JPH0411277B2 - - Google Patents

Info

Publication number
JPH0411277B2
JPH0411277B2 JP62293814A JP29381487A JPH0411277B2 JP H0411277 B2 JPH0411277 B2 JP H0411277B2 JP 62293814 A JP62293814 A JP 62293814A JP 29381487 A JP29381487 A JP 29381487A JP H0411277 B2 JPH0411277 B2 JP H0411277B2
Authority
JP
Japan
Prior art keywords
water
paint
alkali metal
weight
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62293814A
Other languages
Japanese (ja)
Other versions
JPS63158163A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62293814A priority Critical patent/JPS63158163A/en
Publication of JPS63158163A publication Critical patent/JPS63158163A/en
Publication of JPH0411277B2 publication Critical patent/JPH0411277B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/40Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths
    • B05B14/46Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths by washing the air charged with excess material
    • B05B14/462Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths by washing the air charged with excess material and separating the excess material from the washing liquid, e.g. for recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、自動車あるいは家庭電器等の塗装ラ
インにおける未塗着塗料ダスト洗浄水を塗料滓と
処理水とに固液分離し、処理水を循環水として繰
返し利用するようにした塗装ブース循環水の処理
方法に関する。 未塗着塗料ダスト洗浄水中の塗料を固液分離さ
せるためには、種々の無機凝集剤を用いて、ある
いはこの無機凝集剤に高分子凝集剤を併用して、
塗料ダストを沈降または浮上しやすい大きなフロ
ツクとして固液分離する方法が取られ、得られる
処理水を再び塗装ブースの循環水として使用して
いる。無機凝集剤としては一般に酸性の凝集剤
(例えば、硫酸バンド、塩化アルミニウム、ポリ
塩化アルミニウム、塩化第二鉄、塩化亜鉛、硫酸
亜鉛等)が用いられるが、このような凝集剤を用
いるとその塗装廃水のPHは酸性領域になるので、
これを中性領域に戻すため及びフロツク生成のた
めの最適PH域にするため、苛性アルカリなどのア
ルカリ剤をPH調整剤として添加している。しかし
ながら、PH調整剤を用いると塗装廃水中に塩素イ
オンあるいは硫酸イオンが存在するため塩化ナト
リウムや硫酸ナトリウムのような塩化物や硫酸塩
が形成される。これらの塩は一部溶解しているの
で塗料滓を分離後の処理水中にも存在する。従つ
て、循環水をブローダウンなし、もしくはブロー
ダウン量が極端に少ない場合、循環水中の塩濃度
が漸次高まり、塗装ブースダクトなどのミストが
触れるブース上部の腐食をもたらすことがある。
また、分離した塗料滓中にも高濃度の塩化物や硫
酸塩が含まれ、これを焼却するとき塩化水素ガス
や亜流酸ガスなどが発生し、大気を汚染する深刻
な問題をひき起すばかりでなく、焼却炉の寿命を
極端に短かくする問題が生じている。このような
