JPH04113173A - Hydrogen absorption heat pump - Google Patents

Hydrogen absorption heat pump

Info

Publication number
JPH04113173A
JPH04113173A JP23133790A JP23133790A JPH04113173A JP H04113173 A JPH04113173 A JP H04113173A JP 23133790 A JP23133790 A JP 23133790A JP 23133790 A JP23133790 A JP 23133790A JP H04113173 A JPH04113173 A JP H04113173A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
hydrogen
brine
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23133790A
Other languages
Japanese (ja)
Inventor
Hironori Maeda
前田 洋規
Bunichi Isotani
磯谷 文一
Masayoshi Miura
三浦 正芳
Hideto Kubo
秀人 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP23133790A priority Critical patent/JPH04113173A/en
Publication of JPH04113173A publication Critical patent/JPH04113173A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid complex configuration and restrict a variation in a thermal transporting capability by a method wherein at least one of a heat absorption pipe and a heat radiation pipe is provided with a heat accumulator in series with the heat absorption heat exchanger or the heat radiation heat exchanger. CONSTITUTION:In the event that heat accumulators 9a and 9b are not present, a temperature of brine of low temperature supplied from either a hydrogen absorption heat exchanger 1 or 2 to a heat absorption heat exchanger 4 is high at an operation changing-over time region and becomes low temperature at a time period spaced apart from the changing-over time. A temperature of the brine supplied to the heat radiation heat exchanger 5 is made opposite. The heat accumulator 9a absorbs heat from the low temperature brine at a time changing-over time between a hydrogen absorption and discharging operation of a heat exchanger 1 or a heat exchanger 2 and then the heat is radiated to the low temperature brine at the time region spaced a part from the heat absorption time. Similarly, heat accumulator 9b releases heat to the brine of high temperature at a changing-over time of hydrogen absorption or releasing operation of the heat exchanger 1 or the heat exchanger 2 and absorbs heat from the brine of the high temperature at a time region spaced apart from it. With such an arrangement, a variation of brine temperature is restricted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱輸送能力の変動が少ない水素吸蔵ヒートポ
ンプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hydrogen storage heat pump with little variation in heat transport capacity.

[従来の技術] 特開昭62−194164号公報は、水素吸蔵合金を有
し空気と熱交換する一対の水素吸蔵熱交換器と、圧縮機
及び四方弁を有し画然交換器間で水素を往復させる水素
圧送管路部とを備える水素吸蔵ヒートポンプ型式の空調
装置を開示する。
[Prior Art] JP-A-62-194164 discloses a pair of hydrogen storage heat exchangers that have a hydrogen storage alloy and exchange heat with air, and a compressor and a four-way valve that allows hydrogen to be transferred between the exchangers. Disclosed is a hydrogen storage heat pump type air conditioner comprising a hydrogen pressure-feeding pipe section that reciprocates hydrogen.

この装置では、上記水素往復により同熱交換器はそれぞ
れ吸熱、放熱を繰返し、結果、同熱交換器から出る低温
空気及び高温空気の一方は室内に供給され、他方は大気
中に排出される。
In this device, the heat exchanger repeatedly absorbs and radiates heat due to the hydrogen reciprocation, and as a result, one of the low-temperature air and high-temperature air coming out of the heat exchanger is supplied indoors, and the other is discharged into the atmosphere.

特開昭62−294868号公報は、水素吸蔵合金を有
する二対の水素吸蔵熱交換器を設け、圧縮機により各水
素吸蔵熱交換器対が相互に異なる位相で水素を往復させ
る水素吸蔵ヒートポンプを開示する。そして、この装置
では、水素放出側の2個の水素吸蔵熱交換器と吸熱側熱
交換器との間で熱流体を循環させ、同じく2個の水素吸
収側の水素吸蔵熱交換器と放熱側熱交換器との間で熱流
体を循環させて、熱輸送を実施する。
JP-A No. 62-294868 discloses a hydrogen storage heat pump in which two pairs of hydrogen storage heat exchangers each having a hydrogen storage alloy are provided, and each pair of hydrogen storage heat exchangers reciprocates hydrogen at different phases using a compressor. Disclose. In this device, thermal fluid is circulated between the two hydrogen storage heat exchangers on the hydrogen release side and the heat exchanger on the heat absorption side, and the thermal fluid is circulated between the two hydrogen storage heat exchangers on the hydrogen absorption side and the heat exchanger on the heat radiation side. Heat transport is carried out by circulating thermal fluid between the heat exchanger and the heat exchanger.

この装置では二対の水素吸蔵熱交換器の熱輸送ピークが
位相差(時間差)をもつので、総合した熱輸送波形の変
動を抑圧できる。
In this device, the heat transport peaks of the two pairs of hydrogen storage heat exchangers have a phase difference (time difference), so fluctuations in the overall heat transport waveform can be suppressed.

