JPH04114006A - Polymerization of alpha-olefin - Google Patents

Polymerization of alpha-olefin

Info

Publication number
JPH04114006A
JPH04114006A JP23253690A JP23253690A JPH04114006A JP H04114006 A JPH04114006 A JP H04114006A JP 23253690 A JP23253690 A JP 23253690A JP 23253690 A JP23253690 A JP 23253690A JP H04114006 A JPH04114006 A JP H04114006A
Authority
JP
Japan
Prior art keywords
compound
stereoregularity
catalyst
organic
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23253690A
Other languages
Japanese (ja)
Other versions
JP2895189B2 (en
Inventor
Ryuichi Sugimoto
隆一 杉本
Tadashi Asanuma
正 浅沼
Tsutomu Iwatani
岩谷 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP23253690A priority Critical patent/JP2895189B2/en
Publication of JPH04114006A publication Critical patent/JPH04114006A/en
Application granted granted Critical
Publication of JP2895189B2 publication Critical patent/JP2895189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain the subject polymer having a high stereoregularity by using a solid catalyst composed of a titanium compound supported on a magnesium compound, a stereoregularity-improving agent consisting of a specified organic transient metal compound and an organoaluminum-containing high-activity catalyst. CONSTITUTION:In polymerization of an alpha-olefin in the presence of a solid catalyst composed of a titanium compound supported on a magnesium compound, a stereoregularity-improving agent and a catalyst consisting of an organic aluminum-containing catalyst, the alpha-olefin is polymerized using, as the stereoregularity-improving agent, an organic transition metal compound represented by formula I (A and B are aromatic hydrocarbon; X is halogen or 1-20C hydrocarbon residue; M is metal atom selected from IV and V group in the periodic table) or formula II (R is compound connecting A to B and containing 1-20C hydrocarbon residue, silicon, germanium or tin). An objective polymer can be obtained thereby.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオレフィンの重合方法に関する。さらに詳しく
は、担体型遷移金属触媒と有機アルミニウム及び立体規
則性向上剤からなる触媒を用いてα−オレフィンを重合
する方法において改良された重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for polymerizing olefins. More specifically, the present invention relates to an improved polymerization method for polymerizing α-olefins using a supported transition metal catalyst, an organoaluminium, and a stereoregularity improver.

〔従来技術〕[Prior art]

α−オレフィンの重合触媒として担、体型遷移金属化合
物と有機アルミニウムおよび立体規則性向上剤として有
機酸エステルからなる触媒を用いる方法について特公昭
39−12105号公報で提案されてから多くの改良さ
れた触媒の提案がなされており触媒活性及び得られた重
合体の立体規則性共に大幅に改良されている。一方、ア
ルミニウムを含まないチタントリクロリドと有機チタン
化合物を組み合わせた触媒系が米国特許第2,992,
212号明細書および特開昭57−111307号に記
載されている。
Many improvements have been made since Japanese Patent Publication No. 39-12105 proposed a method using a catalyst consisting of a supported type transition metal compound and organoaluminium as a polymerization catalyst for α-olefins, and an organic acid ester as a stereoregularity improver. Catalysts have been proposed, and both the catalytic activity and the stereoregularity of the resulting polymers have been significantly improved. On the other hand, a catalyst system combining aluminum-free titanium trichloride and an organic titanium compound was disclosed in U.S. Patent No. 2,992,
No. 212 and JP-A-57-111307.

こめアルミニウムを含まないチタントリクロリドと有機
チタン化合物を組み合わせた触媒系に関しては、チタン
トリクロリドの代わりに、塩化マグネシウムにチタン化
合物を担持した触媒と有機チタン化合物とを組み合わせ
た触媒系が固体触媒成分中のチタン当りの活性が高く、
また立体規則性の高いα−オレフィン重合体が得られる
と言う報告がある。(たとえば、曽我ら、Makrom
ol、Chem。
Regarding the catalyst system that combines aluminum-free titanium trichloride and an organic titanium compound, instead of titanium trichloride, a catalyst system that combines a catalyst with a titanium compound supported on magnesium chloride and an organic titanium compound is used as a solid catalyst component. High activity per titanium inside,
There are also reports that α-olefin polymers with high stereoregularity can be obtained. (For example, Soga et al., Makrom
ol, Chem.

