JPH04114948A - Production of fiber-reinforced cement plate - Google Patents
Production of fiber-reinforced cement plateInfo
- Publication number
- JPH04114948A JPH04114948A JP2235333A JP23533390A JPH04114948A JP H04114948 A JPH04114948 A JP H04114948A JP 2235333 A JP2235333 A JP 2235333A JP 23533390 A JP23533390 A JP 23533390A JP H04114948 A JPH04114948 A JP H04114948A
- Authority
- JP
- Japan
- Prior art keywords
- curing
- silica
- fiber
- cement
- synthetic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004568 cement Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000000835 fiber Substances 0.000 claims abstract description 17
- 238000001723 curing Methods 0.000 claims abstract description 16
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 13
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 12
- 238000002156 mixing Methods 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 7
- 239000000057 synthetic resin Substances 0.000 claims abstract description 7
- 230000006866 deterioration Effects 0.000 claims abstract description 4
- 238000013007 heat curing Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims abstract description 3
- 229910021487 silica fume Inorganic materials 0.000 claims abstract description 3
- 239000010881 fly ash Substances 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 3
- 238000009472 formulation Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 4
- 239000000945 filler Substances 0.000 abstract 2
- 230000000903 blocking effect Effects 0.000 abstract 1
- 239000011369 resultant mixture Substances 0.000 abstract 1
- 239000010425 asbestos Substances 0.000 description 4
- 229910052895 riebeckite Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は繊維補強セメント板の製造方法の改良に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to an improvement in a method for manufacturing fiber-reinforced cement boards.
繊維補強上メント板の補強繊維として従来より石綿が非
常に有効であるとして多用されてきたが、石綿は公害の
原因となることよりその使用の制限または全廃が強く要
請され、石綿に代わる補強繊維が種々模索されている。Asbestos has traditionally been widely used as a reinforcing fiber for fiber reinforcement for menment boards, as it is considered to be extremely effective.However, as asbestos causes pollution, there is a strong demand for its use to be restricted or completely abolished, and reinforcing fibers that can replace asbestos have been developed. are being explored in various ways.
この石綿代替え繊維としてパルプ繊維が耐薬品性、オー
トクレーブ時の耐熱性に優れるとして有望視されている
。Pulp fiber is seen as a promising alternative to asbestos because of its excellent chemical resistance and heat resistance during autoclaving.
しかしながらパルプ繊維は、乾式製法において乾燥粉末
状の原料を混合するとき、バルブ繊維同志が絡み合って
塊状になる所謂「ダマ」が止し易く、これが生じると添
加に見合った補強効果が得られず、結局強度不足の板材
しか得られないといった欠点があった。However, when pulp fibers are mixed with dry powder raw materials in a dry manufacturing method, so-called "clumps" in which pulp fibers become entangled and form clumps tend to occur, and if this occurs, the reinforcing effect commensurate with the addition cannot be obtained. In the end, there was a drawback that only a plate material with insufficient strength was obtained.
また、ガラス繊維は折損しやすく、混合時に非常に短い
繊維状となってしまい添加に見合った補強効果が得られ
ないばかりでなく、耐アルカリ性が低いので劣化も止し
るといった欠点があった。In addition, glass fibers are easily broken and become very short fibers when mixed, making it impossible to obtain a reinforcing effect commensurate with their addition, and also having low alkali resistance, which prevents deterioration.
この発明は上記問題点に鑑み、乾式製法において乾燥粉
状の原料の混合時補強繊維の塊状化を防止し、均一混合
が容易に達成でき、しかも充分な曲げ強度を付与できる
繊維補強セメント板の製造方法を提供することを目的と
してなされたものである
〔課題を解決するに至った技術〕
即ち、この発明の繊維補強セメント板の製造方法はセメ
ント35〜45重量%、シリカ30〜40重量%、骨材
15〜25重景%、重量繊維3〜7重景重量りなる繊維
補強セメント配合において、シリカ分としてブレーン値
8000〜10000 cnt/gのシリカヒユーム、
フライアッシュ等の非晶質系シリカを使用すると共に、
補強繊維としてパルプ状に解繊した合成樹脂繊維を使用
し、上記原料を均−混合後前水の上、乾式ベルト成形に
より板状に成形し、該成形体を高圧養生後、前記合成樹
脂繊維の劣化温度以下の温度で加熱養生し、次いで水中
養生により最終養生を行うことを特徴とするものである
。In view of the above problems, this invention provides a fiber-reinforced cement board that prevents clumping of reinforcing fibers when mixing dry powder raw materials in a dry manufacturing process, easily achieves uniform mixing, and provides sufficient bending strength. [Technology that led to solving the problem] That is, the method for manufacturing a fiber-reinforced cement board of the present invention has been made for the purpose of providing a manufacturing method using 35 to 45% by weight of cement and 30 to 40% by weight of silica. , silica hume with a Blaine value of 8,000 to 10,000 cnt/g as the silica content in a fiber-reinforced cement formulation consisting of 15 to 25% aggregate and 3 to 7% fiber by weight,
In addition to using amorphous silica such as fly ash,
Synthetic resin fibers defibrated into a pulp form are used as reinforcing fibers, and after uniformly mixing the above raw materials, the above raw materials are formed into a plate shape by dry belt molding over water, and after curing the molded body under high pressure, the synthetic resin fibers are It is characterized by heat curing at a temperature below the deterioration temperature of the material, followed by final curing by underwater curing.