[発明が解決しようとする課題] しかしながら上記した一対の水素吸蔵熱交換器をもつ水
素吸蔵ヒートポンプは、水素及び空気を切換える度(水
素系の熱容量等の影響などにより熱輸送能力すなわち吸
熱及び放熱能力が低下し、その結果として熱輸送能力が
大きく変動する不具合がある。
[Problems to be Solved by the Invention] However, the hydrogen storage heat pump having the above-mentioned pair of hydrogen storage heat exchangers has a low heat transport capacity, that is, heat absorption and heat dissipation capacity, due to the influence of the heat capacity of the hydrogen system, etc. every time hydrogen and air are switched. As a result, there is a problem that the heat transport capacity fluctuates greatly.

一方、上記した二対の水素吸蔵熱交換器をもつ水素吸蔵
ヒートポンプは、熱輸送能力の変動を縮小できるものの
、水素吸蔵熱交換器の増設を必要とし、更に構造が複雑
化するので実用性に欠ける難がある。
On the other hand, although the above-mentioned hydrogen storage heat pump with two pairs of hydrogen storage heat exchangers can reduce fluctuations in heat transport capacity, it requires additional hydrogen storage heat exchangers and the structure becomes more complicated, making it impractical. There is a problem of lack.

本発明はこのような問題に鑑みなされたものでおり、構
成の複雑化をできるだけ回避しつつ、熱輸送能力の変動
を抑止できる水素吸蔵ヒートポンプを提供することをそ
の解決すべき課題としている。
The present invention has been made in view of these problems, and an object to be solved is to provide a hydrogen storage heat pump that can suppress fluctuations in heat transport capacity while avoiding complication of the configuration as much as possible.

[課題を解決するための手段] 本発明の水素吸蔵ヒートポンプは、水素吸蔵合金を有す
る一対の水素吸蔵熱交換器と、圧縮機を内蔵し該両水素
吸蔵熱交換器間で水素を往復させる水素圧送管路部と、
吸熱側熱交換器及び放熱側熱交換器と、水素放出側の上
記水素吸蔵熱交換器及び上記吸熱側熱交換器の間で熱流
体を循環させる吸熱配管部と、水素吸収側の上記水素吸
蔵熱交換器及び上記放熱側熱交換器の間で熱流体を循環
させる放熱配管部とを備え、上記吸熱配管部及び放熱配
管部の少なくとも一方に、上記吸熱側熱交換器又は放熱
側熱交換器と直列に蓄熱器を設けたことを特徴としてい
る。
[Means for Solving the Problems] The hydrogen storage heat pump of the present invention includes a pair of hydrogen storage heat exchangers having a hydrogen storage alloy and a compressor, and a hydrogen storage heat pump that reciprocates hydrogen between the two hydrogen storage heat exchangers. A pressure feeding pipe section,
an endothermic piping section that circulates a thermal fluid between the endothermic side heat exchanger and the endothermic side heat exchanger, the hydrogen storage heat exchanger and the endothermic side heat exchanger on the hydrogen release side, and the hydrogen storage side on the hydrogen absorption side. a heat exchanger and a heat radiation piping section that circulates thermal fluid between the heat exchanger and the heat radiation side heat exchanger; The feature is that a heat storage device is installed in series with the

[作用] 本発明の水素吸蔵ヒートポンプにおいて、水素圧送管路
部はその圧縮機の運転及び水素流通経路の切換により一
対の水素吸蔵熱交換器の間で水素を往復させる。水素を
吸収する水素吸蔵熱交換器は放熱し、水素を放出する水
素吸蔵熱交換器は吸熱する。吸熱側熱交換器は吸熱対象
から吸熱し、吸熱配管部は吸熱側熱交換器から水素放出
側の水素吸蔵熱交換器に熱輸送する。放熱配管部は水素
吸収側の水素吸蔵熱交換器から放熱側熱交換器に熱輸送
し、放熱側熱交換器は放熱対象に放熱する。
[Function] In the hydrogen storage heat pump of the present invention, the hydrogen pressure feed pipe section shuttles hydrogen between the pair of hydrogen storage heat exchangers by operating its compressor and switching the hydrogen flow path. A hydrogen storage heat exchanger that absorbs hydrogen radiates heat, and a hydrogen storage heat exchanger that releases hydrogen absorbs heat. The endothermic side heat exchanger absorbs heat from the object of heat absorption, and the endothermic piping section transports heat from the endothermic side heat exchanger to the hydrogen storage heat exchanger on the hydrogen release side. The heat radiation piping section transports heat from the hydrogen storage heat exchanger on the hydrogen absorption side to the heat radiation side heat exchanger, and the heat radiation side heat exchanger radiates heat to the heat radiation target.

