JPH04114910A - Production of nitrogen trifluoride gas - Google Patents

Production of nitrogen trifluoride gas

Info

Publication number
JPH04114910A
JPH04114910A JP22795390A JP22795390A JPH04114910A JP H04114910 A JPH04114910 A JP H04114910A JP 22795390 A JP22795390 A JP 22795390A JP 22795390 A JP22795390 A JP 22795390A JP H04114910 A JPH04114910 A JP H04114910A
Authority
JP
Japan
Prior art keywords
gas
liquefied
heat exchanger
storage tank
nitrogen trifluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22795390A
Other languages
Japanese (ja)
Other versions
JP2927914B2 (en
Inventor
Makoto Aritsuka
眞 在塚
Tokuyuki Iwanaga
岩永 徳幸
Nobuhiko Fujieda
藤枝 信彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP22795390A priority Critical patent/JP2927914B2/en
Publication of JPH04114910A publication Critical patent/JPH04114910A/en
Application granted granted Critical
Publication of JP2927914B2 publication Critical patent/JP2927914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To efficiently remove a low-boiling component and to continuously obtain a NF3 gas having extremely low content of O2 and N2 by using a device consisting of a heat exchanger for condensing NF3 gas and a liquid NF3 storage tank connected to the exchanger and collecting and storing a NF3 gas. CONSTITUTION:A NF3 gas is fed from a feed opening 7 connected to a liquefied NF3 storage tank 2 covered with a low-temperature insulation such as urethane foam 6 to a heat exchanger 2 for condensing NF3 gas and NF3 gas is continuously liquefied. Liquefied NF3 is stored in the storage tank 2 connected to heat exchanger 1. In the operation, a low-boiling component contained in NF3 gas is exhausted through a gas seal 5 from an exhaust vent 4 at the other end of the heat exchanger 1. Further liquefied NF3 in the storage tank 2 is made into a boiling state and NF3 gas is refluxed by the heat exchanger 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は三弗化窒素(NF3)ガスの製造方法に関する
。更に詳しくは、N114F−11F系溶融塩の電解法
によるNhガスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing nitrogen trifluoride (NF3) gas. More specifically, the present invention relates to a method for producing Nh gas by electrolyzing N114F-11F-based molten salt.

(従来の技術及び発明が解決しようとする課題)NF3
は沸点が−129’C1融点が一207°Cの物性を示
す無色の化学的に安定な気体である。
(Problems to be solved by conventional technology and invention) NF3
is a colorless chemically stable gas with a boiling point of -129'C and a melting point of 1207°C.

NF3ガスは半導体製造工程におけるドライエツチング
剤やCVD装置のクリーニングガスとして近年注目され
ているが、これらの用途に使用されるNF3ガスは、高
純度のものが要求されている。
NF3 gas has recently attracted attention as a dry etching agent in semiconductor manufacturing processes and as a cleaning gas for CVD equipment, but NF3 gas used for these purposes is required to be of high purity.

Nli、lガスは、種々の方法で製造される。たとえば
、アンモニウム酸弗化物の溶融塩を電解する方法、アン
モニウム酸弗化物を溶融状態において気相状の弗素と反
応させる方法、固体状の金属弗化物のアンモニウム錯体
と元素状弗素を反応させる方法、弗化アンモニウムまた
は酸性弗化アンモニウムと弗化水素を原料とするN11
4F・IIFや、さらにこれに弗化カリウムまたは酸性
弗化カリウムを、該原料に加えたKF −N114F・
II+’系での溶融塩電解法などがある。
Nli,l gas is produced in various ways. For example, a method of electrolyzing a molten salt of ammonium acid fluoride, a method of reacting ammonium acid fluoride with gaseous fluorine in a molten state, a method of reacting an ammonium complex of a solid metal fluoride with elemental fluorine, N11 made from ammonium fluoride or acidic ammonium fluoride and hydrogen fluoride
4F・IIF and KF-N114F・IIF, which is made by adding potassium fluoride or acidic potassium fluoride to the raw material.
There is a molten salt electrolysis method using II+' system.

