JPH04113528A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH04113528A
JPH04113528A JP2232804A JP23280490A JPH04113528A JP H04113528 A JPH04113528 A JP H04113528A JP 2232804 A JP2232804 A JP 2232804A JP 23280490 A JP23280490 A JP 23280490A JP H04113528 A JPH04113528 A JP H04113528A
Authority
JP
Japan
Prior art keywords
optical
light
intensity distribution
light intensity
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2232804A
Other languages
Japanese (ja)
Inventor
Satoshi Shibata
智 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2232804A priority Critical patent/JPH04113528A/en
Publication of JPH04113528A publication Critical patent/JPH04113528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To make light intensity distribution axially symmetric to the optical axis while reducing the loss of light quantity as much as possible with the small number of parts without deviating the optical axis by using optical filters for a beam shaping device so that the transmittivity is gradually decreased from the center to the outer periphery and the decreasing rates can be different from each other in two directions intersecting orthogonally with each other. CONSTITUTION:In respect to a light source 1 for which the light intensity distribution is different in two directions intersecting orthogonally with a face perpendicular to the optical axis, optical filters 5 with characteristics to gradually decrease the transmittivity from the center to the outer periphery and to make the decreasing rates different in two correspondent directions are disposed. In this case, since one direction having the light intensity distribution with wide spreading is made corresponding to one direction of the optical filter 5 having the larger decreasing rate of transmittivity for a beam emitted from the light source 1, the light intensity distribution after passing through the optical filter can be made coincident with the other direction having the light intensity distribution with narrower spreading. Thus, the obtained light beam can be made axially symmetric to the optical axis, and the optical axis is not deviated as well.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光源からの光強度分布を軸対称に補正する
ビーム整形装置を備えた光ヘッド装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical head device including a beam shaping device that corrects the light intensity distribution from a light source in an axially symmetrical manner.

[従来の技術] レーザプリンタ、レーザファクス、レーザ情報記録再生
装置等の光源として、半導体レーザが数多く用いられて
いる。
[Prior Art] Many semiconductor lasers are used as light sources for laser printers, laser facsimile machines, laser information recording and reproducing devices, and the like.

半導体レーザは出射光の発散角が接合面と平行な水平横
モードと、接合面と垂直な垂直モードとで異なる。即ち
、光軸に垂直な面内で直交する2方向における光強度分
布が異なり、各々の光強度分布は略ガウス分布を呈して
いる。
In a semiconductor laser, the divergence angle of emitted light differs between a horizontal transverse mode parallel to the junction surface and a vertical mode perpendicular to the junction surface. That is, the light intensity distributions in two orthogonal directions within a plane perpendicular to the optical axis are different, and each light intensity distribution exhibits a substantially Gaussian distribution.

この様な光ビームを光学走査系に用いると、画像読取り
にあっては画質の劣化、情報トラックからの信号再生に
あってはクロストーク等の問題を生ずる。
When such a light beam is used in an optical scanning system, problems such as deterioration in image quality occur in image reading and crosstalk occur in signal reproduction from the information track.

そこで、従来より上記の如き強度分布が光軸に対して軸
対称でない拡散光である光源に対しては、光強度分布を
光軸に対して軸対称に補正するビーム整形装置が用いら
れる。
Therefore, for a light source that is diffused light whose intensity distribution is not axially symmetrical with respect to the optical axis as described above, a beam shaping device that corrects the light intensity distribution to be axially symmetrical with respect to the optical axis has conventionally been used.

第3図、第4図は従来の光ヘッド装置の一例を示す図で
ある。
FIGS. 3 and 4 are diagrams showing an example of a conventional optical head device.

第3図において、(1)は半導体レーザの如き光強度分
布が光軸に垂直な面内での直交する2方向において異な
る光源、(2)は拡散光を平行光に整形するユリメータ
レンズ、(3)は光学プリズムである。尚、図中、光源
から平行ビームに整形された後の光学ヘッドの光学系は
省略されている。
In FIG. 3, (1) is a light source such as a semiconductor laser whose light intensity distribution differs in two orthogonal directions in a plane perpendicular to the optical axis; (2) is a urimeter lens that shapes diffused light into parallel light; (3) is an optical prism. In the figure, the optical system of the optical head after the light source is shaped into a parallel beam is omitted.

