JPH04112838A - Production of benzene - Google Patents

Production of benzene

Info

Publication number
JPH04112838A
JPH04112838A JP23056590A JP23056590A JPH04112838A JP H04112838 A JPH04112838 A JP H04112838A JP 23056590 A JP23056590 A JP 23056590A JP 23056590 A JP23056590 A JP 23056590A JP H04112838 A JPH04112838 A JP H04112838A
Authority
JP
Japan
Prior art keywords
toluene
temperature
benzene
heating element
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23056590A
Other languages
Japanese (ja)
Inventor
Shigenobu Kawakami
重信 川上
Hitoshi Yagishita
等 柳下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP23056590A priority Critical patent/JPH04112838A/en
Publication of JPH04112838A publication Critical patent/JPH04112838A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • C07C4/12Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
    • C07C4/14Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene splitting taking place at an aromatic-aliphatic bond
    • C07C4/18Catalytic processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain benzene by bringing toluene into contact, in a vapor phase flow-through system in the absence of H2 Gas, with an exothermic body installed inside a reaction tube with the inner wall surface kept at a temperature lower than the thermal decomposition temperature of toluene and heated at a temperature higher than said thermal decomposition temperature. CONSTITUTION:Toluene is dealkylated by internal heating in a vapor phase flow-through system, thus giving the objective benzene in high selectivity without the need for hydrogen while suppressing the formation of by-products such as bibenzyl. Specifically, an exothermic body with a surface temperature of 900-1100 deg.C is put inside a reaction tube, and toluene is brought into contact with this exothermic body at a flow rate of 0.01-0.3mol/hr. It is important that the inner wall surface of the reaction tube be lower than the thermal decomposition temperature of toluene (pref. <=100 deg.C), and it is preferable that the distance between the surface of said exothermic body and the inner wall surface be 1mm to 5cm. The exothermic body is e.g. in the form of linear or planar nichrome wire or tungsten wire, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はベンゼンの製造方法に関するものである。さら
に詳しくは、トルエンを気相で内部加熱方式により脱ア
ルキル化を行ない、ベンゼンを高い生成率で製造する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing benzene. More specifically, the present invention relates to a method for producing benzene at a high production rate by dealkylating toluene in the gas phase using an internal heating method.

[従来技術および発明が解決しようとする課題]トルエ
ンからベンゼンを製造するためには、水素ガスを加えた
水素化分解が広く用いられている。
[Prior Art and Problems to be Solved by the Invention] Hydrocracking using hydrogen gas is widely used to produce benzene from toluene.

水素を用いる理由は、副生成物であるビベンジル等の生
成を抑制しベンゼンの収率を上げるためである。しかし
、この製法は、多量の水素を扱うため、経済的に満足す
るものとは必ずしも言えない。
The reason for using hydrogen is to suppress the production of by-products such as bibenzyl and increase the yield of benzene. However, this production method cannot necessarily be said to be economically satisfactory since it involves handling a large amount of hydrogen.

また、水素を加えずにトルエンを熱分解した場合(例え
ばG、M、Badger and T、M、Spots
wood J、ChemSoc、、 1960.442
0) 、反応物質の選択率は下記の通りであり、ベンゼ
ンの選択率が悪くビベンジル等の副生成物が多く生成し
ている。
Also, when toluene is thermally decomposed without adding hydrogen (for example, G, M, Badger and T, M, Spots
wood J, ChemSoc, 1960.442
0), the selectivity of the reactants is as shown below, and the selectivity of benzene is poor, and many by-products such as bibenzyl are produced.

生成物          選択率(%)ベンゼン  
          39.0ビベンジル      
    15.44.4ジメチルビフエニル    1
5.2本発明の目的は、トルエンからベンゼンを製造す
る際に、水素を用いずに、しかもビベンジル等の副生成
物の生成を抑制し、ベンゼンを生成選択率よく得る製造
方法を提供することにある。
Product Selectivity (%) Benzene
39.0 bibenzyl
15.44.4 Dimethylbiphenyl 1
5.2 An object of the present invention is to provide a method for producing benzene from toluene without using hydrogen, suppressing the production of by-products such as bibenzyl, and obtaining benzene with high production selectivity. It is in.