Rapid Coffimun、、1986年7巻71
9頁)更に、マグネシウム、チタンおよびハロゲンを必
須成分とする固体触媒成分と有機チタン化合物およびア
ルミノキサンからなる触媒でα−オレフィンを重合する
ことにより高活性で高立体規則性の重合体が得られるこ
とが特開平1−217012に提案されている。
Rapid Coffimun, 1986, Volume 7, 71
(p. 9) Furthermore, a highly active and highly stereoregular polymer can be obtained by polymerizing α-olefins with a solid catalyst component containing magnesium, titanium, and halogen as essential components, an organic titanium compound, and a catalyst consisting of aluminoxane. has been proposed in Japanese Patent Application Laid-Open No. 1-217012.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、有機酸エステルを重合時添加する方法は
重合体に特有のエステル臭が残り、また着色の原因とな
る等の問題がある。一方、塩化マグネシウムにチタン化
合物を担持した触媒と1r機チタン化合物とを組み合わ
せた触媒系はを機酸エステルを使用しない為、そのよう
な問題はないが重合活性が不十分であり触媒残金を全く
除去する事なく、製品化することは困難であり、触媒活
性を更に向上させることが望まれる。さらにアルミノキ
サンを用いる方法は重合活性は改善されるものの高価な
アルミノキサンを用いるため得られる重合体のコストが
高くなってしまうなどの問題がある。また、有機チタン
化合物は不安定で分解しやスイため有機ジルコニウム化
合物、有機ハフニウム、有機バナジウム化合物など更に
安定な有機遷移金属化合物を用いる事が望ましいが、こ
れらの有機遷移金属化合物を用いた場合には触媒活性が
低下したり、立体規則性が大幅に低下する等の問題があ
り、これらの化合物は使用する事ができなかった(例え
ば曽我ら、Makromol、Ches+、1989年
190巻31−35頁)。
However, the method of adding an organic acid ester during polymerization has problems such as leaving a characteristic ester odor in the polymer and causing coloration. On the other hand, a catalyst system that combines a catalyst with a titanium compound supported on magnesium chloride and a 1R titanium compound does not use organic acid ester, so there is no such problem, but the polymerization activity is insufficient and the catalyst residue is completely lost. It is difficult to commercialize the product without removing it, and it is desired to further improve the catalyst activity. Furthermore, although the method using aluminoxane improves the polymerization activity, it uses expensive aluminoxane, so there is a problem that the cost of the obtained polymer increases. Furthermore, since organic titanium compounds are unstable and easily decompose, it is desirable to use more stable organic transition metal compounds such as organic zirconium compounds, organic hafnium, and organic vanadium compounds. However, these compounds could not be used because of problems such as a decrease in catalytic activity and a significant decrease in stereoregularity (for example, Soga et al., Makromol, Ches+, 1989, Vol. 190, pp. 31-35). ).

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記問題点を解決するために鋭意検討し
たところ、同一の担体型遷移金属触媒を用いても有機ア
ルミニウム及び立体規則性向上剤として有機遷移金属化
合物を同時に併用して用いることによって高活性で、高
立体規則性のα−オレフィン重合体を製造することが可
能である事を見いだして本発明を完成した。本発明の目
的は高い活性で高立体規則性のポリ−α−オレフィンを
製造する方法を折供する事にある。
In order to solve the above problems, the present inventors conducted extensive studies and found that even if the same carrier-type transition metal catalyst is used, an organic aluminum compound and an organic transition metal compound as a stereoregularity improver can be used in combination at the same time. The present invention was completed by discovering that it is possible to produce a highly active and highly stereoregular α-olefin polymer by the following method. The object of the present invention is to provide a method for producing highly active and highly stereoregular poly-α-olefins.

即ち、本発明はマグネシウム化合物に担持されたチタン
化合物よりなる固体触媒と立体規則性向上剤及び有機ア
ルミニウムからなる触媒を用いてα−オレフィンを重合
する方法において、立体規則性向上剤として、 (式中A、Bは互いに同じかあるいは異なる芳香族炭化
水素、PはA、Bを連結する炭素数1〜20の炭化水素
残基、あるいは珪素、ゲルマニウム、錫を含む化合物、
Xはハロゲン原子あるいは炭素数1〜20の炭化水素残
基。阿は周期律表第4.5族から選ばれる金属原子。)
で表される有機遷移金属化合物を用いることを特徴とす
るα−オレフィンの重合方法である。
That is, the present invention provides a method for polymerizing α-olefin using a solid catalyst consisting of a titanium compound supported on a magnesium compound, a stereoregularity improver, and a catalyst consisting of an organoaluminum, in which as the stereoregularity improver, A and B are the same or different aromatic hydrocarbons, P is a hydrocarbon residue having 1 to 20 carbon atoms connecting A and B, or a compound containing silicon, germanium, or tin;
X is a halogen atom or a hydrocarbon residue having 1 to 20 carbon atoms. A is a metal atom selected from Group 4.5 of the periodic table. )
This is a method for polymerizing α-olefins, which is characterized by using an organic transition metal compound represented by:

本発明で用いるマグネシウム化合物に担持されたチタン
化合物固体触媒成分の製造方法については格別の限定は
なく、得られた触媒が高活性で高立体規則性のポリ−α
−オレフィンを与えるものであれば良い。
There are no particular limitations on the method for producing the titanium compound solid catalyst component supported on the magnesium compound used in the present invention, and the resulting catalyst is a highly active and highly stereoregular poly-α
- Anything that gives olefins is fine.