しかしながら、何れの方法で得られたガスも殆どの場合
、窒素(N2)、酸素(0□)、ニフッ化酸素(OF2
) 、−酸化二窒素(N20) 、二酸化炭素(CO2
)、ニフッ化二窒素(N2P2)などの不純物を比較的
多量に含んでいるので、上記用途としての高純度のNF
ffガスを得るためには精製が必要である。
However, in most cases, the gases obtained by either method are nitrogen (N2), oxygen (0□), or oxygen difluoride (OF2).
), - dinitrogen oxide (N20), carbon dioxide (CO2
), contains relatively large amounts of impurities such as dinitrogen difluoride (N2P2), so it is difficult to use high-purity NF for the above applications.
Purification is necessary to obtain ff gas.

NF3ガス中のこれらの不純物を除去する精製方法とし
ては、下記する方法が知られている。
As a purification method for removing these impurities from NF3 gas, the following method is known.

即ち、1)N2F2はKl、NazS、 Na2S2O
3等の水?@液と接触させる方法[J、 Masson
ne、ケミー°インジェニュール・テヒニール(Che
m、 Ing、 Techrl、)41(12)、69
5.(1969) )や1.18.9〜537.111
°Cの温度で金属と接触させる方法(特公昭59−15
081号)等で除去することができる。2)OF2は、
Na25z03、Kl、Na25O,、IIL Naz
S等の水溶液と接触させる方法で除去することができる
。3)N20やCO□等のような比較的高沸点の成分は
ゼオライト等の吸着剤と接触させることで効率よく除去
することができる(Chem、 Eng、、 84.1
16. (1977)等〕。
That is, 1) N2F2 is Kl, NazS, Na2S2O
Third class water? @Method of contacting with liquid [J, Masson
ne, Chemie
m, Ing, Techrl, ) 41(12), 69
5. (1969)) and 1.18.9-537.111
Method of contacting metal at a temperature of °C (Special Publication Publication No. 59-15
081) etc. 2) OF2 is
Na25z03, Kl, Na25O,, IIL Naz
It can be removed by contacting with an aqueous solution such as S. 3) Relatively high boiling point components such as N20 and CO□ can be efficiently removed by contacting with an adsorbent such as zeolite (Chem, Eng, 84.1)
16. (1977) etc.].

一方、N2.0□等の低沸点成分は、NF3ガスが組成
の主体であるために反応あるいは吸着を利用して除去す
る方法には限界があり、高純度のNhガスを得る方法と
しては好ましくない。また、N2は液化NF3 との親
和性が強いため、一般には−150〜−190’Cの温
度に冷却してNF3ガスを液化状態とし、更に真空排気
を行なうことでN2.0□の除去を行なっていた。
On the other hand, since NF3 gas is the main component of the composition of low-boiling components such as N2.0□, there are limits to how to remove them using reaction or adsorption, and this is the preferred method for obtaining high-purity Nh gas. do not have. In addition, since N2 has a strong affinity with liquefied NF3, it is generally cooled to a temperature of -150 to -190'C to liquefy the NF3 gas, and then vacuumed to remove N2.0□. I was doing it.

しかしながら、上記の方法においてもN2.0゜は高純
度NF:lガスの品質を満足できるほどには除去できな
かった。また、真空排気を伴うため、除去作業中にNF
3ガスを供給し処理することば困難であり、必然的にパ
ンチ運転とならざるを得す、工程および作業が複雑にな
る等の問題を有している。
However, even in the above method, N2.0° could not be removed to a level that would satisfy the quality of high-purity NF:l gas. In addition, since vacuum evacuation is involved, NF
It is difficult to supply and process three gases, and there are problems such as a punch operation is inevitably required, and the process and work become complicated.

(課題を解決するための手段) 本発明者等はかかる状況に鑑み、鋭意検討を重ねた結果
、逆流凝縮器にNF3ガスを供給し、連続的にNF3ガ
スの液化処理ができると共に、該逆流凝縮器に接続され
た液化NF、の貯槽に、該逆流凝縮器で液化させたNF
、lを貯液し、更に該貯槽内の液化NP3を沸騰状態と
し、該逆流凝縮器でNF、aガスを還流させることによ
り、N2.02等の低沸点成分を除去できることを見い
だし、本発明を完成するに至ったものである。
(Means for Solving the Problems) In view of the above situation, the inventors of the present invention have made extensive studies and found that it is possible to continuously liquefy NF3 gas by supplying NF3 gas to a backflow condenser, and to The liquefied NF connected to the condenser is stored in the liquefied NF storage tank.
, 1, and further brought the liquefied NP3 in the storage tank to a boiling state, and refluxed the NF and a gases in the reverse flow condenser, it was found that low boiling point components such as N2.02 could be removed, and the present invention This is what we have come to complete.

