、(a)は0N−OFF出力型のセンサを用いた場
合、(b)はアナログ8力型のセンサを用いた例を示す
ものである。
However, for example, as the detection gas 5, the supply gas 7
and a gas that can be distinguished from air, and if the second sensor llb can identify these, the second llb
can also detect the boundary 9b at the front end of the detection gas 5, so for example, as shown in FIG. 4(b) or (C), the elapsed time T, ,
T, and therefore in these cases the first sensors lla, llb can be omitted. Note that (a) shows an example in which an ON-OFF output type sensor is used, and (b) shows an example in which an analog 8-force type sensor is used.

尚、以上の供給管2から、検出管10を経ての検出用ガ
ス5の流出は、大気への自然放散等により、検出用ガス
5及び供給ガス7並びに空気を層流移動させて行えば、
明瞭な境界9a、9bを保持することができ、測定精度
を維持することができる。
Incidentally, if the outflow of the detection gas 5 from the above-mentioned supply pipe 2 via the detection tube 10 is performed by moving the detection gas 5, supply gas 7, and air in a laminar flow due to natural dissipation into the atmosphere, etc.,
Clear boundaries 9a and 9b can be maintained, and measurement accuracy can be maintained.

また上述したように、検出用ガス5、そしてセンサll
a、llbは、該検出用ガス5を供給ガス7と識別して
、または供給ガス7と共に空気とも識別して検出するこ
とができれば、適宜の単一ガス又は混合ガス、そしてそ
れらのセンサを使用することができる。例えば本発明を
以上の実施例に示すように都市ガスの供給系統に適用し
た場合に於いては、検出用ガス5、そしてそのセンサは
、以下に示すようなものを使用することができる。
Further, as described above, the detection gas 5 and the sensor ll
a, llb, if the detection gas 5 can be detected by distinguishing it from the supply gas 7 or by distinguishing it from air together with the supply gas 7, an appropriate single gas or mixed gas and a sensor thereof can be used. can do. For example, when the present invention is applied to a city gas supply system as shown in the above embodiment, the detection gas 5 and its sensor can be as shown below.

[実施例1] メタン+プロパン+酸素の混合ガス この検出用ガス5は、上記の成分を例えば75.20.
5容量%程度の混合割合で混合したもので、この検出用
ガス5は、酸素の有無により供給ガス7と識別するもの
である。従ってセンサ11a。
[Example 1] Mixed gas of methane + propane + oxygen This detection gas 5 contains the above components, for example, 75.20%.
The detection gas 5 is mixed at a mixing ratio of about 5% by volume, and is distinguished from the supply gas 7 by the presence or absence of oxygen. Therefore, sensor 11a.

11bは、酸素センサにより構成することができ、装置
が簡単で高精度の検出を行える。また、かかるセンサ1
1.a、llbとして、酸素の濃度を検出可能なアナロ
グ出力型のセンサを用いれば、これらのセンサlla、
llbは、例えば第4図(c)に示すように、前記検出
用ガス5を、供給ガス7と共に、空気と識別して検出が
可能となる。
11b can be constituted by an oxygen sensor, and the device is simple and can perform highly accurate detection. In addition, such a sensor 1
1. If analog output type sensors capable of detecting oxygen concentration are used as a and llb, these sensors lla,
For example, as shown in FIG. 4(c), the detection gas 5 can be detected by distinguishing it from air together with the supply gas 7.

従ってこの場合は、前述したように第一のセンサ11a
が省略可能となる。
Therefore, in this case, as described above, the first sensor 11a
can be omitted.

[実施例2コ メタン+プロパン+酸素+水素の混合ガスこの検出用ガ
ス5は、上記の成分を例えば75.21.2.2容量%
程度の混合割合で混合したもので、この検出用ガス5は
、水素の有無により供給ガス7と識別するものである。
[Example 2 Mixed gas of comethane + propane + oxygen + hydrogen This detection gas 5 contains, for example, 75.21.2.2% by volume of the above components.
The detection gas 5 is distinguished from the supply gas 7 by the presence or absence of hydrogen.