特に本発明の特徴である蓄熱器は、吸熱側熱交換器から
水素放出側の水素吸蔵熱交換器への熱輸送ピーク時(水
素吸収側の水素吸蔵熱交換器から放熱側熱交換器への熱
輸送ピーク時〉に、熱流体から冷熱及び温熱の少なくと
も一方を吸収し、両水素吸蔵熱交換器間における水素流
通方向の切換時(熱輸送ボトム時)にそれを放出する。
In particular, the heat storage device, which is a feature of the present invention, is used at the peak of heat transport from the heat exchanger on the endothermic side to the hydrogen storage heat exchanger on the hydrogen release side (from the hydrogen storage heat exchanger on the hydrogen absorption side to the heat exchanger on the heat release side). At least one of cold heat and hot heat is absorbed from the thermal fluid at the peak of heat transport, and released when the direction of hydrogen flow is switched between the two hydrogen storage heat exchangers (at the bottom of heat transport).

[実施例] (実施例1) 本発明の水素吸蔵ヒートポンプの一実施例を、第1図に
より説明する。
[Example] (Example 1) An example of the hydrogen storage heat pump of the present invention will be described with reference to FIG.

この装置は、水素吸蔵合金が充填される一対の水素吸蔵
熱交換器1.2を有しており、水素吸蔵熱交換器1.2
はそれぞれ水素吸蔵合金(MmN5〉の粉末が充填され
水素ガスが出入可能な通気孔付きの密閉容器(図示せず
)を有する。この密閉容器の周囲にはブラインが流れる
パイプ(図示せず)が巻着されており、また、水素吸蔵
熱交換器1.2は、圧縮機3及び水素配管により水素往
復可能に連結されている。
This device has a pair of hydrogen storage heat exchangers 1.2 filled with hydrogen storage alloy.
Each has an airtight container (not shown) filled with powder of hydrogen storage alloy (MmN5) and equipped with a vent through which hydrogen gas can enter and exit.A pipe (not shown) through which brine flows is surrounding this airtight container. The hydrogen storage heat exchanger 1.2 is connected to the compressor 3 and a hydrogen pipe so that hydrogen can be reciprocated.

すなわち、圧縮機3の吸入口と水素吸蔵熱交換器1.2
とは二方弁31.32を介して個別に管路接続されてい
る。また、圧縮機30の吐出口と水素吸蔵熱交換器1.
2とは二方弁33.34を介して個別に管路接続されて
いる。圧縮機3、二方弁31〜34、及びそれらを連結
する水素配管は本発明でいう水素圧送管路部を構成して
いる。
That is, the suction port of the compressor 3 and the hydrogen storage heat exchanger 1.2
and are individually connected via two-way valves 31, 32. Also, the discharge port of the compressor 30 and the hydrogen storage heat exchanger 1.
2 are individually connected via two-way valves 33, 34. The compressor 3, the two-way valves 31 to 34, and the hydrogen piping connecting them constitute a hydrogen pressure-feeding piping section in the present invention.

上記した水素吸蔵熱交換器1に巻着された各パイプの一
端は二方弁61.62を介して吸熱側熱交換器4及び放
熱側熱交換器5のブライン流入口に連結され、上記各パ
イプの他端は二方弁63.64を介してブライン循環ポ
ンプ7.8の吐出口に接続されている。
One end of each pipe wrapped around the hydrogen storage heat exchanger 1 described above is connected to the brine inlet of the heat absorption side heat exchanger 4 and the heat radiation side heat exchanger 5 through two-way valves 61 and 62, and The other end of the pipe is connected via a two-way valve 63.64 to the outlet of a brine circulation pump 7.8.

同様に、水素吸蔵熱交換器2に巻着された各パイプの一
端は三方弁65.66を介して吸熱側熱交換器4及び放
熱側熱交換器5のブライン流入口に連結され、上記各パ
イプの他端は二方弁67、68を介してブライン循環ポ
ンプ7.8の吐出口に接続されている。
Similarly, one end of each pipe wrapped around the hydrogen storage heat exchanger 2 is connected to the brine inlet of the heat absorption side heat exchanger 4 and the heat radiation side heat exchanger 5 through three-way valves 65 and 66, and The other end of the pipe is connected via two-way valves 67, 68 to the outlet of a brine circulation pump 7.8.

ブライン循環ポンプ7の吸入口は、蓄熱器9aを介して
吸熱側熱交換器4′のブライン流出口に連結され、ブラ
イン循環ポンプ8の吸入口は、蓄熱器9bを介して放熱
側熱交換器5のブライン流出口に連結されている。
The suction port of the brine circulation pump 7 is connected to the brine outlet of the heat absorption side heat exchanger 4' via the heat storage device 9a, and the suction port of the brine circulation pump 8 is connected to the heat radiation side heat exchanger 4' via the heat storage device 9b. It is connected to the brine outlet of No.5.