即ち、本発明は三弗化窒素ガスの製造に於いて、三弗化
窒素ガス凝縮用熱交換器とこれに接続された液体三弗化
窒素の貯槽からなる装置を用いて三弗化窒素を捕集およ
び/または貯蔵することを特徴とする三弗化窒素の製造
方法である。
That is, in the production of nitrogen trifluoride gas, the present invention uses a device consisting of a heat exchanger for condensing nitrogen trifluoride gas and a storage tank for liquid nitrogen trifluoride connected to the heat exchanger. This is a method for producing nitrogen trifluoride, which includes collection and/or storage.

(発明の詳細な開示) 以下、本発明の詳細な説明する。(Detailed disclosure of the invention) The present invention will be explained in detail below.

上記した通り、NF3ガスは、種々の方法で製造される
ものであるが、本発明はその製造方法の種類を選ばない
ことはもとより、本発明の実施以前の態様がどの様なも
のであっても実施可能である。
As mentioned above, NF3 gas can be produced by various methods, but the present invention is not limited to any type of production method, and is applicable to any embodiment prior to implementation of the present invention. is also possible.

次に本発明で用いるNF、ガス凝縮用熱交換器1並びに
液化NF3貯槽2について説明する。
Next, the NF, gas condensing heat exchanger 1 and liquefied NF3 storage tank 2 used in the present invention will be explained.

NF3ガス凝縮用熱交換器1のプロセス側の一端は、液
化NF3貯槽2に接続され、液化NF、ガス抜き出し口
3が設けられている。該NF3ガス凝縮用熱交換器1で
凝縮したNF3が該液化NF3貯槽2に容易に流入でき
る配置および構造となっていることが好ましい。また該
NF3ガス凝縮用熱交換器1の他端からはNF3ガス中
に含まれる低沸点成分が排出されるため、低沸点成分排
気口4が設けられ排出を妨げない構造となっている必要
がある。
One end on the process side of the NF3 gas condensing heat exchanger 1 is connected to a liquefied NF3 storage tank 2, and is provided with a liquefied NF and gas extraction port 3. Preferably, the arrangement and structure are such that the NF3 condensed in the NF3 gas condensing heat exchanger 1 can easily flow into the liquefied NF3 storage tank 2. Furthermore, since the low boiling point components contained in the NF3 gas are discharged from the other end of the NF3 gas condensing heat exchanger 1, it is necessary to have a structure in which a low boiling point component exhaust port 4 is provided so that the discharge is not obstructed. be.

般的には大気放出することで問題はないが、空気が逆流
して該NF3ガス凝縮用熱交換器1側に流入することの
ない様、水銀等でガスシール5を施すことが好ましい。
Generally speaking, there is no problem with releasing the gas into the atmosphere, but it is preferable to provide a gas seal 5 with mercury or the like to prevent air from flowing backward into the NF3 gas condensing heat exchanger 1 side.

ここで使用するNF3ガス凝縮用熱交換器1は多管式熱
交換器が好ましい。
The NF3 gas condensing heat exchanger 1 used here is preferably a shell-and-tube heat exchanger.

該液化NF3貯槽2の外部は、ウレタンフオーム6等の
保冷材で覆うが、NF3が沸騰状態となるよう若干の熱
流入が必要であるため、完全な保冷である必要はない。
The outside of the liquefied NF3 storage tank 2 is covered with a cold insulating material such as urethane foam 6, but it does not need to be completely cold insulated since a slight amount of heat is required to bring the NF3 to a boiling state.

保冷の程度は、該Nhガス凝縮用熱交換器1の能力によ
り適宜選択されるものである。これらにより、NF3ガ
スの還流が可能となる。尚、NF3ガスの還流を必要と
しない捕集および/または貯蔵においては、デユワ−瓶
の如く真空二重構造の貯槽とする等、強力な保冷を行う
ことは差し支えない。
The degree of cold storage is appropriately selected depending on the capacity of the Nh gas condensing heat exchanger 1. These enable reflux of NF3 gas. In addition, for collection and/or storage that does not require reflux of NF3 gas, strong cold storage may be used, such as in a vacuum double-structured storage tank such as a dewar bottle.