従って検出器11は、水素センサにより構成することが
でき、やはり高精度の検出を行える。また、この場合に
も、センサlla、llbは例えば第4図(b)に示す
ように検出用ガス5を、供給ガス7と共に、空気と識別
して検出が可能となるので、前述したように第一のセン
サllaが省略可能となる。
Therefore, the detector 11 can be constituted by a hydrogen sensor, which can also perform highly accurate detection. Also, in this case, the sensors lla and llb can detect the detection gas 5 together with the supply gas 7 by identifying it as air, as shown in FIG. The first sensor lla can be omitted.

この他、上述した混合ガスの可燃成分に代えて炭酸ガス
等の不燃成分を混合し、この不燃成分の有無により供給
ガス7と識別したり、供給ガス7自体にフロンガス等の
、供給ガス7に含まれないガスを混合し、このガスの有
無により識別するようにすることができる。また、以上
の実施例では、検出用ガス5自体に識別用の成分を有し
ているが、これとは逆に、検出用ガス5には、供給ガス
7が有している成分を混合せず、この成分の有無により
識別を行うようにすることもできる。例えば、付臭剤を
混入している供給ガス7に対して、付臭剤を混入してい
ない供給ガスを検出用ガス5として使用すれば、付臭剤
の有無により識別を行うことができ、またメタン以外の
成分を有する供給ガス7に対して、純粋メタンを検出用
ガス5として使用すれば、メタン以外の成分の有無によ
り識別を行うことができる。
In addition, non-combustible components such as carbon dioxide gas may be mixed in place of the combustible components of the mixed gas described above, and the supply gas 7 may be identified by the presence or absence of this non-combustible component, or the supply gas 7 itself may contain fluorocarbon gas, etc. It is possible to mix gases that are not included and identify the presence or absence of this gas. Furthermore, in the above embodiments, the detection gas 5 itself has components for identification, but conversely, the detection gas 5 is mixed with the components contained in the supply gas 7. First, it is also possible to perform identification based on the presence or absence of this component. For example, if a supply gas not mixed with an odorant is used as the detection gas 5 in contrast to a supply gas 7 mixed with an odorant, identification can be made based on the presence or absence of the odorant. Furthermore, if pure methane is used as the detection gas 5 for the supply gas 7 containing components other than methane, it is possible to identify the supply gas 7 based on the presence or absence of components other than methane.

検出用ガス5は、以上の実施例の他にも、供給ガス7と
識別して、または供給ガス7と共に空気と識別して検出
可能なガスであれば適宜のものを使用することができる
In addition to the above-described embodiments, the detection gas 5 may be any suitable gas that can be detected separately from the supply gas 7 or together with the supply gas 7 as air.

(発明の効果) 本発明は以上の通り、ガス供給用共通埋設管から分岐し
た分岐埋設管の測長範囲にのみ検出用ガスを充填状態と
すると共に、該分岐埋設管内の検出用ガスを、その所定
の長さが既知又は容易に測定可能な検出管を経て流出さ
せ、この検出用ガスが分岐埋設管を通過する時間と、検
出管の所定距離を通過する時間と、この所定距離とから
分岐埋設管の長さを算出するので、切り回し等の曲がり
部、を有する複雑な配管系であっても正確に測長を行う
ことができ、例えば都市ガス供給系統に於いても、活管
状態で容易に、そして短時間で測長を行えるという効果
がある。
(Effects of the Invention) As described above, the present invention fills the detection gas only in the length measurement range of the branch buried pipe branched from the common buried pipe for gas supply, and the detection gas in the branch buried pipe. The detection gas is caused to flow out through a detection tube whose predetermined length is known or can be easily measured, and the time taken for this detection gas to pass through a branch buried pipe, the time for it to pass a predetermined distance of the detection tube, and this predetermined distance. Since the length of branch buried pipes is calculated, it is possible to accurately measure the length of even complex piping systems with bends such as cuts.For example, in city gas supply systems, live pipes This has the effect of being able to measure the length easily and in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明を適用した実施例の構成並びに
動作を表した説明的断面図、第4図(a)(b)、(c
)は測定結果例を表した説明図である。 符号1・・・本支管(共通埋設管)、2・・・供給管(
分岐埋設管)、3・・・サービスチー、4・・・ガスメ
ータコック(流路開閉手段)、5・・・検出用ガス、6
・・・ボンベ、7・・・供給ガス、8・・・他の供給管
、9a、9b−境界、10−・・検出管、Ila、1.
1b・・・検出器、12・・・測定装置、13・・・コ
ック、14・・・放散管。
1 to 3 are explanatory sectional views showing the configuration and operation of an embodiment to which the present invention is applied, and FIGS. 4(a), (b), and (c)
) is an explanatory diagram showing an example of a measurement result. Code 1... Main branch pipe (common buried pipe), 2... Supply pipe (
Branch buried pipe), 3... Service Q, 4... Gas meter cock (channel opening/closing means), 5... Detection gas, 6
... Cylinder, 7... Supply gas, 8... Other supply pipes, 9a, 9b-boundary, 10-... Detection tube, Ila, 1.
1b...detector, 12...measuring device, 13...cock, 14...dispersion tube.