ここで、二方弁61.63.65.67及びそれらと吸
熱側熱交換器4との間のブライン配管は本発明でいう吸
熱配管部を構成し、同様に、二方弁62.64.66.
68及びそれらと放熱側熱交換器5との間のブライン配
管は本発明でいう放熱配管部を構成している。なお、こ
こでは冷房モードであって吸熱側熱交換器4が室内側、
放熱側熱交換器5が室外側とするが、暖房時には二方弁
61〜68の切換により容易に室内側の吸熱側熱交換器
4を放熱側熱交換器として、室外側の放熱側熱交換器5
を吸熱側熱交換器として作動させ得ることは自明である
Here, the two-way valves 61, 63, 65, 67 and the brine piping between them and the endothermic side heat exchanger 4 constitute the endothermic piping section in the present invention, and similarly, the two-way valves 62, 64, . 66.
68 and the brine piping between them and the heat radiation side heat exchanger 5 constitute a heat radiation piping section in the present invention. In this case, the cooling mode is set, and the endothermic side heat exchanger 4 is on the indoor side,
The heat radiation side heat exchanger 5 is on the outdoor side, but during heating, by switching the two-way valves 61 to 68, the heat absorption side heat exchanger 4 on the indoor side can be easily used as the heat radiation side heat exchanger, and the heat exchanger on the outdoor side can be exchanged. Vessel 5
It is obvious that the can be operated as an endothermic heat exchanger.

更に、水素吸蔵熱交換器1のブライン出口に連結される
ブライン配管1aに温度センサ1bが設けられ、同様に
、水素吸蔵熱交換器2のブライン出口に連結されるブラ
イン配管2aに温度センサ2bが設けられている。そし
て、これら温度センサ1b、2bの出力信号V1 b、
V2bは第2図の回路に送られ、二方弁61〜68が切
換えられる。
Further, a temperature sensor 1b is provided in the brine pipe 1a connected to the brine outlet of the hydrogen storage heat exchanger 1, and a temperature sensor 2b is similarly provided in the brine pipe 2a connected to the brine outlet of the hydrogen storage heat exchanger 2. It is provided. The output signals V1 b of these temperature sensors 1b and 2b,
V2b is sent to the circuit shown in FIG. 2, and the two-way valves 61-68 are switched.

なお、上記蓄熱器9a、9bはブラインを貯溜するタン
クからなる。
Note that the heat accumulators 9a and 9b are made up of tanks that store brine.

次に、この装置の動作を説明する。Next, the operation of this device will be explained.

まず水素往復について説明する。最初に水素吸蔵熱交換
器1に水素が貯溜されており、三方弁31.34は開、
二方弁32.33は閉状態にある。
First, we will explain hydrogen round trip. Initially, hydrogen is stored in the hydrogen storage heat exchanger 1, and the three-way valves 31 and 34 are opened.
Two-way valves 32,33 are in the closed state.

かかる状態において圧縮機3の運転により水素吸蔵熱交
換器1から水素吸蔵熱交換器2に水素ガスが圧送される
と、水素を放出する水素吸蔵熱交換器1はブラインから
吸熱し、水素を吸収する水素吸蔵熱交換器2はブライン
に放熱する。
In such a state, when hydrogen gas is pumped from the hydrogen storage heat exchanger 1 to the hydrogen storage heat exchanger 2 by the operation of the compressor 3, the hydrogen storage heat exchanger 1, which releases hydrogen, absorbs heat from the brine and absorbs hydrogen. The hydrogen storage heat exchanger 2 radiates heat to the brine.

水素吸蔵熱交換器1が所定時間、水素ガスを放出した後
、圧縮機3を停止し、二方弁31.32を開、二方弁3
3.34を開状態に切換えれば、大量に水素を吸蔵する
水素吸蔵熱交換器2中の水素カス圧力が高いので、水素
吸蔵熱交換器2から水素吸蔵熱交換器1に水素カスが流
れ、その結果、水素吸蔵熱交換器2はブラインから吸熱
し、水素を吸収する水素吸蔵熱交換器1はブラインに放
熱する。
After the hydrogen storage heat exchanger 1 releases hydrogen gas for a predetermined period of time, the compressor 3 is stopped, the two-way valves 31 and 32 are opened, and the two-way valve 3 is opened.
3. If 34 is switched to the open state, hydrogen scum will flow from the hydrogen storage heat exchanger 2 to the hydrogen storage heat exchanger 1 because the hydrogen scum pressure in the hydrogen storage heat exchanger 2, which stores a large amount of hydrogen, is high. As a result, the hydrogen storage heat exchanger 2 absorbs heat from the brine, and the hydrogen storage heat exchanger 1, which absorbs hydrogen, radiates heat to the brine.