外部からの該NF3ガス凝縮用熱交換器1へのNF。NF from the outside to the heat exchanger 1 for condensing the NF3 gas.

ガスの供給は、NFfl貯槽に接続されたNl’、lガ
ス供給ロアより行なう。これによりNF3ガス中に含ま
れる低沸点成分の大部分は除去された後、該液化NF3
貯槽2に溜るのである。
Gas is supplied from the Nl',l gas supply lower connected to the NFfl storage tank. As a result, most of the low boiling point components contained in the NF3 gas are removed, and then the liquefied NF3
It accumulates in storage tank 2.

該NF3ガス凝縮用熱交換器1の共役側には冷媒が供給
され、冷媒供給口8及び冷媒排出口9が設けられている
。冷媒としては液体空気(−186〜196°C)、液
体窒素(−1,96°C)の他、液体窒素などで任意の
温度に冷却した石油エーテル等を用いることも可能であ
る。しかし、−gには取り扱い等が容易な液体窒素が冷
媒として使用される。
A refrigerant is supplied to the conjugate side of the NF3 gas condensing heat exchanger 1, and a refrigerant supply port 8 and a refrigerant discharge port 9 are provided. As the refrigerant, in addition to liquid air (-186 to 196°C) and liquid nitrogen (-1.96°C), it is also possible to use petroleum ether cooled to an arbitrary temperature with liquid nitrogen or the like. However, liquid nitrogen, which is easy to handle, is used as a refrigerant for -g.

捕集されたNF3ガスは液化NFi貯槽2から抜き出さ
れる。具体的には、気相部より圧縮器を用いて抜き出す
か、あるいは液化NP、貯槽2下部より液化状態でNF
、を抜き出される。その後、ボンベに充填されるか、あ
るいは引き続き何らかの工程に移される。
The collected NF3 gas is extracted from the liquefied NFi storage tank 2. Specifically, the method is to extract liquefied NP from the gas phase using a compressor, or extract NF in a liquefied state from the lower part of the storage tank 2.
, is extracted. It is then filled into cylinders or transferred to some subsequent process.

尚、ボンベに充填されたものは、上記した通り、半導体
製造工程に於いて、ドライエツチングガスあるいはCv
Dチャンバーのクリーニングガスとして使用される。
As mentioned above, the cylinder is filled with dry etching gas or Cv during the semiconductor manufacturing process.
Used as a cleaning gas for the D chamber.

(実施例) 以下、実施例により本発明を更に具体的に説明する。尚
、以下において%、ppmは特記しない限り容量基準を
表わす。
(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that in the following, % and ppm represent capacity standards unless otherwise specified.

実施例1 第1図に示す装置を使用して、低沸点成分を含有するN
F、ガスを捕集した。装置は伝熱面積2m2を有するN
F、ガス凝縮用熱交換器1とその一端には厚さ約10c
mのウレタンフオームで覆われた容量約20Eの液化N
F、貯槽2が接続されている。
Example 1 Using the apparatus shown in FIG.
F. Gas was collected. The device has a heat transfer area of 2 m2
F. Heat exchanger 1 for gas condensation and one end thereof has a thickness of approximately 10 cm.
Liquefied N with a capacity of about 20E covered with m urethane foam
F. Storage tank 2 is connected.

まず、NF、lガス凝縮用熱交換器1の共役側には、温
度調節器で制御しながら圧力約5 kg/cm2の液体
窒素を供給し、該NFffガス凝縮用熱交換器の温度を
一180°Cに保持した。
First, liquid nitrogen at a pressure of approximately 5 kg/cm2 is supplied to the conjugate side of the NFff gas condensing heat exchanger 1 while being controlled by a temperature controller, and the temperature of the NFff gas condensing heat exchanger 1 is kept constant. It was maintained at 180°C.

次に不純物としてN2ガスを約20%、0□ガスを約1
%含有するNF3ガスを5℃/minにて外部NF3ガ
ス供給ロアより6時間供給し、約5kgのNF3ガスを
液化捕集した。
Next, as impurities, add about 20% N2 gas and about 1% 0□ gas.
% containing NF3 gas was supplied from an external NF3 gas supply lower at 5° C./min for 6 hours, and about 5 kg of NF3 gas was liquefied and collected.