Claims (10)

【特許請求の範囲】[Claims] (1)ガス供給用共通埋設管から分岐した分岐埋設管に
、流路開閉手段を設けた測長端から供給ガスと識別可能
な検出用ガスを充填する過程と、充填により分岐埋設管
から共通埋設管に至った検出用ガスを、該共通埋設管を
流れる供給ガスにより移動させる過程と、前記分岐埋設
管の測長端に、前記流路開閉手段を介して同内径の検出
管を接続し、前記測長端に対応して第一のセンサを設置
すると共に、該検出管に於いて前記第一のセンサから所
定距離を隔てた個所に第二のセンサを設置する過程と、
前記分岐埋設管内の検出用ガスを検出管を介して流出さ
せて、その前後の境界の通過を、計時しながら前記第一
及び第二のセンサにより検出する過程とにより、前記検
出用ガスが前記分岐埋設管を通過する時間と、検出管の
所定距離を通過する時間を測定し、これらの時間の比と
、検出管の前記所定距離とから該分岐埋設管の長さを算
出することを特徴とするガス供給用共通埋設管から分岐
した分岐埋設管の測長方法
(1) The process of filling a branch buried pipe branched from a common buried pipe for gas supply with a detection gas that can be identified as the supply gas from the measuring end provided with a flow path opening/closing means, and the process of filling a branch buried pipe branched from a common buried pipe for gas supply with a detection gas that can be distinguished from the supply gas. A process in which the detection gas that has reached the buried pipe is moved by the supply gas flowing through the common buried pipe, and a detection pipe having the same inner diameter is connected to the length measuring end of the branch buried pipe via the flow path opening/closing means. , installing a first sensor corresponding to the length measurement end, and installing a second sensor at a location on the detection tube at a predetermined distance from the first sensor;
The detection gas in the branch buried pipe is caused to flow out through the detection pipe, and the passage of the boundary before and after the branch pipe is detected by the first and second sensors while being timed. The method is characterized in that the time for passing through the branch buried pipe and the time for passing through a predetermined distance of the detection tube are measured, and the length of the branch buried pipe is calculated from the ratio of these times and the predetermined distance of the detection tube. Method for measuring the length of a branch buried pipe branched from a common buried pipe for gas supply
(2)ガス供給用共通埋設管から分岐した分岐埋設管に
、流路開閉手段を設けた測長端から供給ガス及び空気と
識別可能な検出用ガスを充填する過程と、充填により分
岐埋設管から共通埋設管に至った検出用ガスを、該共通
埋設管を流れる供給ガスにより移動させる過程と、前記
分岐埋設管の測長端に、前記流路開閉手段を介して同内
径の検出管を接続し、該検出管に於いて前記測長端から
所定距離を隔てた個所にセンサを設置する過程と、前記
分岐埋設管内の検出用ガスを検出管を介して流出させて
、その前後の境界の通過を、計時しながら前記センサに
より検出する過程とにより、検出用ガスが前記分岐埋設
管を通過する時間と、検出管の所定距離を通過する時間
を測定し、これらの時間の比と、検出管の前記所定距離
とから該分岐埋設管の長さを算出することを特徴とする
ガス供給用共通埋設管から分岐した分岐埋設管の測長方
(2) A process of filling a branch buried pipe branched from a common buried pipe for gas supply with a detection gas that can be distinguished from the supply gas and air from the measuring end provided with a flow path opening/closing means, and a process of filling the branch buried pipe branched from the common buried pipe for gas supply, and filling the branch buried pipe with a detection gas that can be distinguished from the supply gas and air. A process in which the detection gas that has reached the common buried pipe is moved by the supply gas flowing through the common buried pipe, and a detection tube with the same inner diameter is connected to the measuring end of the branch buried pipe via the flow path opening/closing means. connecting and installing a sensor at a predetermined distance from the length measuring end of the detection tube, and flowing out the detection gas in the branch buried pipe through the detection tube, and establishing a boundary between the front and back. The time for the detection gas to pass through the branch buried pipe and the time for it to pass through a predetermined distance of the detection pipe are measured by the step of detecting the passage of the detection gas by the sensor while measuring the time, and the ratio of these times, A method for measuring the length of a branch buried pipe branched from a common buried pipe for gas supply, characterized in that the length of the branch buried pipe is calculated from the predetermined distance of the detection tube.
(3)請求項1または2の方法に於いて、検出用ガスの
移動を行うための供給ガスの流れは、測定を行う分岐埋
設管に近接した位置で共通埋設管から分岐した他の分岐
埋設管から供給ガスを流出させて発生させることを特徴
とするガス供給用共通埋設管から分岐した分岐埋設管の