[課題を解決するための手段] 本発明の上記目的は、次に示す製造方法によって達成さ
れる。
[Means for Solving the Problems] The above objects of the present invention are achieved by the following manufacturing method.

すなわち、本発明は、トルエンを、気相かつ流通式で、
内部表面か分解温度よりも低い温度に保持された反応器
の内部に、該反応器の内壁表面から実質的に隔離して設
けられたトルエンの熱分解温度に加熱された表面温度を
有する発熱体と接触させることを特徴とするヘンセンの
製造を、水素を用いることなく高い生成率で製造する方
法に関するものである。
That is, the present invention provides toluene in a gas phase and a flow system,
A heating element having a surface temperature heated to the thermal decomposition temperature of toluene, which is provided inside the reactor and substantially separated from the inner wall surface of the reactor, the inner surface of which is maintained at a temperature lower than the decomposition temperature. The present invention relates to a method for producing Hensen at a high production rate without using hydrogen, characterized by contacting with hydrogen.

本発明を以下にさらに詳しく説明する。The invention will be explained in more detail below.

本発明は、トルエンを、気相かつ流通式で水素を用いず
に反応器の内部に設置された 500〜1200℃の表
面温度をもつ発熱体と接触させることにより、ベンゼン
を高い選択率で製造する方法である。
The present invention produces benzene with high selectivity by bringing toluene into contact with a heating element installed inside a reactor and having a surface temperature of 500 to 1200°C in a gas phase and flow system without using hydrogen. This is the way to do it.

トルエンは発熱体と接触させることにより、ヘンセンお
よびメタン、エチレン等のガスを生成する。同時に副反
応の 1つとしてビベンジルと水素を生成する。本発明
のように反応物質を反応器の内部に設置された500〜
1200℃の表面温度をもつ発熱体と接触させると、反
応物質を外部から加熱する方法とは異なり、反応が実際
に起こっている高温部である発熱体と低温部である反応
との表面との間に熱拡散か起こる。発熱体の表面では多
量の遊離基か発生するか、その際に熱拡散現象により水
素ガスは速やかに高温部である発熱体に、そして他の遊
離基は低温部に拡散移動する。発熱体に移動した水素ガ
スにより上記の副反応であるビヘンジルの生成が抑えら
れ、ベンゼンの生成率か高められる。また、この結果、
熱力学的平衡組成以上でもって生成物を得ることすら可
能となる。
When toluene is brought into contact with a heating element, gases such as Hensen, methane, and ethylene are produced. At the same time, bibenzyl and hydrogen are produced as one of the side reactions. As in the present invention, the reactor is placed inside the reactor.
When brought into contact with a heating element having a surface temperature of 1200°C, unlike methods in which the reactants are heated externally, the surface of the heating element, which is the high-temperature part where the reaction is actually occurring, and the reaction part, which is the low-temperature part, is heated. Heat diffusion occurs during this time. A large amount of free radicals are generated on the surface of the heating element, and at this time, hydrogen gas quickly diffuses and moves to the heating element, which is the high temperature part, and other free radicals diffuse to the low temperature part due to the thermal diffusion phenomenon. The hydrogen gas transferred to the heating element suppresses the formation of bihendyl, which is the above-mentioned side reaction, and increases the benzene production rate. Also, as a result,
It is even possible to obtain products with a thermodynamic equilibrium composition or higher.