この間、液化NF3貯槽2低部付近に設置された温度計
は、常時、NF3の沸点である一129°Cを指示した
。また、NF3ガス凝縮用熱交換器1から大気に放出さ
れるガスを採取し分析したところ、はぼ全量が窒素およ
び酸素であった。
During this time, the thermometer installed near the bottom of the liquefied NF3 storage tank 2 constantly indicated -129°C, which is the boiling point of NF3. Further, when the gas released into the atmosphere from the NF3 gas condensing heat exchanger 1 was sampled and analyzed, it was found that almost the entire amount was nitrogen and oxygen.

次に液化NF、貯槽2のNF3ガス抜き出し口1oよリ
ガスを抜き出し、ガスクロマトグラフィーにて分析を行
なったところ、N2ガスは約20 ppm、 02ガス
は5 ppmであった。
Next, the liquefied NF and regas were extracted from the NF3 gas outlet 1o of the storage tank 2, and analyzed by gas chromatography, and the amount of N2 gas was about 20 ppm, and the amount of 02 gas was 5 ppm.

実施例2 実施例1において用いた不純物を含有するNF3ガスを
連続して7時間供給し、供給開始から5時間後に液化N
F3貯槽2の低部より液化NF、をボンベに少量抜き出
し、気化後、ガスクロマトグラフィーにて分析を行なっ
た他は実施例1と同様な方法で行なった。
Example 2 The impurity-containing NF3 gas used in Example 1 was continuously supplied for 7 hours, and liquefied N was added 5 hours after the start of supply.
A small amount of liquefied NF was drawn out into a cylinder from the lower part of the F3 storage tank 2, and the same method as in Example 1 was conducted except that after vaporization, analysis was performed by gas chromatography.

その結果N2ガスは約25 ppm、0□ガスは5 p
pInであった。
As a result, N2 gas is about 25 ppm, 0□ gas is 5 p
It was pIn.

比較例1 実施例1における装置において液化NP3貯槽2のウレ
タンフオームを外し、該液化NF、3貯槽2を液体窒素
を満たしたデユワ−瓶に浸した他は実施例1と同様に行
なった。
Comparative Example 1 The same procedure as in Example 1 was carried out, except that the urethane foam of the liquefied NP3 storage tank 2 was removed from the apparatus in Example 1, and the liquefied NF3 storage tank 2 was immersed in a dewar bottle filled with liquid nitrogen.

その結果、N2ガスは約2801+pm 、02ガスは
120ppmであった。
As a result, the N2 gas was approximately 2801+pm, and the 02 gas was 120 ppm.

(発明の効果) 従来行なっていたNF、ガスの液化と真空排気の組合せ
では、低沸点成分の除去は満足できるものではなかった
。さらに真空排気中はNF3ガスの液化捕集ができない
ため、ガスの捕集はバッチ運転とならざるを得す、連続
でガス捕集を行なう場合は捕集設備を2系列以上設ける
必要があった。
(Effects of the Invention) The conventional combination of liquefaction of NF and gas and vacuum evacuation has not been able to satisfactorily remove low boiling point components. Furthermore, since liquefied NF3 gas cannot be collected during vacuum evacuation, gas collection has to be done in batch operation, and if gas collection is to be performed continuously, it is necessary to install two or more collection equipment lines. .

しかし、本発明によっては液化NF、を沸騰状態とする
ことで低沸点成分が効率的に除去されるため、従来法と
比較して捕集後のNF3に含まれる0□、N2の含有量
は著しく減少する。さらに連続でガスを捕集、精製でき
る利点も有している。
However, according to the present invention, low boiling point components are efficiently removed by bringing the liquefied NF to a boiling state, so the content of 0□ and N2 contained in the collected NF3 is lower than that in the conventional method. significantly reduced. It also has the advantage of being able to continuously collect and purify gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例及び比較例で使用したNF、凝縮用熱交
換器、液化NF3凝縮器を示す図である。 図において、 1−一−NP、ガス凝縮用熱交換器 2−−−液化NF3貯槽 3−−−液化NF3ガス抜き出しロ 4−−−低沸点成分排気口 ガスジール ウレタンフオーム NFsガス供給口 冷媒供給口 冷媒排出口 O NF、ガス抜き出し口 を示す。
FIG. 1 is a diagram showing NF, a condensing heat exchanger, and a liquefied NF3 condenser used in Examples and Comparative Examples. In the figure, 1-1-NP, heat exchanger for gas condensation 2 --- Liquefied NF3 storage tank 3 --- Liquefied NF3 gas extraction hole 4 --- Low boiling point component exhaust port Gas Zeal urethane foam NFs gas supply port Refrigerant supply Refrigerant outlet O NF indicates gas extraction port.