水素吸蔵熱交換器1.2の圧力差か一定レベル以下にな
れば、ざらに二方弁3L 34を閉、二方弁32.33
を開状態に切換えれて圧縮機3を運転する。その結果、
水素吸蔵熱交換器2から水素吸蔵熱交換器1に水素ガス
が継続して圧送され、水素を放出する水素吸蔵熱交換器
2はブラインから吸熱し、水素を吸収する水素吸蔵熱交
換器1はブラインに放熱する。
When the pressure difference in the hydrogen storage heat exchanger 1.2 falls below a certain level, the two-way valve 3L 34 is closed, and the two-way valve 32.33
is switched to the open state and the compressor 3 is operated. the result,
Hydrogen gas is continuously fed under pressure from the hydrogen storage heat exchanger 2 to the hydrogen storage heat exchanger 1. The hydrogen storage heat exchanger 2, which releases hydrogen, absorbs heat from the brine, and the hydrogen storage heat exchanger 1, which absorbs hydrogen, Heat is dissipated into the brine.

水素吸蔵熱交換器2が所定時間、水素ガスを放出した後
、圧縮機3を停止し、再度二方弁31.32を開、三方
弁33.34を閉状態に切換えれば、大量に水素を吸蔵
する水素吸蔵熱交換器1中の水素ガス圧力が高いので、
水素吸蔵熱交換器1から水素吸蔵熱交換器2に水素カス
が流れ、その結果、水素吸蔵熱交換器1はブラインから
吸熱し、水素を吸収する水素吸蔵熱交換器2はブライン
に放熱する。
After the hydrogen storage heat exchanger 2 releases hydrogen gas for a predetermined period of time, the compressor 3 is stopped, the two-way valves 31 and 32 are opened again, and the three-way valves 33 and 34 are closed. Since the hydrogen gas pressure in the hydrogen storage heat exchanger 1 that stores
Hydrogen scum flows from the hydrogen storage heat exchanger 1 to the hydrogen storage heat exchanger 2, and as a result, the hydrogen storage heat exchanger 1 absorbs heat from the brine, and the hydrogen storage heat exchanger 2, which absorbs hydrogen, radiates heat to the brine.

このようにして水素ガスの一往復(1サイクル)か完了
するか、以下このサイクルを繰返すことにより、水素吸
蔵熱交換器1から出るブラインは一定周期で加熱、冷却
される。水素配管系の熱容量などのために、水素吸蔵熱
交換器1.2の温度は例えば第3図(a)のようになる
In this way, by completing one round trip (one cycle) of the hydrogen gas or repeating this cycle thereafter, the brine coming out of the hydrogen storage heat exchanger 1 is heated and cooled at regular intervals. Due to the heat capacity of the hydrogen piping system, the temperature of the hydrogen storage heat exchanger 1.2 is as shown in FIG. 3(a), for example.

次に、−吸熱側熱交換器4に常に冷却ブラインを循環さ
せる吸熱配管部、及び、放熱側熱交換器5に常に加熱ブ
ラインを循環させる放熱配管部の作動について説明する
Next, the operations of the heat absorption piping section that always circulates cooling brine to the heat exchanger 4 on the heat absorption side and the heat radiation piping section that always circulates heating brine to the heat exchanger 5 on the heat radiation side will be described.

温度センサ1b、2 b(7)出力信号V 1 b 、
 V 2bは第2図に示すコンパレータ100に送られ
、コンパレータ100はVlbがより大きい場合にロー
レヘル、V2bがより大きい場合にハイレベルとなる。
Temperature sensor 1b, 2b (7) output signal V 1 b,
V2b is sent to a comparator 100 shown in FIG. 2, and the comparator 100 goes low when Vlb is larger and goes high when V2b is larger.

したがって、トランジスタ101〜104はV2bがよ
り大きい場合にオンし、逆にインバータ105の出力反
転によりトランジスタ106〜109はVlbがより大
きい場合にオンする。
Therefore, transistors 101-104 are turned on when V2b is larger, and conversely, transistors 106-109 are turned on when Vlb is larger due to the inversion of the output of inverter 105.

その結果、水素吸蔵熱交換器2の温度が水素吸蔵熱交換
器1の温度より高い場合(2b>Vlb)に、それぞれ
ソレノイドバルブである二方弁61.63.66.68
が開き、二方弁62.64.65.67が閉じる。よっ
て、ポンプ7は水素吸蔵熱交換器1、吸熱側熱交換器4
、蓄熱器9aに低温ブラインを循環させ、ポンプ8は水
素吸蔵熱交換器2、放熱側熱交換器5、蓄熱器9bに高
温ブラインを循環させる。
As a result, when the temperature of the hydrogen storage heat exchanger 2 is higher than the temperature of the hydrogen storage heat exchanger 1 (2b>Vlb), the two-way valves 61, 63, 66, 68, which are solenoid valves, respectively
opens and two-way valves 62, 64, 65, 67 close. Therefore, the pump 7 includes the hydrogen storage heat exchanger 1 and the heat absorption side heat exchanger 4.
, the low temperature brine is circulated through the heat storage device 9a, and the pump 8 circulates the high temperature brine through the hydrogen storage heat exchanger 2, the heat radiation side heat exchanger 5, and the heat storage device 9b.