さらに、発熱体が反応器内部に設けられ、実質的に反応
ガスによりその表面が覆われ熱絶縁されているところか
ら、理論上にも供給された熱量のうち反応に使用されな
い熱量はなく、そのため熱効率はきわめて良いものであ
る。
Furthermore, since the heating element is installed inside the reactor and its surface is substantially covered and thermally insulated by the reaction gas, there is theoretically no amount of heat that is not used for the reaction. Thermal efficiency is extremely good.

反応方法は流通式である。バッチ式では反応で生成した
水素が発熱体から拡散するためベンゼンの生成率が低下
する。反応間の内部に発熱体を設置し、この反応管中に
出発原料を所定の速度で送ればよい。反応管自体は外部
より水冷、空冷等の適宜の方法で冷却できるようにし、
反応物質は予め余熱してガス状となし反応系に送っても
良いし、あるいは反応器に内部で気化させてもよい。
The reaction method is a flow type. In the batch method, the hydrogen produced in the reaction diffuses from the heating element, which reduces the benzene production rate. A heating element may be installed inside the reaction tube, and the starting materials may be fed into the reaction tube at a predetermined rate. The reaction tube itself can be cooled from the outside by an appropriate method such as water cooling or air cooling.
The reactant may be preheated to a gaseous state before being sent to the reaction system, or it may be vaporized inside the reactor.

反応管の内壁の熱分解原料に接触する内表面の温度は、
いずれの箇所も出発原料であるトルエンの熱分解温度よ
りも低い温度であることが肝要である。好ましくは 1
00℃以下の温渡である。反応管内壁表面の温度か熱分
解を起こすような高温であると、ヘンセンの収率や選択
率か低下するので好ましくない。このため、通常は適宜
の手段、例えば水冷あるいは空冷により反応管を外部か
ら冷却する。
The temperature of the inner surface of the inner wall of the reaction tube that comes into contact with the pyrolysis raw material is
It is important that the temperature at all locations is lower than the thermal decomposition temperature of toluene, which is the starting material. Preferably 1
The temperature is below 00℃. If the temperature of the inner wall surface of the reaction tube is high enough to cause thermal decomposition, the yield and selectivity of Hensen will decrease, which is undesirable. For this reason, the reaction tube is usually externally cooled by appropriate means, such as water cooling or air cooling.

反応管は縦に設置してもまた横に設置してもよい。反応
物質は縦型反応器の場合、反応器の上部より入れてもま
た下部より入れてもよい。すなわち、反応物質の移動は
ダウンストリームでもアップストリームでもどちらでも
よい。
The reaction tube may be installed vertically or horizontally. In the case of a vertical reactor, the reactant may be introduced from the top or the bottom of the reactor. That is, the movement of reactants may be either downstream or upstream.

流速は、反応管の内部の流れか乱流となるような速い流
速では、選択率が不十分となり好ましくない。それ故、
乱流となるよりも遅い流速でもって、すなわちいわゆる
層流てもって反応させればよい。トルエンの流速は適宜
に選択できるか、通常は 1つの系当り 0.001−
1.0moJ / hr、好ましくは0.01〜0.3
moJ /hrである。
A flow rate that is high enough to cause turbulent flow inside the reaction tube is not preferable because the selectivity will be insufficient. Therefore,
It is sufficient to cause the reaction to occur at a flow rate slower than turbulent flow, that is, so-called laminar flow. The flow rate of toluene can be selected appropriately, usually 0.001- per system.
1.0moJ/hr, preferably 0.01-0.3
moJ/hr.

発熱体の表面温度は、出発原料が熱分解する温度であれ
ばよい。通常トルエンでは、500〜1200℃、好ま
しくは 900〜1100℃である。これより温度か低
いとトルエンか熱分解しにくくなり、ベンゼンか充分得
られない。また、これを超える温度では原料の炭化が進
む等の副反応が多くなり、また、一部の発熱体は破壊し
やすくなったり使用不能になったりするために不利であ
る。
The surface temperature of the heating element may be a temperature at which the starting material is thermally decomposed. For toluene, the temperature is usually 500 to 1200°C, preferably 900 to 1100°C. If the temperature is lower than this, it will be difficult to thermally decompose toluene and not enough benzene will be obtained. Further, temperatures exceeding this range are disadvantageous because side reactions such as carbonization of the raw material progresses, and some heating elements become easily destroyed or become unusable.