ここでマグネシウム化合物としては、上記遷移金属化合
物と反応して不活性化しないものであればどのようなも
のでも使用可能であり、塩化マグネシウム、臭化マグネ
シウム、ヨウ化マグネシウム、酸化マグネシウム、過塩
素酸マグネシウム、水酸化マグネシウム、炭酸マグネシ
ウム、水素化マグネシウムなどの塩およびそれらの複合
塩、さらにはシリカ、アルミナ、チタニアなどの金属酸
化物との複合酸化物なども利用できる。これらのマグネ
シウム化合物の大きさは通常直径が1μ■〜0.1−一
程度のものが好ましく利用できる。ここで好ましくは無
水物が使用される。マグネシウム化合物は使用に先立っ
てさらに焼成して用いることもでき、少なくともフリー
の水は除去して用いるのが好ましい。例えば、マグネシ
ウム化合物中でも好ましくは塩化マグネシウムが挙げら
れ、塩化マグネシウムのみあるいは塩化マグネシウムと
電子供与体との複合体の形でも用いられる。
Here, any magnesium compound can be used as long as it does not react with the transition metal compound and become inactive, such as magnesium chloride, magnesium bromide, magnesium iodide, magnesium oxide, and perchloric acid. Salts such as magnesium, magnesium hydroxide, magnesium carbonate, and magnesium hydride, and complex salts thereof, as well as complex oxides with metal oxides such as silica, alumina, and titania, can also be used. The size of these magnesium compounds is preferably 1 μm to 0.1 μm in diameter. Preferably anhydrides are used here. The magnesium compound can be further calcined before use, and it is preferable to use it after at least free water is removed. For example, magnesium chloride is preferred among the magnesium compounds, and magnesium chloride alone or a complex of magnesium chloride and an electron donor may be used.

本発明で使用されるチタン化合物としては例えば四ハロ
ゲン化チタン、アルコキシチタンハライド、アリロキシ
チタンハライド、アルコキシチタン等が用いられる。中
でもハロゲン化チタン化合物が好ましく、より好ましく
は四塩化チタンまたは四塩化チタンと電子供与体との複
合体が用いられる。この塩化マグネシウムと電子供与体
との複合体または四塩化チタンと電子供与体との複合体
に用いられる電子供与体としては通常C−O結合、C−
N結合を含有する化合物が挙げられる。
Examples of the titanium compound used in the present invention include titanium tetrahalide, alkoxytitanium halide, allyloxytitanium halide, and alkoxytitanium. Among these, halogenated titanium compounds are preferred, and titanium tetrachloride or a complex of titanium tetrachloride and an electron donor is more preferably used. The electron donor used in the complex of magnesium chloride and an electron donor or the complex of titanium tetrachloride and an electron donor is usually a C-O bond, a C-
Examples include compounds containing N bonds.

本発明におけるチタン化合物をマグネシウム化合物と接
触させて固体触媒成分とする方法については特に制限は
なく、溶媒中あるいは固相で接触させればよい。
There is no particular restriction on the method of bringing the titanium compound into contact with the magnesium compound to form a solid catalyst component in the present invention, and the contact may be carried out in a solvent or in a solid phase.

溶媒中で接触させる方法としては、炭化水素溶媒等の不
活性な溶媒中にマグネシウム化合物を懸濁させておき、
チタン化合物のf@液を加えて撹拌する方法、液状のマ
グネシウム化合物に液状のチタン化合物を反応させる方
法、この場合これらの化合物の混合溶液から適当な沈澱
剤を用いて得る方法等も用いられ、これらの際にSin
g、A1.0.、AlC1zなどの固体化合物を共存さ
せることも可能である。
As a method of contacting in a solvent, a magnesium compound is suspended in an inert solvent such as a hydrocarbon solvent,
A method in which a liquid titanium compound is added and stirred, a method in which a liquid titanium compound is reacted with a liquid magnesium compound, and a method in which a liquid titanium compound is obtained from a mixed solution of these compounds using an appropriate precipitant are also used. In these cases, Sin
g, A1.0. It is also possible to coexist a solid compound such as , AlC1z.

固相で接触させる方法としては共粉砕する方法が挙げら
れる。共粉砕の方法については特に制限はなく、通常用
いられている、ボールミル、振動ミルなどを用いる方法
がそのまま採用できる。また、粉砕助剤として種々の有
機化合物を共粉砕条件下に触媒成分を分解しない限り併
用することも可能である。また共粉砕物を溶剤で処理す
ることも可能である。共粉砕の際の温度についても特に
制限はないが一100〜100°C1通常、常温付近の
温度で行えば良い。
An example of a method for contacting in a solid phase is a method of co-pulverization. There are no particular restrictions on the method of co-pulverization, and commonly used methods using ball mills, vibration mills, etc. can be used as is. It is also possible to use various organic compounds as grinding aids as long as they do not decompose the catalyst components under co-grinding conditions. It is also possible to treat the co-pulverized product with a solvent. There is no particular restriction on the temperature during co-pulverization, but it may be carried out at a temperature of 100 to 100°C, usually around room temperature.