有害ガスによる大気汚染の公害等の問題を未然に
防止するためには莫大な設備投資を余儀なくされ
ていた。 さらに、前記の凝集剤の中で好ましいと云われ
ている塩化亜鉛や硫酸亜鉛をアルカリ剤で最適PH
域に調整して塗料滓を処理した時には、生成する
Zn(OH)2フロツクの粒子は粗く、沈降速度は大
きいが、比表面積が小さい性状を有するので、塗
料滓の隠蔽、不粘着化が充分でなく、その結果ハ
イドロスピンダクト、配管等の未塗着塗料の処理
設備を閉塞させる。 そこで、本発明は上記問題点を解決することを
目的とするもので、PHが10から7よりも大きい範
囲において、加水分解によりZn(OH)2、および
これに関連する錯体のフロツクを生成する亜鉛酸
アルカリ金属(アルカリ金属としてNa、K、Li)
を塗装廃水中に添加することにより、未塗着塗料
ダストを容易に凝集沈降または凝集浮上させるこ
とができることを見い出し、本発明に到達した。
即ち、本発明は、亜鉛酸アルカリ金属水溶液(こ
こでアルカリ金属としてはNa、K、Liを含む)
またはこれとアミノ基または四級化アミノ基をカ
チオン基とし、平均分子量が500〜100000の炭素
原子を含む直鎖型強カチオン性ポリアミンと塗装
廃水に添加すると、長い循環工程で空気中の炭酸
ガスを吸収することによつて、また、塗装中の有
機成分が好気性バクテリアによつて分解され有機
酸を生成し、この有機酸とも反応することによつ
て、徐々にPHが下がつて弱アルカリ性となり、
Zn(OH)2、またはこれに関連する錯体のフロツ
クを生成し、未塗着塗料ダストを容易に浮上また
は凝集沈降させる、塗装ブース循環水の処理方法
に関するものである。ここで弱アルカリ性として
はPH10以下から7よりも大きい範囲を意味する。 本発明に用いる凝集剤は、公知の酸性凝集剤の
ようにPH調整時に塩化物や硫酸塩などを生成しな
いため、有害腐食性ガスによる公害問題、塗装ブ
ースダクトの腐食、塗料滓焼却炉への悪影響とい
つた問題点がすべて解消することができた。 なお、本発明によつて生成するZn(OH)2など
のフロツクの粒子は細かく、沈降速度は遅いが、
比表面積が大きい性状を有するので、塗料滓表面
を充分に隠蔽して不粘着化をもたらし、ハイドロ
スピンダクト、配管等の未塗着塗料の処理設備の
閉塞の問題も実質的に解消された。 更に、強調されるべき本発明の特徴は、本発明
に用いる凝集剤は、従来の酸性凝集剤のようにPH
調整時に塩化物や硫酸塩を生成しないため、塗料
滓を除去した後の循環水の一部を活性汚泥処理へ
導入しても何ら問題なく処理可能となることであ
る。 本発明の処理方法に適用される塗料とは、エポ
キシ、メラニン、アクリル、アルキド、ポリエス
テル、ウレタン系樹脂などの油性及び水溶性塗料
が挙げられる。 本発明に用いる凝集剤が適用される塗装ブース
とは、ウオーターカーテン、ベンチユリー、ノー
ポンプ型ブースなどの湿式ブースがすべて挙げら
れる。 本発明に用いる処理剤の使用に当り、循環水中
の未塗着塗料100重量部に対して、亜鉛酸アルカ
リ金属を通常約0.1〜50重量部添加する。添加量
がこの範囲より少なすぎると好結果が得られない
し、この範囲より多くなると循環水のPHが高くな
りすぎてまた好ましくない。添加方法は、循環ポ
ンプの吐出口などの薬品の分散性の良いところに
注入する。この場合、カチオン性ポリアミン型の
ポリマーを添加併用すると、塗料の粘着性を除去
する能力が更に増強され、例えば、塗装ブースの
壁、天井、床への塗料付着防止をより効率良く行
うことができる。 亜鉛酸アルカリ金属水溶液(ここでアルカリ金
属としてはNa、K、Liを含む)は、一般式、M
〔Zn(OH)3〕、M〔Zn(OH)4〕、およびこれらを主
体とする錯体のMOH(M=Li、Na、K)水溶液
の構造を有するが、PHが10から7よりも大きい範
囲において加水分解により、Zn(OH)2またはこ
れを主体とする錯体のフロツクを生成するもので
あればよく、上記一般式はその例示である。 亜鉛酸アルカリ金属水溶液と併用すると処理効
果の増大の認められる強カチオン性ポリアミン
は、アミノ基または四級化アミノ基をカチオン基
とし、平均分子量が500〜100000の炭素原子を含
む直鎖型強カチオン性ポリアミンで、例えば、ポ
リエチレングリコールとヘキサメチレンジアミン
の重縮合物、あるいはエチレンジアミンと二塩化
エチレンの縮合物とアンモンニア、二塩化エチレ
ンとの重縮合物などである。平均分子量が500よ