この発明において使用されるセメント等の配合量そのも
のは従来通りであり、特に記する点は無い。しかし補強
繊維としてパルプ状に解繊した合成樹脂繊維、具体的に
はポリエチレン繊維を使用し、また、シリカ分としては
ブレーン値8000〜10000 cm2/gのシリカ
ヒユーム、フライアッシュ等の非晶質系シリカを使用す
る。The blending amounts of cement, etc. used in this invention are the same as conventional ones, and there is no particular point to note. However, synthetic resin fibers defibrated into pulp, specifically polyethylene fibers, are used as reinforcing fibers, and the silica content is amorphous silica such as silica hume or fly ash with a Blaine value of 8,000 to 10,000 cm2/g. use.
補強繊維として上記のものを使用するのは、繊維自体の
平滑性によって混合時に繊維同志が絡み合う「ダマ」の
発生を防止するためであり、またパルプ状に解繊するの
はセメントマトリックス内に広く均一分散させ未硬化成
形品の保形性を改良するためである。The reason for using the above-mentioned reinforcing fibers is to prevent the formation of "clumps" where the fibers get entangled with each other during mixing due to the smoothness of the fibers themselves. Also, the fibers are defibrated into pulp because they are spread widely within the cement matrix. This is to improve the shape retention of the uncured molded product by uniformly dispersing it.
また、シリカ分としてブレーン値8000〜10000
cn+/gのシリカヒユーム、フライアッシュ等の非晶
質系シリカを使用するのは、セメントマトリックスの結
合強度を増し、この面よりの板状体の補強を行うためで
ありブレーン値8000cffl/gより低いと充分な
強度の板となし得す、また10000 cf/gより高
いと乾式製法においてベルト上で成形加水時、水の浸透
性が悪くなりいわゆる水浮き減少が生じてロールと成形
板表面との付着、二N剥離などの弊害が生じるからであ
る。In addition, the silica content has a Blaine value of 8000 to 10000.
The purpose of using amorphous silica such as cn+/g silica fume or fly ash is to increase the bonding strength of the cement matrix and to reinforce the plate from this side, which is lower than the Blaine value of 8000 cffl/g. Moreover, if it is higher than 10,000 cf/g, the water permeability becomes poor when forming and adding water on a belt in the dry process, resulting in a so-called reduction in water floating, which causes a problem between the roll and the surface of the formed plate. This is because problems such as adhesion and 2N peeling occur.
上記原料の均一混合体より成形体を成形後、高圧養生を
行うのは成形体の硬化を早め、以後の養生のハンドリン
グを容易にするためである。The reason for performing high-pressure curing after molding a molded body from the homogeneous mixture of the above-mentioned raw materials is to speed up the hardening of the molded body and facilitate handling during subsequent curing.
また次いで高熱養生を行うのは、セメント分のシリカ反
応をより促進し板材硬度を増すためであり、さらに水中
養生を行うのはシリカ反応をさらに促進するためである
。The reason why high heat curing is then performed is to further promote the silica reaction of the cement component and increase the hardness of the board, and the reason why the curing is performed in water is to further promote the silica reaction.
次にこの発明の詳細な説明する。 Next, this invention will be explained in detail.
実施例1
表1における原料をミキサで乾式混合後、成形ベルトに
層状に供給し厚さ51、幅90a+、高さ45■の板状
体を多数成形した。Example 1 The raw materials shown in Table 1 were dry-mixed in a mixer and then fed to a forming belt in layers to form a large number of plate-like bodies each having a thickness of 51 cm, a width of 90 a+, and a height of 45 cm.
そして得た板状体を三つのグループにわけ、夫々を8.
5aLmG x IQ待時間オートクレーブ養生、基材
の含水率が2%以下七なるよう温度条件80℃、湿度1
00%の条件での24時間蒸気養生、及び14日間の水
中養生を行い成形品を最終養生硬化させた。Then, the plate-like bodies obtained were divided into three groups, and each group was divided into 8 groups.
5aLmG x IQ waiting time Autoclave curing, temperature conditions 80℃, humidity 1 so that the moisture content of the base material is 2% or less
The molded product was cured in steam for 24 hours and cured in water for 14 days under conditions of 0.00% for final curing and hardening.