重合あるいは、上記処理に際し利用する溶剤としては例
えば、プロパン、ペンタン、ヘキサン、ヘプタン、オク
タン、ノナン、デカン、シクロペンタン、シクロヘキサ
ンなどの飽和炭化水素化合物の他にベンゼン、トルエン
、キシレンなどの芳香族灰化水素化合物も利用できる。
Examples of solvents used during polymerization or the above treatment include saturated hydrocarbon compounds such as propane, pentane, hexane, heptane, octane, nonane, decane, cyclopentane, and cyclohexane, as well as aromatic ash such as benzene, toluene, and xylene. Hydrohydride compounds can also be used.

本発明においては、有機アルミニウムと立体規則性向上
剤として C式中A、Bは互いに同じかあるいは異なる芳香族炭化
水素、Rは^、Bを連結する炭素数1〜20の炭化水素
残基、あるいは珪素、ゲルマニウム、錫を含む化合物、
Xはハロゲン原子あるいは炭素数1〜20の炭化水素残
基0Mは周期律表第4.5族から選ばれる金属原子、)
で表される有機遷移金属化合物を併用して用いる事に特
徴がある。
In the present invention, the organoaluminum and the stereoregularity improver in the formula C are aromatic hydrocarbons in which A and B are the same or different from each other, R is a hydrocarbon residue having 1 to 20 carbon atoms connecting B, Or compounds containing silicon, germanium, and tin,
X is a halogen atom or a hydrocarbon residue having 1 to 20 carbon atoms; 0M is a metal atom selected from Group 4.5 of the periodic table;)
It is characterized in that it is used in combination with an organic transition metal compound represented by

本発明で用いる有機アルミニウムとしては一般式: A
lR3で表される有機アルミニウム化合物が好適に用い
られる。ここでRはハロゲン、酸素、水素、アルキル、
アルコキシ、アリールなどの残基を表し、Rはそれぞれ
同一でも良いし、異なっていても構わないが、少なくと
も1つはアルキル基を有す、炭素数〜12のアルキル残
基が2〜3結合したトリアルキルアルミニム、ジアルキ
ルアルミニウムハライドなどが好ましく利用できる。例
えば、トリメチルアルミニウム、トリエチルアルミニウ
ム、トリイソプロピルアルミニウム、トリブチルアルミ
ニウム、ジメチルアルミニウムクロライド、シュチルア
ルミニウムクロライド、ジイソプロピルアルミニウムク
ロライド、エチルアルミニウムジクロライド等が挙げら
れる。
The organoaluminum used in the present invention has the general formula: A
An organoaluminum compound represented by lR3 is preferably used. Here R is halogen, oxygen, hydrogen, alkyl,
Represents a residue such as alkoxy or aryl, and each R may be the same or different, but at least one has an alkyl group, and 2 to 3 alkyl residues having from 12 carbon atoms are bonded. Trialkyl aluminum, dialkyl aluminum halide, etc. can be preferably used. Examples include trimethylaluminum, triethylaluminum, triisopropylaluminum, tributylaluminum, dimethylaluminum chloride, stylaluminum chloride, diisopropylaluminum chloride, ethylaluminum dichloride, and the like.

本発明で立体規則性向上剤として用いられる有機遷移金
属化合物としては共役π電子を有する基を配位子として
有する遷移金属化合物が例示できるが、なかでも 1、一般弐二 A A −一×2  又は R門−X2 (式中A、Bは互いに同しかあるいは異なる芳香族炭化
水素、RはA、Bを連結する炭素数1〜20の炭化水素
残基、あるいは珪素、ゲルマニウム、錫を含む化合物、
χはハロゲン原子あるいは炭素数1〜20の炭化水素残
基。門は周期律表第4.5族から選ばれる金属原子。)
で表される化合物が好ましく利用できる。
Examples of the organic transition metal compound used as a stereoregularity improver in the present invention include transition metal compounds having a group having conjugated π electrons as a ligand. or R-X2 (where A and B are the same or different aromatic hydrocarbons, R is a hydrocarbon residue having 1 to 20 carbon atoms connecting A and B, or a compound containing silicon, germanium, or tin) ,
χ is a halogen atom or a hydrocarbon residue having 1 to 20 carbon atoms. Gates are metal atoms selected from Group 4.5 of the periodic table. )
Compounds represented by can be preferably used.