上記発熱体の材質は所定の温度が保てれば特に制限され
るものではない。代表的なものとしては、ニクロム線、
タングステン線、白金線および炭素繊維等が挙げられる
。これらは、電流により直接それ自身が加熱されるもの
であるが、他の適宜の加熱源により間接的に加熱され、
発熱するものであってもよい。発熱体の形状は、線状の
発熱体を使用するのが好ましいが、面状発熱体等の任意
の形状の発熱体を使用することが出来る。但し、あまり
複雑な形状にすると収率や選択率等の点ては必ずしも良
くなく、むしろ線状あるいは面状等の比較的簡単な形状
のものが適当である。
The material of the heating element is not particularly limited as long as it can maintain a predetermined temperature. Typical examples include nichrome wire,
Examples include tungsten wire, platinum wire, and carbon fiber. These are heated directly by the electric current themselves, but also indirectly by other suitable heating sources.
It may also be something that generates heat. As for the shape of the heating element, it is preferable to use a linear heating element, but a heating element of any shape such as a planar heating element can be used. However, if the shape is too complicated, the yield and selectivity are not necessarily good, and rather, relatively simple shapes such as linear or planar shapes are appropriate.

なお、効果をより大きくするためには、前記の反応形式
では、発熱体による温度勾配を20〜b適当である。
In order to further increase the effect, in the above-mentioned reaction format, it is appropriate to set the temperature gradient due to the heating element to 20 to 20 b.

また、前記発熱体は、発熱部分の少なくとも大部分が分
解温度よりも低い温度に保持されていることが肝要であ
る。しかしながら、余りにも離れすぎると好ましくない
。すなわち前記発熱体表面と分解温度よりも低い温度に
保持されている壁面との間隔は、より狭い方が目的化合
物の選択率が向上する。通常は、この間隔は5■以下で
あるがあまり狭すぎると処理量が少なくなるので好まし
くない。それ故、下限の間隔はts+程度である。
Furthermore, it is important that at least a large portion of the heat generating portion of the heating element is maintained at a temperature lower than the decomposition temperature. However, it is undesirable if they are too far apart. That is, the selectivity of the target compound is improved when the distance between the heating element surface and the wall surface maintained at a temperature lower than the decomposition temperature is narrower. Normally, this interval is 5 squares or less, but if it is too narrow, the throughput will decrease, which is not preferable. Therefore, the lower limit interval is approximately ts+.

上記の温度勾配、器壁表面と発熱体の間隔等を前記の条
件に採るならば、分解反応器や発熱体の長さ、径等の寸
法は、特に限定されず、いずれの反応形式においても任
意の大きさのものが使用できる。
As long as the temperature gradient and the distance between the vessel wall surface and the heating element are set to the above conditions, the dimensions of the decomposition reactor and the heating element, such as length and diameter, are not particularly limited, and any reaction type can be used. Any size can be used.

本発明の方法では、上記のようにして熱分解させた後に
得られた反応液より、そのまま蒸留等の適切な方法で目
的とする生成物を回収することができる。また、熱分解
後、分解軽質分や重合骨等を除去し、未反応原料は再度
反応系に循環することもできる。
In the method of the present invention, the desired product can be directly recovered from the reaction solution obtained after the thermal decomposition as described above by an appropriate method such as distillation. Further, after thermal decomposition, decomposed light components, polymerized bones, etc. can be removed, and unreacted raw materials can be recycled to the reaction system again.