Claims (1)

【特許請求の範囲】[Claims] 1)三弗化窒素ガスの製造に於いて、三弗化窒素ガス凝
縮用熱交換器と、該三弗化窒素ガス凝縮用熱交換器に接
続された、液体三弗化窒素の貯槽からなる装置を用いて
、三弗化窒素ガスを捕集および/または貯蔵することを
特徴とする三弗化窒素ガスの製造方法。
1) In the production of nitrogen trifluoride gas, it consists of a heat exchanger for condensing nitrogen trifluoride gas and a storage tank for liquid nitrogen trifluoride connected to the heat exchanger for condensing nitrogen trifluoride gas. A method for producing nitrogen trifluoride gas, which comprises collecting and/or storing nitrogen trifluoride gas using an apparatus.
JP22795390A 1990-08-31 1990-08-31 Method for producing nitrogen trifluoride gas Expired - Lifetime JP2927914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22795390A JP2927914B2 (en) 1990-08-31 1990-08-31 Method for producing nitrogen trifluoride gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22795390A JP2927914B2 (en) 1990-08-31 1990-08-31 Method for producing nitrogen trifluoride gas

Publications (2)

Publication Number Publication Date
JPH04114910A true JPH04114910A (en) 1992-04-15
JP2927914B2 JP2927914B2 (en) 1999-07-28

Family

ID=16868855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22795390A Expired - Lifetime JP2927914B2 (en) 1990-08-31 1990-08-31 Method for producing nitrogen trifluoride gas

Country Status (1)

Country Link
JP (1) JP2927914B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460745C (en) * 2005-06-14 2009-02-11 株式会社厚成 Method of storing nitrogen trifluoride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460745C (en) * 2005-06-14 2009-02-11 株式会社厚成 Method of storing nitrogen trifluoride

Also Published As

Publication number Publication date
JP2927914B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
US4975259A (en) Method of liquefying and condensing nitrogen trifluoride and a method of purifying nitrogen trifluoride
JP3294390B2 (en) Ultra high purity nitrous oxide production method and apparatus
CN112390230A (en) Purification method and purification system of chlorine trifluoride
JP3284096B2 (en) Method and system for separating and purifying perfluoro compounds
JPH0881203A (en) Purification of high-purity hydrogen bromide and apparatus therefor
CN113354508A (en) Energy-saving purification device and energy-saving purification process for electronic grade gas
JPH09303955A (en) Method and device for manufacturing ultra-high purity nitrogen trifluoride
EP1065459A2 (en) PFC Recovery using condensation
CN114314534A (en) Natural gas helium extraction process
JP2001048543A (en) Method for producing uhp tungsten hexafluoride
US5626023A (en) Cryogenic rectification system for fluorine compound recovery using additive liquid
US6790428B2 (en) Process for the reduction or elimination of NH3/HF byproduct in the manufacture of nitrogen trifluoride
KR102084294B1 (en) Method and apparatus for producing high purity nitric oxide for semiconductor using the nitric acid production process
JPH04114910A (en) Production of nitrogen trifluoride gas
KR101163959B1 (en) Apparatus and method for liquefing nitrogen trifluoride gas
JPH11142053A (en) Cryogenic rectification system for recovering fluorine compound
CN205346848U (en) Industrial grade boron trifluoride's purification device
US3169845A (en) Method of and apparatus for producing high purity inert gases
KR101200156B1 (en) Apparatus and method for recovering ammonia from waste water in the production of nitrogen trifluoride gas
JPS58208104A (en) Method for purifying chlorine
JPS63306383A (en) Method of purifying nitrogen fluoride
JPH02150686A (en) Manufacture of super-high purity oxygen
AU2016218602B2 (en) Method for recovering helium
EP1153885B1 (en) A process for concentrating fluorine compounds
CN221191569U (en) Electronic grade nitrogen trifluoride purification system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 12