一般式において、A、Bとしては炭素数5〜30の単環
、あるいは多環の芳香族化合物が例示でき、具体的には
シクロペタジエン或いはその一部マタは全部の水素が炭
素数1−10のアルキル基で置換したもの(ここでアル
キル基はその末端が再度シクロペンタジェン環に結合し
た構造であっても良い。)、インデン、フルオレンなど
の多環芳香族化合物あるいはその水素の一部または全部
が炭素数1〜10のアルキル基で置換したものなどが例
示される。
In the general formula, A and B can be exemplified by monocyclic or polycyclic aromatic compounds having 5 to 30 carbon atoms. Specifically, in cyclopetadiene or a part thereof, all hydrogens have 1 to 1 carbon atoms. 10 substituted with an alkyl group (here, the alkyl group may have a structure in which its terminal end is bonded to the cyclopentadiene ring again), a polycyclic aromatic compound such as indene or fluorene, or a part of its hydrogen Alternatively, those substituted entirely with alkyl groups having 1 to 10 carbon atoms are exemplified.

Rとしては、ジアルキルメチレン基、ジアルキルシリレ
ン基が好ましく、例えばR’zC、R’2Si(式中R
゛は水素または炭素数1〜20のアルキル残基で同しで
も異なっても良い。)で表される化合物が好ましく利用
できるが、さらに−CR’−CR’−で表されるエチレ
ン基も例示できる(式中R゛は上記に同じ。)Xとして
は弗素、塩素、臭素、沃素、あるいはメチル、エチル、
プロピル、ブチル等のアルキル基、シクロペンタジェニ
ル基などの芳香族化合物が例示できるが特に塩素、メチ
ル基が好ましい。
R is preferably a dialkylmethylene group or a dialkylsilylene group, such as R'zC, R'2Si (in the formula R
"" represents hydrogen or an alkyl residue having 1 to 20 carbon atoms, and may be the same or different. ) can be preferably used, but further examples include ethylene groups represented by -CR'-CR'- (in the formula, R' is the same as above), where X is fluorine, chlorine, bromine, iodine , or methyl, ethyl,
Examples include alkyl groups such as propyl and butyl, and aromatic compounds such as cyclopentadienyl, with chlorine and methyl groups being particularly preferred.

本発明に於て上記各成分の使用割合は、用いる化合物及
び重合条件によって異なるが、通常は担持チタン1モル
当たり有機アルミニウム1〜2000モル、立体規則性
向上剤として用いる有機遷移金属化合物1〜500モル
、有機遷移金属化合物に対する有機アルミニウムの使用
割合としては0.1〜10000モル倍、通常1〜50
00モル倍である。
In the present invention, the usage ratio of each of the above components varies depending on the compound used and the polymerization conditions, but usually 1 to 2000 mol of organic aluminum and 1 to 500 mol of organic transition metal compound used as stereoregularity improver per 1 mol of supported titanium. mole, the ratio of organic aluminum to the organic transition metal compound is 0.1 to 10,000 times by mole, usually 1 to 50 times
00 mole times.

本発明においてα−オレフィンとしてはエチレン、プロ
ピレン、ブテン−1、ペンテン−1、ヘキセン−1、ヘ
プテン−1、オクテン−1、ノネン−1、デセン−1、
ウンデセン−1、ドデセン−1、トリデセン−1、テト
ラデセン−1、ペンタデセン−■、ヘキサデセン−1、
オクタデセン−1などの直鎖α−オレフィンの他に3−
メチルブテン−1,4−メチルペンテン−1,4,4−
ジメチルペンテン−1等の分岐α−オレフィンが例示さ
れ、これらのα−オレフィンは単独重合あるいは相互の
共重合、また必要に応してジエンなどとの共重合に用い
ることができる。
In the present invention, α-olefins include ethylene, propylene, butene-1, pentene-1, hexene-1, heptene-1, octene-1, nonene-1, decene-1,
undecene-1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-■, hexadecene-1,
In addition to linear α-olefins such as octadecene-1, 3-
Methylbutene-1,4-methylpentene-1,4,4-
Branched α-olefins such as dimethylpentene-1 are exemplified, and these α-olefins can be used for homopolymerization, copolymerization with each other, and, if necessary, copolymerization with dienes and the like.

また重合条件については特に制限はなく、不活性媒体を
用いる溶媒重合法、或いは実質的に不活性媒体の存在し
ない塊状重合法、気相重合法も利用できる。重合温度と
しては−100〜200 ”C1重合圧力としては常圧
〜100 kg/cdGで行うのが一般的である。好ま
しくは一100〜100°C2常圧〜50kg/c4G
である。
Further, there are no particular limitations on the polymerization conditions, and solvent polymerization methods using an inert medium, bulk polymerization methods and gas phase polymerization methods in which substantially no inert medium is present can also be used. The polymerization temperature is -100 to 200° C1. The polymerization pressure is generally normal pressure to 100 kg/cdG. Preferably -100 to 100°C2 normal pressure to 50 kg/cdG.
It is.