り小さいと充分な凝集効果が得られず、一方約
100000までが本発明の効果上好ましい。しかし、
100000を超えると効果上および作業上難はあるが
使用は可能である。強カチオン性ポリアミンの併
用比率は、水酸化アルカリ金属に溶解している亜
鉛1重量部に対し、強カチオン性ポリアミンを
0.2から5重量部の範囲になるように塗装ブース
循環水にそれぞれ添加することが望ましく、この
範囲からはづれると効果が劣るようになり好まし
くない。前記強カチオン性ポリアミンについて
は、米国特許第3251882号、同3751474、同
3372129号、および同3468818号明細書に詳細に記
載されており、参考資料として挙げる。 また、強カチオン性ポリアミンを添加せずに長
時間にわたり塗装ブースを運転する場合、たとえ
ばブローダウンが一部行われても好気性バクテリ
アに起因する水の腐敗は防止できないが、強カチ
オン性ポリアミンを併用すると水の腐敗による悪
臭をも防止できることから好都合である。 本発明に用いる処理剤には、アルミン酸ナトリ
ウム、水酸化カルシウムのような慣用のアルカリ
性凝集剤を併用することもできる。 以下に本発明を実施例により詳述する。 実施例 1 添付図に示すような試験塗装ブース(PH約9.8
〜10の保有水量100、PH約9.8〜10の循環水量10
/分)に、予め亜鉛酸ナトリウム水溶液(30重
量%の苛性ソーダ水溶液に亜鉛として7.1重量%
を含む)を保有水に対して0.05%(50g)溶解し
ておき、次いで自動車用上塗り塗料であるメラミ
ンアルキド樹脂タイプのソリツドカラーとアクリ
ルメラニン樹脂タイプのメタリツクカラーを1対
1で混合した塗料を0.35g/分、及び前記の亜鉛
酸ナトリウム水溶液を0.07g/分とをそれぞれス
プレーガン及び定量ポンプにて循環水中に連続注
入した。試験塗装ブースの運転時間は1時間であ
る。テストの結果、塗料は完全に粘着性のない状
態に変性され浮上することが認められた。塗料の
回収率は75%であつた。塗料滓を除去した処理水
の水質は、PH9.8〜10、電気伝導度460μV/cm、
透視度30cmと良好であつた。 実施例 2 実施例1において、予め保有水に加えたおよび
循環水中に連続注入した亜鉛酸ナトリウム水溶液
中の亜鉛量に対応して強カオチン性ポリアミン型
のポリマーを別々にその39重量%宛添加した場
合、更に、処理しやすい塗料スラツジになること
が認められた。強カオチン性ポリアミンとして
は、ポリエチレングリコールとヘキサメチレンジ
アミンの重縮合物(平均分子量約3000)のものを
用いた。塗料の回収率は90%であつた。処理水の
水質はPH9.6〜10、電気伝導度560μV/cm、透視
度30cmと良好であつた。カオチン性ポリアミンを
併用すると、塗料の回収率が良くなるばかりでな
く、その粘着性も完全に除去される。 次に、実施例1〜2の結果をまとめて表1に示
す。但し、塗料滓の粘着性など官能的で数値化し
にくいものについては、処理の良好な順から◎、
○、△、×の4段階で表現した。また、腐食試験
は、軟鋼(SS−41)と市販のトタン板を用いた。
シヤーレにテストピースと試験液を40ml加え、50
℃の送風乾燥器に入れ、液が乾固したら更に試験
液を加え4日間放置後に腐食減量を測定したもの
である。
The present invention is a paint booth circulating water system that separates unpainted paint dust washing water from a painting line for automobiles or home appliances into solid-liquid into paint slag and treated water, and repeatedly uses the treated water as circulating water. Regarding processing method. In order to separate the paint in solid-liquid cleaning water for unpainted paint dust, various inorganic flocculants are used, or a polymer flocculant is used in combination with the inorganic flocculant.