また、水素吸蔵熱交換器2の温度が水素吸蔵熱交換器1
の温度より低い場合に、二方弁61.63.66.68
が閉じ、二方弁62.64.65.67が開く。よって
、ポンプ7は水素吸蔵熱交換器2、吸熱側熱交換器4、
蓄熱器9aに低温ブラインを循環させ、ポンプ8は水素
吸蔵熱交換器1、放熱側熱交換器5、蓄熱器9bに高温
ブラインを循環させる。
Also, if the temperature of hydrogen storage heat exchanger 2 is
Two-way valve 61.63.66.68 when the temperature is lower than
closes and two-way valve 62,64,65,67 opens. Therefore, the pump 7 includes the hydrogen storage heat exchanger 2, the endothermic side heat exchanger 4,
The low temperature brine is circulated through the heat storage device 9a, and the pump 8 circulates the high temperature brine through the hydrogen storage heat exchanger 1, the heat radiation side heat exchanger 5, and the heat storage device 9b.

これらの結果として、吸熱側熱交換器4には常時、低温
ブラインが供給され、放熱側熱交換器5には常時、高温
ブラインが供給される。
As a result, the heat exchanger 4 on the endothermic side is always supplied with low-temperature brine, and the heat exchanger 5 on the heat-radiating side is always supplied with high-temperature brine.

もし、蓄熱器9a、9bか無い場合、水素吸蔵熱交換器
1又は2から室内機としての吸熱側熱交換器4に供給さ
れる低温ブラインの温度は、水素吸蔵熱交換器1又は2
の上記した動作切換時間帯において高温となり、切換時
刻から離れた時間帯において低温となる(第3図(b)
参照)。逆に、水素吸蔵熱交換器1又は2から室外機と
しての放熱側熱交換器5に供給されるブラインの温度は
、水素吸蔵熱交換器1又は2が水素吸収動作と水素放出
動作との間で切換えられる時間帯において低温となり、
切換時刻から離れた時間帯において高温となる。
If there is no heat storage device 9a or 9b, the temperature of the low-temperature brine supplied from the hydrogen storage heat exchanger 1 or 2 to the endothermic side heat exchanger 4 as an indoor unit is
The temperature becomes high during the above-mentioned operation switching time period, and the temperature becomes low during the time period away from the switching time (Fig. 3 (b)
reference). Conversely, the temperature of the brine supplied from the hydrogen storage heat exchanger 1 or 2 to the heat radiation side heat exchanger 5 as an outdoor unit is between the hydrogen storage heat exchanger 1 or 2 between the hydrogen absorption operation and the hydrogen release operation. The temperature will be low during the time period switched by
The temperature becomes high in a time zone away from the switching time.

その結果、吸熱側熱交換器(室内機)4の冷却能力は大
幅に変動する。
As a result, the cooling capacity of the endothermic side heat exchanger (indoor unit) 4 fluctuates significantly.

この実施例では蓄熱器9a、9bか設けられているので
、蓄熱器9aは、水素吸蔵熱交換器1又は2が水素吸収
動作と水素放出動作との間で切換えられる時間帯におい
て低温ブラインから吸熱し、切換時刻から離れた時間帯
において低温ブラインに放熱する。同様に、蓄熱器9b
は、水素吸蔵熱交換器1又は2が水素吸収動作と水素放
出動作との間で切換えられる時間帯において高温ブライ
ンに放熱し、切換時刻から離れた時間帯において高温ブ
ラインから吸熱する。
In this embodiment, since the heat storage units 9a and 9b are provided, the heat storage unit 9a absorbs heat from the low-temperature brine during the time period when the hydrogen storage heat exchanger 1 or 2 is switched between the hydrogen absorption operation and the hydrogen release operation. The heat is then radiated to the low-temperature brine during a time period away from the switching time. Similarly, heat storage device 9b
The hydrogen storage heat exchanger 1 or 2 radiates heat to the high temperature brine during the time period when it is switched between the hydrogen absorption operation and the hydrogen release operation, and absorbs heat from the high temperature brine during the time period away from the switching time.

以上の結果として、ブライン温度の変動が抑止されるの
で、吸熱側熱交換器(室内機)4の冷却能力(すなわち
、低温ブラインの温度)の変動は第3図(C)に示すよ
うに大幅に低減される。
As a result of the above, fluctuations in the brine temperature are suppressed, so the fluctuations in the cooling capacity of the endothermic side heat exchanger (indoor unit) 4 (i.e., the temperature of the low-temperature brine) are significantly reduced as shown in Figure 3 (C). reduced to

なおこの実施例では、弁61〜68は、水素水素吸蔵熱
交換器1.2側の作動と無関係に、ただ温度センサ1b
、2bの温度差だけによって動作するので、第2図に示
すように、制御が簡単である利点を有する。
In this embodiment, the valves 61 to 68 are connected only to the temperature sensor 1b, regardless of the operation of the hydrogen storage heat exchanger 1.2.
, 2b, it has the advantage of being easy to control, as shown in FIG.