〔実施例] 以下に実施例により更に本発明を説明する。〔Example] The present invention will be further explained below with reference to Examples.

実施例I A)担体型遷移金属触媒の製造 直径12mmの鋼球300個の入った内容積11の粉砕
用ポンドを2個装備した振動ミルを用意する。このポッ
ト中に窒素雰囲気化で塩化マグネシウム20gとフタル
酸ジイソブチル4〆を加え、17時間粉砕した。300
−の丸底フラスコに窒素雰囲気化で上記粉砕処理物Lo
g、四塩化チタン100dを加えて85°Cで2時間攪
拌したのちデカンテーションによって上澄み液を除去し
た。さらに四塩化チタン100dを加え同様の操作を繰
り返した。次ぎにn−へブタン200mを加え室温で1
5分間撹伴したあとデカンテーションによって上澄み液
を除去する操作を7回繰り返し次いで、さらn−へブタ
ン200 dを追加して担体型遷移金属触媒スラリーと
した。このスラリーを1部サンプリングしてチタン含有
量を測定したところた担体型遷移金属触媒1g当たり1
.83wtχ含有していた。
Example I A) Production of supported transition metal catalyst A vibratory mill equipped with two crushing pounds each having an internal volume of 11 and containing 300 steel balls each having a diameter of 12 mm is prepared. 20 g of magnesium chloride and 4 grams of diisobutyl phthalate were added to this pot under a nitrogen atmosphere, and the mixture was pulverized for 17 hours. 300
- The above pulverized product Lo was placed in a round bottom flask under a nitrogen atmosphere.
After adding 100 g of titanium tetrachloride and stirring at 85°C for 2 hours, the supernatant liquid was removed by decantation. Furthermore, 100 d of titanium tetrachloride was added and the same operation was repeated. Next, add 200ml of n-hebutane and let it stand at room temperature.
After stirring for 5 minutes, the supernatant liquid was removed by decantation, which was repeated 7 times, and then 200 d of n-hebutane was added to obtain a carrier-type transition metal catalyst slurry. One part of this slurry was sampled and the titanium content was measured.
.. It contained 83wtχ.

B)有機遷移金属化合物の合成 有機遷移金属触媒成分として、常法にしたがって合成し
たイソプロピルシクロペンタジェニル−1フルオレンを
メチルリチウムでリチウム化し、さらに四塩化ジルコニ
ウムを加えて反応させた。
B) Synthesis of organic transition metal compound As an organic transition metal catalyst component, isopropylcyclopentadienyl-1 fluorene synthesized according to a conventional method was lithiated with methyllithium, and zirconium tetrachloride was added for reaction.

反応混合液からガラスフィルターで不溶物を取り除き、
溶媒を蒸発させて除いた。塩化メチレンから再結晶する
ことによりイソプロピル(シクロペンタジェニル−1−
フルオレニル)ジルコニウムジクロリを得た。同様にし
てエチレンビステトラヒドロインデンを原料に用いてエ
チレンビステトラヒドロインデニルジルコニウムジクロ
リドを得た。
Remove insoluble materials from the reaction mixture using a glass filter.
The solvent was removed by evaporation. Isopropyl (cyclopentadienyl-1-
Fluorenyl) zirconium dichloride was obtained. Similarly, ethylene bis-tetrahydroindenyl zirconium dichloride was obtained using ethylene bis-tetrahydroindene as a raw material.

C)重合 充分に乾燥し窒素で置換した内容積3!の5US−30
2製オートクレーブ中のn−ヘプタン1000+d中に
トリエチルアルミニウム0.17g、上記有機遷移金属
化合物360mg、上記担体型遷移金属触媒1001g
をこの順序で混合したトルエン溶液をプロピレン雰囲気
下で装入した。オートクレーブの内容物を加熱して、5
分後に内部温度を40℃迄昇温し、40°Cで重合圧力
を5 kg/C4ゲージに保つようにプロピレンを装入
しながら重合を2時間続けた。オートクレーブを冷却し
たのち、未反応のプロピレンをパージして内容物をとり
だし、ろ過して白色粉末状ポリプロピレン82.7gを
得た。
C) Polymerization Thoroughly dried internal volume 3! 5US-30
0.17 g of triethylaluminum, 360 mg of the above organic transition metal compound, and 1001 g of the above supported transition metal catalyst in 1000+d of n-heptane in an autoclave manufactured by Co., Ltd.
A toluene solution in which these were mixed in this order was charged under a propylene atmosphere. Heat the contents of the autoclave and
After a few minutes, the internal temperature was raised to 40°C, and polymerization was continued for 2 hours while charging propylene to maintain the polymerization pressure at 5 kg/C4 gauge at 40°C. After the autoclave was cooled, unreacted propylene was purged and the contents were taken out and filtered to obtain 82.7 g of white powdery polypropylene.