[発明の効果コ 従来のトルエンからベンゼンを得る方法では、副生成物
の生成を抑制させるため水素を加える必要があり、水素
を加えない熱分解ではビベンジル等の副生成物が多く生
成し、ベンゼンの選択率が悪くなる。しかし、本発明の
方法により、水素を加えることなくベンゼンの選択率を
向上させることができた。
[Effects of the invention] In the conventional method for obtaining benzene from toluene, it is necessary to add hydrogen to suppress the production of by-products, and in thermal decomposition without adding hydrogen, many by-products such as bibenzyl are produced, resulting in the production of benzene. The selection rate becomes worse. However, by the method of the present invention, the selectivity of benzene could be improved without adding hydrogen.

[実施例] 以下に本発明を実施例によりさらに詳しく説明する。[Example] The present invention will be explained in more detail below with reference to Examples.

実施例1 流通式の反応系を用い、発熱体には直径1.0JIII
、長さ 420#のニクロム線を使用し、管の中央に置
いた。また、水冷により反応管を外部から冷却した。
Example 1 A flow-type reaction system was used, and the heating element had a diameter of 1.0 JIII.
, a length of 420# nichrome wire was used and placed in the center of the tube. In addition, the reaction tube was externally cooled by water cooling.

この系において、管径を20#とじ、反応温度を107
0℃とした。流量約0.05moJ / hrでトルエ
ンを系の上方からガス状で流し、反応物を下部より取り
出した。この反応物をガスクロマトグラフ法で分析した
ところ、選択率は次の通りであり、ベンゼンが非常に高
い選択率で生成した。
In this system, the tube diameter was closed at 20#, and the reaction temperature was set at 107mm.
The temperature was 0°C. Toluene was passed in gaseous form from the top of the system at a flow rate of about 0.05 moJ/hr, and the reactant was taken out from the bottom. When this reaction product was analyzed by gas chromatography, the selectivity was as follows, and benzene was produced with a very high selectivity.

生成物          選択率(%)ベンゼン  
          72.1キシレン       
     5.4ビフエニル           5
.0メチルビフエニル        5.1ジメチル
ビフエニル       0.2ジフエニルメタン  
     1.0ベンジルトルエン        0
.3ビベンジル           1.4その他 
            9.5実施例2 上記の系において、反応温度を1030’C1流量を約
0.15IIoJ / hrとしたとき、反応物の選択
率は次の通りであった。
Product Selectivity (%) Benzene
72.1 xylene
5.4 Biphenyl 5
.. 0 Methylbiphenyl 5.1 Dimethylbiphenyl 0.2 Diphenylmethane
1.0 Benzyltoluene 0
.. 3 Bibenzyl 1.4 Others
9.5 Example 2 In the above system, when the reaction temperature was 1030'C1 flow rate was about 0.15 IIoJ/hr, the selectivity of the reactants was as follows.

生成物          選択率(%)ベンゼン  
          71.1キシレン       
     6.0ビフエニル           3
.3メチルビフエニル       3.6ジフエニル
メタン       0.6ベンジルトルエン    
    0.1ビベンジル           1.
1その他            14.2実施例3 上記の系において、反応温度を900”C1流量を約0
.05moJ / hrとしたとき、反応物の選択率は
次の通りであった。
Product Selectivity (%) Benzene
71.1 xylene
6.0 biphenyl 3
.. 3-methylbiphenyl 3.6-diphenylmethane 0.6-benzyltoluene
0.1 bibenzyl 1.
1 Others 14.2 Example 3 In the above system, the reaction temperature was set to 900, and the C1 flow rate was set to about 0.
.. When set to 05 moJ/hr, the selectivity of the reactants was as follows.

生成物          選択率(%)ベンゼン  
          5B、。
Product Selectivity (%) Benzene
5B.