(実施例2) 他の実施例を第4図に示す。(Example 2) Another embodiment is shown in FIG.

この実施例は、実施例1において、放熱側の蓄熱器9b
を省略して構造の簡略化を図ったものであり、動作は同
じであるので、説明を省略する。
This embodiment is different from the heat storage device 9b on the heat radiation side in the first embodiment.
is omitted to simplify the structure, and since the operation is the same, the explanation will be omitted.

蓄熱器9bの省略のために、放熱側熱交換器5の温度変
動は大きいが、室内機としての吸熱側熱交換器4の冷却
能力の変動は実施例1と同様に大幅に低減される。
Due to the omission of the heat storage device 9b, the temperature fluctuation of the heat radiation side heat exchanger 5 is large, but the fluctuation of the cooling capacity of the heat absorption side heat exchanger 4 as an indoor unit is significantly reduced as in the first embodiment.

(実施例3) 他の実施例を第5図及び第6図に示す。水素吸蔵熱交換
器1は第5図において水素を吸収し、第6図において水
素を放出している。
(Example 3) Another example is shown in FIGS. 5 and 6. The hydrogen storage heat exchanger 1 absorbs hydrogen in FIG. 5 and releases hydrogen in FIG. 6.

この実施例は、実施例2において、二方弁31〜34の
代りにバイパス弁400と四方弁401を用い、二方弁
61.62.65.66の代りに四方弁402を用い、
二方弁63.64.67.68の代りに四方弁403を
用いたものである。
This embodiment uses a bypass valve 400 and a four-way valve 401 instead of the two-way valves 31 to 34 in the second embodiment, and uses a four-way valve 402 instead of the two-way valves 61, 62, 65, 66,
A four-way valve 403 is used instead of the two-way valves 63, 64, 67, and 68.

バイパス弁400を遮断し、四方弁401を切替えるこ
とにより圧縮機3による水素の両方向への圧送が可能と
なり、バイパス弁400を開き、圧縮機3を停止するこ
とにより両水素吸蔵熱交換器間の均圧化ができることが
わかるであろう。
By shutting off the bypass valve 400 and switching the four-way valve 401, it is possible for the compressor 3 to pump hydrogen in both directions, and by opening the bypass valve 400 and stopping the compressor 3, the flow between the two hydrogen storage heat exchangers is enabled. It will be seen that pressure equalization is possible.

また、四方弁402.403を連動して切替えることに
より、吸熱側熱交換器(至内機)4に常時、低温ブライ
ンを供給し、放熱側熱交換器5に常時高温ブラインを供
給することかできる。
Furthermore, by switching the four-way valves 402 and 403 in conjunction with each other, it is possible to constantly supply low-temperature brine to the heat-absorbing side heat exchanger (internal unit) 4 and constantly supply high-temperature brine to the heat-radiating side heat exchanger 5. can.

したかつてこの実施例によればより簡単な装置構成によ
り、吸熱側熱交換器4の冷却能力の変動を抑止すること
ができる。
According to this embodiment, fluctuations in the cooling capacity of the heat exchanger 4 on the endothermic side can be suppressed with a simpler device configuration.

[発明の効果] 上記説明したように、本発明の水素吸蔵ヒートポ〉・プ
ては、吸熱側熱交換器及び放熱側熱交換器の少なくとも
一方と直列接続された蓄熱器を具備し、?−いるので、
吸熱側熱交換器から水素放出側の水素吸蔵熱交換器への
熱輸送ピーク時(水素吸収側の水素吸蔵熱交換器から放
熱側熱交換器への熱輸送ピーク時)に、蓄熱器が熱流体
から冷熱又は温熱を吸収し、両水素吸蔵熱交換器間にお
ける水素流通方向の切換時(熱輸送ボトム時〉に再び熱
流体に戻ず。
[Effects of the Invention] As explained above, the hydrogen storage heat pump of the present invention includes a heat storage device connected in series with at least one of the heat exchanger on the heat absorption side and the heat exchanger on the heat radiation side. -Because there are
At the peak of heat transport from the heat exchanger on the endothermic side to the hydrogen storage heat exchanger on the hydrogen release side (at the peak of heat transport from the hydrogen storage heat exchanger on the hydrogen absorption side to the heat exchanger on the heat release side), the heat storage device It absorbs cold or hot heat from the fluid and does not return to the thermal fluid when the hydrogen flow direction is switched between the two hydrogen storage heat exchangers (at the bottom of heat transport).