測長方法
(3) In the method of claim 1 or 2, the flow of the supply gas for moving the detection gas is connected to another branch buried pipe branched from the common buried pipe at a position close to the branch buried pipe where measurement is performed. A method for measuring the length of a branch buried pipe branched from a common buried gas supply pipe, characterized in that supply gas is generated by flowing out from the pipe.
(4)請求項1または2の方法に於いて、分岐埋設管か
らの検出用ガスの流出は、層流状態にて行うことを特徴
とするガス供給用共通埋設管から分岐した分岐埋設管の
測長方法
(4) In the method of claim 1 or 2, the detection gas flows out from the branch buried pipe in a laminar flow state, and the branch buried pipe branches from the common buried gas supply pipe. Length measurement method
(5)請求項1または2の方法に於いて、測定端から充
填する検出用ガスは、圧力を供給ガスの圧力よりも若干
高く設定すると共に、量を地上での予測長から換算した
分岐埋設管の全容積の1.5倍〜2倍としたことを特徴
とするガス供給用共通埋設管から分岐した分岐埋設管の
測長方法
(5) In the method of claim 1 or 2, the pressure of the detection gas to be filled from the measurement end is set slightly higher than the pressure of the supply gas, and the amount is converted from the predicted length on the ground by branch burial. A method for measuring the length of a branch buried pipe branched from a common buried pipe for gas supply, characterized in that the length is 1.5 to 2 times the total volume of the pipe.
(6)請求項1の方法に於いて、第一及び第二のセンサ
による検出用ガスの検出信号を記録計に経時的に記録し
て、検出用ガスが前記分岐埋設管を通過する時間と、検
出管の所定距離を通過する時間を測定することを特徴と
するガス供給用共通埋設管から分岐した分岐埋設管の測
長方法
(6) In the method of claim 1, the detection signals of the detection gas by the first and second sensors are recorded in a recorder over time, and the time taken for the detection gas to pass through the branch buried pipe is determined. A method for measuring the length of a branch buried pipe branched from a common buried pipe for gas supply, characterized by measuring the time it takes for the detection tube to pass a predetermined distance.
(7)請求項2の方法に於いて、センサによる検出用ガ
スの検出信号を記録計に経時的に記録して、検出用ガス
が前記分岐埋設管を通過する時間と、検出管の所定距離
を通過する時間を測定することを特徴とするガス供給用
共通埋設管から分岐した分岐埋設管の測長方法
(7) In the method of claim 2, the detection signal of the detection gas by the sensor is recorded on a recorder over time, and the time for the detection gas to pass through the branch buried pipe and the predetermined distance of the detection pipe are determined. A method for measuring the length of a branch buried pipe branched from a common buried pipe for gas supply, characterized by measuring the time it takes for the pipe to pass through the common buried pipe for gas supply.
(8)請求項1の第一、第二のセンサは、検出管の両端
に夫々を予め設置したことを特徴とするガス供給用共通
埋設管から分岐した分岐埋設管の測長方法
(8) The first and second sensors of claim 1 are a method for measuring the length of a branch buried pipe branched from a common buried gas supply pipe, characterized in that the first and second sensors are respectively installed in advance at both ends of the detection tube.
(9)請求項2のセンサは、検出管に予め設置したこと
を特徴とするガス供給用共通埋設管から分岐した分岐埋
設管の測長方法
(9) The sensor according to claim 2 is a method for measuring the length of a branch buried pipe branched from a common buried pipe for gas supply, characterized in that the sensor is installed in advance on the detection pipe.
(10)請求項1の測長方法に於いて、検出用ガスは、
供給ガスと共に空気とも識別可能なものとしたことを特
徴とするガス供給用共通埋設管から分岐した分岐埋設管
の測長方法
(10) In the length measurement method of claim 1, the detection gas is
A method for measuring the length of a branch buried pipe branched from a common buried pipe for gas supply, characterized in that it can be distinguished from supply gas and air.
JP23627890A 1990-09-06 1990-09-06 Method for measuring length of underground pipe branched from common underground pipe for supplying gas Pending JPH04115110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23627890A JPH04115110A (en) 1990-09-06 1990-09-06 Method for measuring length of underground pipe branched from common underground pipe for supplying gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23627890A JPH04115110A (en) 1990-09-06 1990-09-06 Method for measuring length of underground pipe branched from common underground pipe for supplying gas