この粉末状ポリプロピレンの沸騰n−へブタン抽出残ポ
リマーの割合(以下パウダーIIと略記する)は95.
5χ、極限粘度数(以下ηと略記、135°Cテトラリ
ン溶液にて測定)は4.05であった。
The proportion of the boiling n-hebutane extraction residual polymer in this powdered polypropylene (hereinafter abbreviated as Powder II) is 95.
5χ, and the intrinsic viscosity number (hereinafter abbreviated as η, measured in a tetralin solution at 135°C) was 4.05.

実施例2 実施例1においてイソプロピル(シクロペンタジェニル
−1−フルオレニル)ジルコニウムジクロの代わりにエ
チレンビステトラヒドロインデニルジルコニウムジクロ
リド350mgを用いた他は実施例1と同様にしてプロ
ピレンの重合を行ったところ白色粉末状ポリプロピレン
104.6 gを得た。この粉末状ポリプロピレンのパ
ウダーIIは96.7χ、ηは4,35であった。
Example 2 Polymerization of propylene was carried out in the same manner as in Example 1 except that 350 mg of ethylene bistetrahydroindenyl zirconium dichloride was used instead of isopropyl (cyclopentadienyl-1-fluorenyl) zirconium dichloride in Example 1. 104.6 g of white powdery polypropylene was obtained. Powder II of this powdered polypropylene had a 96.7χ and η of 4.35.

実施例3 A)担体型遷移金属触媒の製造 直径12+u+の鋼球300個の入った内容積11の粉
砕用ポットを2個装備した振動ミルを用意する。
Example 3 A) Production of supported transition metal catalyst A vibratory mill equipped with two grinding pots each having an internal volume of 11 and containing 300 steel balls with a diameter of 12+u+ is prepared.

二のポット中に窒素雰囲気化で塩化マグネシウム20g
、オルソ酢酸エチル1m、オルソ珪酸エチルIJd、1
,2−ジクロロエタン3dを加え、20時間粉砕した。
20g of magnesium chloride in the second pot under nitrogen atmosphere
, orthoethyl acetate 1 m, orthoethyl silicate IJd, 1
, 2-dichloroethane (3d) was added and the mixture was ground for 20 hours.

  300+dの丸底フラスコに窒素雰囲気化で上記粉
砕処理物10g、四塩化チタン100dを加えて85℃
で2時間撹伴したのちデカンテーションによって上澄み
液を除去した。さらに四塩化チタン100dを加え同様
の操作を繰り返した。次ぎにnヘプタン200dを加え
室温で15分間撹伴したあとデカンテーションによって
上澄み液を除去する操作を7回繰り返し次いで、n−へ
ブタン200mを追加して担体型遷移金属触媒スラリー
とした。このスラリーを1部サンプリングしてチタン含
有量を測定したところた担体型遷移金属触媒1g当たり
2.03wtχ含有していた。
Add 10 g of the above pulverized product and 100 d of titanium tetrachloride to a 300+d round bottom flask under a nitrogen atmosphere, and heat at 85°C.
After stirring for 2 hours, the supernatant liquid was removed by decantation. Furthermore, 100 d of titanium tetrachloride was added and the same operation was repeated. Next, 200 ml of n-heptane was added, the mixture was stirred at room temperature for 15 minutes, and the supernatant liquid was removed by decantation, which was repeated 7 times. Next, 200 ml of n-heptane was added to form a carrier-type transition metal catalyst slurry. When a portion of this slurry was sampled and the titanium content was measured, it was found that the titanium content was 2.03 wtχ per gram of the carrier-type transition metal catalyst.

B)重合 トリエチルアルミニウム0.17g、有機遷移金属化合
物としてエチレンビステトラヒドロインデニルジルコニ
ウムジクロリド350mg 、上記担体型遷移金属触媒
100■g1をプロピレン雰囲気下で装入し実施例1と
同様にしてプロピレンの重合を行った。オートクレーブ
を冷却したのち、未反応のプロピレンをパージして内容
物をとりだし、ろ過して白色粉末状ポリプロピレン95
.8gを得た。
B) Polymerization Propylene was polymerized in the same manner as in Example 1 by charging 0.17 g of polymerized triethylaluminum, 350 mg of ethylene bistetrahydroindenyl zirconium dichloride as an organic transition metal compound, and 100 g of the above carrier-type transition metal catalyst in a propylene atmosphere. I did it. After cooling the autoclave, unreacted propylene is purged and the contents are taken out and filtered to obtain white powdered polypropylene 95.
.. 8g was obtained.