(表中数字は重量%)
次いで、上記各試験板についてJTSA号曲げ試験とS
iO□の反応率を測定した。 曲げ強度、及びたわみは
表2、SiO□の反応率は表3の通りであった。(The numbers in the table are % by weight) Next, each of the above test plates was subjected to the JTSA bending test and the S
The reaction rate of iO□ was measured. The bending strength and deflection were as shown in Table 2, and the reaction rate of SiO□ was as shown in Table 3.
表2より明らかなように何れの養生においても実施例の
場合は比較例に対し強度が向上しているのが確認され、
また5i02の反応率も良いことが確認された。As is clear from Table 2, it was confirmed that the strength of the Examples was improved compared to the Comparative Examples under all curing conditions.
It was also confirmed that the reaction rate of 5i02 was also good.
Claims (1)
量%、骨材15〜25重量%、補強繊維3〜7重量%よ
りなる繊維補強セメント配合において、シリカ分として
ブレーン値8000〜10000cm^2/gのシリカ
ヒューム、フライアッシュ等の非晶質系シリカを使用す
ると共に、補強繊維としてパルプ状に解繊した合成樹脂
繊維を使用し、上記原料を均一混合後加水の上、乾式ベ
ルト成形により板状に成形し、該成形体を高圧養生後、
前記合成樹脂繊維の劣化温度以下の温度で加熱養生し、
次いで水中養生により最終養生を行うことを特徴とする
繊維補強セメント板の製造方法。(1) In a fiber-reinforced cement formulation consisting of 35-45% by weight of cement, 30-40% by weight of silica, 15-25% by weight of aggregate, and 3-7% by weight of reinforcing fibers, the Blaine value as silica content is 8000-10000 cm^2 /g of amorphous silica such as silica fume or fly ash, and synthetic resin fibers defibrated into pulp as reinforcing fibers. After uniformly mixing the above raw materials, adding water, and dry belt forming. After molding into a plate shape and curing the molded body under high pressure,
Heat curing at a temperature below the deterioration temperature of the synthetic resin fiber,
A method for manufacturing a fiber-reinforced cement board, characterized in that the final curing is then carried out by underwater curing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2235333A JPH04114948A (en) | 1990-09-04 | 1990-09-04 | Production of fiber-reinforced cement plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2235333A JPH04114948A (en) | 1990-09-04 | 1990-09-04 | Production of fiber-reinforced cement plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04114948A true JPH04114948A (en) | 1992-04-15 |
Family
ID=16984554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2235333A Pending JPH04114948A (en) | 1990-09-04 | 1990-09-04 | Production of fiber-reinforced cement plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04114948A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101136868B1 (en) * | 2010-03-11 | 2012-04-20 | 한국건설생활환경시험연구원 | Cement |
-
1990
- 1990-09-04 JP JP2235333A patent/JPH04114948A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101136868B1 (en) * | 2010-03-11 | 2012-04-20 | 한국건설생활환경시험연구원 | Cement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5855663A (en) | Carbon fibers for reinforcement of cement and cement composite material | |
CN1740112A (en) | Wood cement board and method for the manufacturing thereof | |
JP2730835B2 (en) | Manufacturing method of fiber reinforced cement board | |
JPH04114948A (en) | Production of fiber-reinforced cement plate | |
CN110526664A (en) | A kind of water-fast composite gypsum board of high-ductility | |
JPH03112842A (en) | Production of fiber cement board | |
JPH04114949A (en) | Production of fiber-reinforced cement plate | |
JP2633788B2 (en) | Method for manufacturing flexible fire-resistant building board | |
CN1029223C (en) | Mixture for manufacture of shaped articles | |
JP2619945B2 (en) | Manufacturing method of inorganic plate material | |
JPH02175643A (en) | Production of fiber-reinforced cement board | |
JPH05270872A (en) | Production of fiber-reinforced cement board | |
JP2618099B2 (en) | Manufacturing method of fiber reinforced cement board | |
JPH082957A (en) | Wood chop cement board and its production | |
JPH0769692A (en) | Inorganic molded articles and production thereof | |
JPS63185845A (en) | Manufacture of fiber-reinforced cement board | |
JPH05147988A (en) | Manufacture of fiber reinforced cement plate | |
JPS598654A (en) | Manufacture of fiber reinforced cement hardened body | |
JPH0248448A (en) | Production of inorganic construction material | |
JPH04149057A (en) | Production of fiber reinforced cement board | |
JP2618098B2 (en) | Manufacturing method of fiber reinforced cement board | |
JPH06144952A (en) | Production of ceramic building material | |
JPH0196050A (en) | Production of inorganic extruded product | |
JPH04331755A (en) | Cement fiber board | |
JPH0333042A (en) | Production of fiber reinforced cement board |