この光学ヘッド装置では、光源(1)における発散角θ
の大なる方向(θ1)において、光学プリズム(3)に
より光ビームは光束の幅か減じられ、発散角θの小なる
方向(θ2)の光ビーム幅と同様の幅に整形される。
In this optical head device, the divergence angle θ at the light source (1)
In the direction (θ1) where the divergence angle is large, the width of the light beam is reduced by the optical prism (3), and the width is shaped to be the same as the width of the light beam in the direction (θ2) where the divergence angle is small.

従って、光ビームは光学プリズム(3)を透過後、光軸
に対して光強度分布が軸対称な平行光となる。そのため
、光軸の方向は上記発散角θの異なる2方向において異
なることになる。
Therefore, after the light beam passes through the optical prism (3), it becomes parallel light whose light intensity distribution is symmetrical with respect to the optical axis. Therefore, the direction of the optical axis is different in the two directions where the divergence angle θ is different.

第4図の光学ヘッド装置は、この光軸方向のずれを補正
したものであり、第3図の光学系の光学プリズム(3)
の後に第2の光学プリズム(4)を挿入したものである
。第1、第2の光学プリズム(3)、(4)を組み合せ
ることにより、光ビームの2方向の光束の幅を同等とす
ると共に、2方向における光軸の方向を同一方向とする
ことかできる。
The optical head device shown in FIG. 4 corrects this deviation in the optical axis direction, and the optical prism (3) of the optical system shown in FIG.
A second optical prism (4) is inserted after the optical prism. By combining the first and second optical prisms (3) and (4), it is possible to equalize the width of the light beam in two directions and to make the directions of the optical axes in the two directions the same. can.

しかしながら、2方向における光軸のずれは補正できな
い。
However, the deviation of the optical axis in two directions cannot be corrected.

以上のように、光軸に垂直な面内の直交する2方向にお
いて光強度分布の異なる光源を用いた場合に、光強度分
布を光軸に対して軸対称となるように補正を試みても、
光軸のずれは補正できない。
As described above, when using light sources with different light intensity distributions in two orthogonal directions in a plane perpendicular to the optical axis, it is possible to try to correct the light intensity distribution so that it is axially symmetrical with respect to the optical axis. ,
Misalignment of the optical axis cannot be corrected.

一方、光透過率が部位によって異なる光学フィルタを光
学系中に介在させ、光軸をずらすことなく、2方向の異
なる光強度分布をもつことによる種々の課題を解決する
ための提案がなされている。
On the other hand, proposals have been made to interpose optical filters with different light transmittances in different parts in the optical system to solve various problems caused by having different light intensity distributions in two directions without shifting the optical axis. .

特開昭63−191119号公報、特開昭63−205
828号公報等には、光路中にアパーチュアを配する又
はコリメータレンズのケラレ現象によって平行光の径を
一定にしようとする場合において、前記アパーチュア、
コリメータレンズ等のエツジによる回折で光強度分布に
サイドローブが発生し、クロストークや画質劣化の原因
となることに鑑み、放射方向に一様に漸次光透過率が減
少する光学フィルタを光路中に配する技術か開示されて
いる。
JP-A-63-191119, JP-A-63-205
No. 828, etc., discloses that in the case where the diameter of parallel light is made constant by disposing an aperture in the optical path or by using the vignetting phenomenon of a collimator lens, the aperture,
Considering that side lobes occur in the light intensity distribution due to diffraction due to the edges of collimator lenses, etc., which can cause crosstalk and image quality deterioration, an optical filter whose light transmittance gradually decreases uniformly in the radial direction is installed in the optical path. The technology for distributing it has been disclosed.

ここで用いられる光学フィルタは、中心部から周辺部に
かけて光透過率が漸次減少するのであるから、いわゆる
エツジ効果は生じないが、前述のサイドローブを取り除
くために極めて急峻なガウス分布の透過特性をもつ光学
フィルタであるため、放射方向全体にわたり光量の損失
が大となる。
The optical filter used here has a light transmittance that gradually decreases from the center to the periphery, so the so-called edge effect does not occur, but in order to eliminate the aforementioned sidelobes, it has transmission characteristics with an extremely steep Gaussian distribution. Since this is an optical filter, there is a large loss in the amount of light throughout the radiation direction.