したがって、本発明によれば、簡単な装置構成により熱
輸送能力の変動を抑止することができる。
Therefore, according to the present invention, fluctuations in heat transport capacity can be suppressed with a simple device configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示すブロック図、第2図
は弁制御回路図、第3図は吸熱量変化を示す波形図、第
4図は第2実施例をホすブロック図、第5図及び第6図
は第3実施例を示すブロック図である。 1.2・・・水素吸蔵熱交換器 3・・・圧縮機 4・・・吸熱側熱交換器 5・・・放熱側熱交換器 9a・・・蓄熱器
Fig. 1 is a block diagram showing the first embodiment of the present invention, Fig. 2 is a valve control circuit diagram, Fig. 3 is a waveform diagram showing changes in heat absorption amount, and Fig. 4 is a block diagram showing the second embodiment. , FIG. 5, and FIG. 6 are block diagrams showing the third embodiment. 1.2... Hydrogen storage heat exchanger 3... Compressor 4... Endothermic side heat exchanger 5... Heat radiation side heat exchanger 9a... Regenerator

Claims (1)

【特許請求の範囲】  水素吸蔵合金を有する一対の水素吸蔵熱交換器と、圧
縮機を内蔵し該両水素吸蔵熱交換器間で水素を往復させ
る水素圧送管路部と、吸熱側熱交換器及び放熱側熱交換
器と、水素放出側の上記水素吸蔵熱交換器及び上記吸熱
側熱交換器の間で熱流体を循環させる吸熱配管部と、水
素吸収側の上記水素吸蔵熱交換器及び上記放熱側熱交換
器の間で熱流体を循環させる放熱配管部とを備え、 上記吸熱配管部及び放熱配管部の少なくとも一方に、上
記吸熱側熱交換器又は放熱側熱交換器と直列に蓄熱器を
設けたことを特徴とする水素吸蔵ヒートポンプ。
[Scope of Claims] A pair of hydrogen storage heat exchangers having a hydrogen storage alloy, a hydrogen pressure transmission pipe section having a built-in compressor and reciprocating hydrogen between the two hydrogen storage heat exchangers, and an endothermic side heat exchanger. and an endothermic piping section that circulates thermal fluid between the heat exchanger on the heat release side, the hydrogen storage heat exchanger on the hydrogen release side and the heat exchanger on the endothermic side, and the hydrogen storage heat exchanger on the hydrogen absorption side and the above. a heat radiation piping section that circulates thermal fluid between the heat radiation side heat exchangers, and a heat storage device in at least one of the heat absorption piping section and the heat radiation piping section in series with the heat absorption side heat exchanger or the heat radiation side heat exchanger. A hydrogen storage heat pump characterized by being equipped with.
JP23133790A 1990-09-01 1990-09-01 Hydrogen absorption heat pump Pending JPH04113173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23133790A JPH04113173A (en) 1990-09-01 1990-09-01 Hydrogen absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23133790A JPH04113173A (en) 1990-09-01 1990-09-01 Hydrogen absorption heat pump

Publications (1)

Publication Number Publication Date
JPH04113173A true JPH04113173A (en) 1992-04-14

Family

ID=16922055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23133790A Pending JPH04113173A (en) 1990-09-01 1990-09-01 Hydrogen absorption heat pump

Country Status (1)

Country Link
JP (1) JPH04113173A (en)

Similar Documents

Publication Publication Date Title
US20170010051A1 (en) Combined heating and cooling systems
JP2005337626A (en) Heat pump water heater system
JPH04113173A (en) Hydrogen absorption heat pump
JP2876764B2 (en) Hydrogen storage heat pump
US5048299A (en) Air conditioner for an automobile
JP3126086B2 (en) Compression metal hydride heat pump
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JP3316859B2 (en) Chemical heat storage system
KR101335278B1 (en) Dual cycle heat pump system
JP2525269B2 (en) Refrigeration system
JP2000111194A (en) Heat utilization system using hydrogen storage alloy
JP2816012B2 (en) Control device for absorption refrigerator
JP2002031377A (en) Ice storage method and ice storage apparatus using cold sensible heat
JP2023079334A (en) refrigerator
JP2001165488A (en) Air conditioner
JPH01142356A (en) Air-conditioner
JP3831923B2 (en) Latent heat storage device
JP2023079333A (en) refrigerator
JPH0658578A (en) Air conditioner
CN117015206A (en) Temperature control device and equipment
JP2517422B2 (en) Absorption refrigerator
JPH11294888A (en) Heat harnessing system utilizing alloy for storing hydrogen
JP2000111195A (en) Heat utilization system using hydrogen storage alloy
JPH0621694B2 (en) Air conditioner
JPH11173700A (en) Heat utilizing system using hydrogen absorbing alloy