Publications (1)

Publication Number Publication Date
JPH04115110A true JPH04115110A (en) 1992-04-16

Family

ID=16998421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23627890A Pending JPH04115110A (en) 1990-09-06 1990-09-06 Method for measuring length of underground pipe branched from common underground pipe for supplying gas

Country Status (1)

Country Link
JP (1) JPH04115110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267957A (en) * 2007-04-19 2008-11-06 Shimadzu Corp Gas chromatograph, gas chromatograph/mass spectrometer, and column length measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267957A (en) * 2007-04-19 2008-11-06 Shimadzu Corp Gas chromatograph, gas chromatograph/mass spectrometer, and column length measuring method

Similar Documents

Publication Publication Date Title
AU2009290420B2 (en) Method and device for detecting leaks in an underground liquid pipe, particularly a water pipe
CN108533968B (en) Buried gas pipeline leakage point positioning method based on tracer gas
EP2831557B1 (en) Leak location detection system
US6339953B1 (en) Pipe leakage detection
US6401525B1 (en) Leak detection in liquid carrying conduits
US4704897A (en) Locating method of and the locating unit for leaks on piping
US7278325B2 (en) Method and apparatus to measure flow rate
JPH04115110A (en) Method for measuring length of underground pipe branched from common underground pipe for supplying gas
AU753868B2 (en) Measuring leakage through ducts
US4663962A (en) Method and a device for detecting leakage of a tube section
JPS6142103Y2 (en)
JPH0438411A (en) Method for measuring length of underground branch pipe branched from under ground common gas supply pipe
RU2247345C2 (en) Device for determining concentration distribution of liquids or gases in pipelines
US3303699A (en) Process for determining rate of flow of gas through pipelines
JPS61100630A (en) Method of detecting leakage of conduit
WO1996026426A1 (en) Method and system for measuring external leakage
CN213843021U (en) Methane concentration analyzer calibrating device
JPS58176540A (en) Discriminating apparatus of gas
CN115560810B (en) Liquid flow monitoring device and wet-wall cyclone type air aerosol sampler
NO175333B (en) Procedure for detecting leakage in pipelines
JP3267812B2 (en) Gas flow measuring means mounting device for gas leak inspection
JP3089074B2 (en) Gas leak location detection method
JP2001124300A (en) Gas leakage detecting system
JPH0727653A (en) Method for detecting underground gas leaking position
CN112197177A (en) Pipeline leakage point positioning device based on oxygen measurement method and detection positioning method thereof