[発明が解決しようとする課題] 第3図、第4図に示す光学プリズムを用いた光ビーム整
形装置では、異なる2方向における光強度分布を均等に
補正することはできても、光軸のずれも補正することは
困難であるという課題があった。
[Problems to be Solved by the Invention] In the light beam shaping device using the optical prism shown in FIGS. 3 and 4, although it is possible to evenly correct the light intensity distribution in two different directions, There was a problem in that it was difficult to correct the deviation.

一方、特開昭63−191119号等に開示された光学
フィルタでは光軸のずれを生じさせずに光強度分布は一
様とすることができるが、サイドローブ除去を目的とし
ているため、全光量に対する損失光量が非常に大きくな
るという課題があった。
On the other hand, with the optical filter disclosed in JP-A-63-191119, etc., the light intensity distribution can be made uniform without causing any deviation of the optical axis, but since the purpose is to remove side lobes, the total light intensity is There was a problem in that the amount of light lost to the target was extremely large.

発明の目的 この発明はかかる課題を解決するためになされたもので
、光軸のずれを生じさせず、少ない部品点数にて光量損
失を極力小さく抑えて、光強度分布をその光軸に対して
軸対称とすることのできる光ヘッド装置を提供すること
を目的とするものである。
Purpose of the Invention This invention has been made to solve the above problems, and it is possible to change the light intensity distribution with respect to the optical axis by preventing the optical axis from shifting and by minimizing the loss of light quantity with a small number of parts. It is an object of the present invention to provide an optical head device that can be axially symmetrical.

[課題を解決するための手段] この発明にかかる光ヘッド装置は、光強度分布が光軸に
垂直な面内の直交する2方向にて異なる光源に対し、中
心から外周に向って光透過率か漸次減少し、且つその減
少割合が対応する2方向において相異なる特性を備えた
光学フィルタを配したことを特徴どしている。
[Means for Solving the Problems] The optical head device according to the present invention has a light transmittance that increases from the center to the outer periphery for light sources whose light intensity distributions differ in two orthogonal directions in a plane perpendicular to the optical axis. The present invention is characterized in that an optical filter is provided in which the rate of decrease gradually decreases, and the rate of decrease has different characteristics in two corresponding directions.

[作用] この構成により、光源からの出射ビームにおいて、広が
りの大なる光強度分布をもつ1つの方向(X方向)では
、光透過率の減少割合の大なる光学フィルタの1つの方
向を対応させることにより、光学フィルタ透過後の光強
度分布を広がりの小なる光強度分布をもつ他の方向(X
方向)と一致させることができる。
[Function] With this configuration, in the beam emitted from the light source, one direction (X direction) having a wide light intensity distribution corresponds to one direction of the optical filter in which the light transmittance decreases at a large rate. By doing so, the light intensity distribution after passing through the optical filter can be changed to another direction (X
direction).

従って、得られた光ビームは光軸に対して軸対称であり
、光軸のずれ及び回折も生しない。
Therefore, the obtained light beam is axially symmetrical with respect to the optical axis, and neither optical axis deviation nor diffraction occurs.

〔実施例〕〔Example〕

第1図は実施例である光ヘッド装置の主要光学系部分を
示す斜視図である。
FIG. 1 is a perspective view showing the main optical system portions of an optical head device according to an embodiment.

図中、(1)は半導体レーザの如き光軸に垂直な面内の
直交する2方向における光強度分布が異なる光源であり
、θ1は垂直方向(X方向)の発散角、θ2は水平方向
(X方向)の発散角を示し、θ1〉θ2なる関係を有し
ている。(2)はコリメータレンズ、(5)は光学フィ
ルタ、(6)は前記光学フィルタ(5)の出射後の光強
度分布曲線である。
In the figure, (1) is a light source such as a semiconductor laser that has different light intensity distributions in two orthogonal directions in a plane perpendicular to the optical axis, θ1 is the divergence angle in the vertical direction (X direction), and θ2 is the horizontal direction ( (X direction), and has the relationship θ1>θ2. (2) is a collimator lens, (5) is an optical filter, and (6) is a light intensity distribution curve after output from the optical filter (5).