キシレン           17.5ビフエニル 
          1.1メチルビラエニル    
    3.3ジメチルビフエニル       0.
6ジフエニルメタン       I4 ベンジルトルエン        1.7ビベンジル 
          12・lその他        
     6・3実施例4 上記の系において、反応管径を50mInとし、反応温
度を1080℃、流量を約0.]、OmoJ / hr
としたとき、反応物の選択率は次の通りであった。
xylene 17.5 biphenyl
1.1 Methyl bilayenyl
3.3 Dimethylbiphenyl 0.
6 diphenylmethane I4 benzyltoluene 1.7 bibenzyl
12・l Others
6.3 Example 4 In the above system, the diameter of the reaction tube was 50 mIn, the reaction temperature was 1080°C, and the flow rate was about 0. ], OmoJ/hr
The selectivity of the reactants was as follows.

Claims (1)

【特許請求の範囲】[Claims] 1、トルエンを、気相かつ流通式で、水素ガスを加えず
に、内壁表面がトルエンの熱分解温度よりも低い温度に
保持された反応器の内部に設置されていて、該内壁表面
から実質的に隔離して設けられたトルエンの熱分解温度
以上に加熱された表面温度を有する発熱体に接触させる
ことを特徴とするベンゼンの製造方法。
1. Toluene is produced in a gas phase and in a flow-through manner without adding hydrogen gas, and is installed inside a reactor whose inner wall surface is maintained at a temperature lower than the thermal decomposition temperature of toluene. 1. A method for producing benzene, which comprises bringing the benzene into contact with a heating element having a surface temperature higher than the thermal decomposition temperature of toluene, which is provided in isolation.
JP23056590A 1990-09-03 1990-09-03 Production of benzene Pending JPH04112838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23056590A JPH04112838A (en) 1990-09-03 1990-09-03 Production of benzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23056590A JPH04112838A (en) 1990-09-03 1990-09-03 Production of benzene

Publications (1)

Publication Number Publication Date
JPH04112838A true JPH04112838A (en) 1992-04-14

Family

ID=16909746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23056590A Pending JPH04112838A (en) 1990-09-03 1990-09-03 Production of benzene

Country Status (1)

Country Link
JP (1) JPH04112838A (en)

Similar Documents

Publication Publication Date Title
US5654491A (en) Process for the partial oxidation of alkanes
JPH07504706A (en) Carbon black manufacturing method
US2802887A (en) Hydrogenation of chlorotrifluoroethylene
US2916534A (en) Process for carrying out endothermic reactions at high temperatures
Porsin et al. Acetylene synthesis by methane pyrolysis on a tungsten wire
JPH01135734A (en) Production of vinylidene fluoride
WO2006100549A1 (en) Process for simultaneous production of benzene and ethylene by conversion of acetylene
US3002816A (en) Method of effecting exothermic catalytic reactions
Lødeng et al. Short contact time oxidative dehydrogenation of C2 and C3 alkanes over noble metal gauze catalysts
Palmer et al. Influence of hydrocarbon feed additives on the high-temperature pyrolysis of methane in molten salt bubble column reactors
JPH04112838A (en) Production of benzene
US3376109A (en) Preparation of silicon chlorides
US3627833A (en) Preparation of dihydroresorcinol
US1888066A (en) Temperature control of exothermic reactions
Hirata et al. Performance characteristics of auto-methanation using Ru/CeO2 catalyst, autonomously proceeding at room temperature
JP2006116415A (en) METHOD FOR MANUFACTURING PHOTOCATALYST OF COMPOSITE METAL OXYNITRIDE GaN-ZnO
US3442618A (en) Method for producing hydrogen from hydrogen-containing feedstocks
US3652437A (en) Process for the preparation of phosphine
US3359336A (en) Manufacture of pentachlorobenzene
US3290399A (en) Process for preparing vinyl chloride
US2927844A (en) Production of hydrocyanic acid
US2861870A (en) Manufacture of hydrogen cyanide
JPWO2012121366A1 (en) Process for producing hydrocarbons
US1895764A (en) Process for the production of catalysts
US2384066A (en) Production of acetaldehyde from ethyl alcohol by partial oxidation