この粉末状ポリプロピレンのパウダー11は94.2χ
、ηは3.76であった。
This powdered polypropylene powder 11 is 94.2χ
, η was 3.76.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を実施することにより、高活性で高立体規
則性のポリマーが、得ることが可能であり工業的価値が
高い。
By carrying out the method of the present invention, highly active and highly stereoregular polymers can be obtained and have high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の理解を助けるためのフロー図である
。 特許出願人 三井東圧化学株式会社
FIG. 1 is a flow diagram to aid understanding of the present invention. Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1、マグネシウム化合物に担持されたチタン化合物より
なる固体触媒と立体規則性向上剤及び有機アルミニウム
からなる触媒を用いてα−オレフィンを重合する方法に
おいて、立体規則性向上剤として、 一般式: ▲数式、化学式、表等があります▼又は▲数式、化学式
、表等があります▼ (式中A、Bは互いに同じかあるいは異なる芳香族炭化
水素、RはA、Bを連結する炭素数1〜20の炭化水素
残基、あるいは珪素、ゲルマニウム、錫を含む化合物、
Xはハロゲン原子あるいは炭素数1〜20の炭化水素残
基。Mは周期律表第4、5族から選ばれる金属原子。)
で表される有機遷移金属化合物を用いることを特徴とす
るα−オレフィンの重合方法。
[Claims] 1. In a method for polymerizing α-olefin using a solid catalyst consisting of a titanium compound supported on a magnesium compound, a stereoregularity improver, and a catalyst consisting of an organoaluminum, as the stereoregularity improver , General formula: ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, A and B are the same or different aromatic hydrocarbons, and R connects A and B. A hydrocarbon residue having 1 to 20 carbon atoms, or a compound containing silicon, germanium, or tin,
X is a halogen atom or a hydrocarbon residue having 1 to 20 carbon atoms. M is a metal atom selected from Groups 4 and 5 of the periodic table. )
A method for polymerizing α-olefins, characterized by using an organic transition metal compound represented by:
JP23253690A 1990-09-04 1990-09-04 α-Olefin polymerization method Expired - Lifetime JP2895189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23253690A JP2895189B2 (en) 1990-09-04 1990-09-04 α-Olefin polymerization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23253690A JP2895189B2 (en) 1990-09-04 1990-09-04 α-Olefin polymerization method

Publications (2)

Publication Number Publication Date
JPH04114006A true JPH04114006A (en) 1992-04-15
JP2895189B2 JP2895189B2 (en) 1999-05-24

Family

ID=16940870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23253690A Expired - Lifetime JP2895189B2 (en) 1990-09-04 1990-09-04 α-Olefin polymerization method

Country Status (1)

Country Link
JP (1) JP2895189B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179520A (en) * 2003-12-19 2005-07-07 Japan Polypropylene Corp Crystalline propylene polymer
JP5008808B2 (en) * 1999-12-13 2012-08-22 トータル・ペトロケミカルズ・リサーチ・フエリユイ Medium density polyethylene composition for film applications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008808B2 (en) * 1999-12-13 2012-08-22 トータル・ペトロケミカルズ・リサーチ・フエリユイ Medium density polyethylene composition for film applications
JP2005179520A (en) * 2003-12-19 2005-07-07 Japan Polypropylene Corp Crystalline propylene polymer

Also Published As

Publication number Publication date
JP2895189B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
RU2161161C2 (en) Components and catalysts for polymerization of olefins
JPH09506391A (en) (Co) polymerization of olefins
JPH09503250A (en) Multi-step process for (co) polymerization of olefins
JP3046361B2 (en) α-Olefin polymerization method
JPS6338363B2 (en)
JP2003511493A (en) Modified supported catalyst for olefin polymerization
JPH0525214A (en) Preparation of catalyst component for olefin polymerization and olefin polumerizing method using the same
JPH06336502A (en) Olefin polymerization catalyst and method for polymerizing olefin
JP2012236994A (en) Method for producing olefin block polymer
JPH04114006A (en) Polymerization of alpha-olefin
JPH05186523A (en) Method of polymerizing alpha-olefin
JP2895199B2 (en) Olefin polymerization catalyst
JP3102933B2 (en) Solid catalyst for producing polyolefin and method for producing polyolefin
JP3142933B2 (en) Method for producing polyolefin
JPH06345817A (en) Solid catalyst component and method for polymerizing olefin using the same
JP3117246B2 (en) Olefin polymerization method
JP3301793B2 (en) Olefin polymerization catalyst
JPS6363561B2 (en)
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPH0128049B2 (en)
JP3144851B2 (en) Olefin polymerization method
JP3213376B2 (en) Method for producing polyolefin
JPS6215562B2 (en)
JPS5991104A (en) Polymerization of alpha-olefin
JPS591285B2 (en) Alpha − Olefuinnojiyugohouhou