第2図は上記光学フィルタ(5)の模式図であり、光学
フィルタ(5)は光源(1)のθ1方向(X方向)、及
びθ2方向(X方向)に図示の如く光透過早特性を有し
、X方向においては中心から周辺部にかけての透過率減
少割合が大、X方向ては小である。
Figure 2 is a schematic diagram of the optical filter (5), which has light transmission characteristics as shown in the θ1 direction (X direction) and θ2 direction (X direction) of the light source (1). The rate of decrease in transmittance from the center to the periphery is large in the X direction, and small in the X direction.

尚、光学フィルタ(5)の中心は透過率は1、すなわち
全ての光が光学フィルタ(5)を透過する。
Note that the transmittance at the center of the optical filter (5) is 1, that is, all light passes through the optical filter (5).

この光学ヘッド装置において、光源(1)からの光源ビ
ームは異なる2方向、すなわちX方向、X方向で光強度
分布が異なるいわゆる楕円形を呈している。この光ビー
ムがコリメータレンズ(2)により平行光となるが、光
強度分布はやはり楕円形である。次いで光学フィルタ(
5)に入射すると、大なる発散角θ1によるX方向の光
強度分布は、透過減少率の大なる光学フィルタ(5)の
特性により、所定の光強度分布特性に補正される。
In this optical head device, the light source beam from the light source (1) has a so-called elliptical shape with different light intensity distributions in two different directions, that is, the X direction and the X direction. Although this light beam is turned into parallel light by the collimator lens (2), the light intensity distribution is still elliptical. Next, an optical filter (
5), the light intensity distribution in the X direction due to the large divergence angle θ1 is corrected to a predetermined light intensity distribution characteristic by the characteristics of the optical filter (5) having a large transmission reduction rate.

一方、小なる発散角θ2によるX方向の光強度分布は透
過減少率の小なる光学フィルタ(5)の特性により所定
の強度分布特性に補正される。この時、光源(1)のも
つ楕円形の光強度分布におけるその長径(X方向)、短
径(X方向)の比が、光学フィルタ(5)における水平
方向(X方向)と垂直方向(X方向)の透過率減少割合
の比に等しく設定されていなければ、光学フィルタ(5
)出射後の光ビームは先軸に対して軸対称な強度分布(
円形分布)の平行光に整形される。
On the other hand, the light intensity distribution in the X direction due to the small divergence angle θ2 is corrected to a predetermined intensity distribution characteristic by the characteristic of the optical filter (5) having a small transmission reduction rate. At this time, the ratio of the major axis (X direction) and minor axis (X direction) in the elliptical light intensity distribution of the light source (1) is the same as that in the horizontal direction (X direction) and the vertical direction (X direction) in the optical filter (5). direction) is not set equal to the ratio of the transmittance reduction rate of the optical filter (5
) The light beam after exiting has an axially symmetrical intensity distribution with respect to the tip axis (
It is shaped into parallel light with a circular distribution).

この整形ビームは回折効果を受けていないため、ガウシ
アンビームに近い良質の光ビームである。
Since this shaped beam is not affected by diffraction effects, it is a high-quality light beam that is close to a Gaussian beam.

しかも光学フィルタ(5)による光透過率の減少は、理
想的にはX方向、X方向のいずれか一方のみに与えれば
良いから、光量の損失は最小限に抑えることが可能であ
る。
Moreover, since the optical filter (5) ideally reduces the light transmittance only in either the X direction or the X direction, it is possible to minimize the loss of light quantity.

[発明の効果] この発明は以上説明した通り、中心から周辺に向って、
光透過率が漸次減少し且つその減少割合が2方向におい
て相異なる特性を備えた光学フィルタを用いたため、2
方向に異なる光強度分布をもつ半導体レーザの如き光源
からの光ビームを、光軸のずれを生じさせずに軸対称の
光強度分布をもつ光ビームに整形することが可能である
[Effects of the Invention] As explained above, this invention provides
Because we used an optical filter with characteristics in which the light transmittance gradually decreased and the rate of decrease was different in two directions,
It is possible to shape a light beam from a light source such as a semiconductor laser, which has a light intensity distribution that differs in direction, into a light beam that has an axially symmetrical light intensity distribution without causing any deviation of the optical axis.

しかも部品点数をむやみに増加させずに光損失も最小限
に抑制できる。
Furthermore, optical loss can be minimized without unnecessarily increasing the number of parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる一実施例の主要光学系の斜視図
、第2図は本発明の一実施例に用いられる光学フィルタ
の特性説明図、第3図、第4図は各々従来の光ヘッド装
置の主要光学系の説明図である。 図において、(1)は光源、(2)はコリメータレンズ
、(3)、(4)は光学プリズム、(5)は光学フィル
タである。 なお、図中同一符号は、同一または相当部分を示す。
FIG. 1 is a perspective view of the main optical system of an embodiment of the present invention, FIG. 2 is a characteristic diagram of an optical filter used in an embodiment of the present invention, and FIGS. FIG. 3 is an explanatory diagram of the main optical system of the optical head device. In the figure, (1) is a light source, (2) is a collimator lens, (3) and (4) are optical prisms, and (5) is an optical filter. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  強度分布が光軸に対して垂直な面内の互いに直交する
2方向において相異なるレーザ光源と、前記光源からの
出射光を平行光に変換するコリメータレンズと、前記平
行光の強度分布を前記直交する2方向において略同等と
なるように補正するビーム整形装置とを備えた光ヘッド
装置であって、前記ビーム整形装置は、中心から外周に
向って漸次透過率が減少し、且つその減少割合が前記直
交する2つの方向において相異なる光学フィルタである
ことを特徴とする光ヘッド装置。
A laser light source whose intensity distribution is different in two directions orthogonal to each other in a plane perpendicular to the optical axis, a collimator lens that converts the light emitted from the light source into parallel light, and a collimator lens that converts the intensity distribution of the parallel light to the orthogonal direction. an optical head device comprising a beam shaping device that corrects the beam so that the two directions are approximately equal, and the beam shaping device has a transmittance that gradually decreases from the center toward the outer periphery, and whose rate of decrease is An optical head device characterized in that the optical filters are different in the two orthogonal directions.
JP2232804A 1990-09-03 1990-09-03 Optical head device Pending JPH04113528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232804A JPH04113528A (en) 1990-09-03 1990-09-03 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232804A JPH04113528A (en) 1990-09-03 1990-09-03 Optical head device

Publications (1)

Publication Number Publication Date
JPH04113528A true JPH04113528A (en) 1992-04-15

Family

ID=16945029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232804A Pending JPH04113528A (en) 1990-09-03 1990-09-03 Optical head device

Country Status (1)

Country Link
JP (1) JPH04113528A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053486A1 (en) * 1998-04-09 1999-10-21 Heidelberger Druckmaschinen Aktiengesellschaft Recording device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053486A1 (en) * 1998-04-09 1999-10-21 Heidelberger Druckmaschinen Aktiengesellschaft Recording device

Similar Documents

Publication Publication Date Title
US6504975B1 (en) Coupling lens and semiconductor laser module
US5581392A (en) Optical Scanner
CA2068456A1 (en) Optical system for focusing a light beam on to an image plane
JP3192630B2 (en) Automatic high-precision wavelength controller and method for optical fiber Bragg grating writing
US4722581A (en) Recording apparatus with a semiconductor laser
US4411500A (en) Optical system for reproducing information
US4796965A (en) Optical scanning device
US4734905A (en) Optical head device
JPH0695018A (en) Raster output scanner
JPH01121815A (en) Scanning optical system for laser beam printer or the like
JPH04113528A (en) Optical head device
JPS63311320A (en) Optical scanner
US4289377A (en) Projecting apparatus
JPH0216520A (en) Pre-object type scan optical system
JPH0718983B2 (en) Optical collimator device
EP1345064A2 (en) Laser beam exposure apparatus with array refracting element
US4586782A (en) Laser beam optical system with inclined cylindrical lens
US6542317B2 (en) Optical system for crystallization tool
US7106484B2 (en) Scanning optical system
US4921329A (en) Rear projection screen
JPS60241013A (en) Optical pickup
JPS61184515A (en) Laser scanning device
JPS5965823A (en) Hologram scanner
JPS641767B2 (en)
JPH05224005A (en) Refractive index distribution type lens array body