A method is used to separate solid-liquid paint dust into large flocs that tend to settle or float, and the resulting treated water is used again as circulating water in the paint booth. As an inorganic flocculant, an acidic flocculant (for example, aluminum sulfate, aluminum chloride, polyaluminum chloride, ferric chloride, zinc chloride, zinc sulfate, etc.) is generally used, but if such a flocculant is used, the coating Since the pH of wastewater is in the acidic range,
In order to return this to a neutral range and to bring it into the optimum pH range for floc formation, an alkaline agent such as caustic alkali is added as a pH adjuster. However, when a PH adjuster is used, chlorides and sulfates such as sodium chloride and sodium sulfate are formed due to the presence of chloride ions or sulfate ions in the painting wastewater. Since these salts are partially dissolved, they also exist in the treated water after separating the paint slag. Therefore, if the circulating water is not blowed down or the amount of blowdown is extremely small, the salt concentration in the circulating water will gradually increase, which may lead to corrosion of the upper part of the booth, such as the paint booth duct, which is in contact with the mist.
In addition, the separated paint slag also contains high concentrations of chlorides and sulfates, and when this is incinerated, hydrogen chloride gas and sulfurous acid gas are generated, causing serious problems that pollute the atmosphere. However, there is a problem in that the lifespan of the incinerator is extremely shortened. In order to prevent problems such as air pollution caused by such harmful gases, a huge amount of capital investment has been required. Furthermore, zinc chloride and zinc sulfate, which are said to be preferable among the flocculants mentioned above, are added to the optimal pH using an alkaline agent.
When adjusting the paint slag to the area, it is generated.
Although the particles of Zn(OH) 2 floc are coarse and have a high settling rate, they have a small specific surface area, so they are not sufficient to hide paint scum and make it tack-free, resulting in uncoated areas such as hydrospin ducts and piping. Blocks the paint processing equipment. Therefore, the present invention aims to solve the above-mentioned problems.The present invention aims to solve the above-mentioned problems by producing flocs of Zn(OH) 2 and related complexes by hydrolysis in a pH range of 10 to more than 7. Alkali metal zincate (Na, K, Li as alkali metals)
It has been discovered that uncoated paint dust can be easily flocculated or floated by adding it to painting wastewater, and the present invention has been achieved based on this discovery.
That is, the present invention provides an aqueous alkali metal zincate solution (here, the alkali metals include Na, K, and Li).
Alternatively, when this and a linear strong cationic polyamine containing an amino group or a quaternized amino group as a cationic group and an average molecular weight of 500 to 100,000 carbon atoms are added to paint wastewater, carbon dioxide gas in the air is generated during a long circulation process. In addition, the organic components in the paint are decomposed by aerobic bacteria to produce organic acids, and by reacting with these organic acids, the pH gradually decreases and becomes slightly alkaline. Then,
The present invention relates to a method for treating circulating water in a paint booth, which generates a floc of Zn(OH) 2 or a complex related thereto, and easily floats or coagulates unapplied paint dust. Here, weak alkalinity means a pH range of 10 or less to greater than 7. The flocculant used in the present invention does not generate chlorides or sulfates during pH adjustment like known acidic flocculants, so it does not cause pollution problems due to harmful corrosive gases, corrosion of paint booth ducts, and paint sludge incinerators. All of the problems that were caused by negative effects were resolved. Furthermore, although the particles of flocs such as Zn(OH) 2 produced by the present invention are fine and have a slow sedimentation rate,
Since it has a property of having a large specific surface area, it sufficiently hides the surface of the paint slag and makes it non-adhesive, and the problem of clogging of uncoated paint processing equipment such as hydrospin ducts and piping is also substantially eliminated. Furthermore, a feature of the present invention that should be emphasized is that the flocculant used in the present invention does not have a pH
Since chlorides and sulfates are not produced during adjustment, a portion of the circulating water after paint sludge has been removed can be introduced into activated sludge treatment without any problems. Paints applicable to the treatment method of the present invention include oil-based and water-soluble paints such as epoxy, melanin, acrylic, alkyd, polyester, and urethane resins. Painting booths to which the flocculant used in the present invention is applied include all wet-type booths such as water curtains, ventilates, and no-pump type booths. When using the treatment agent used in the present invention, about 0.1 to 50 parts by weight of an alkali metal zincate is usually added to 100 parts by weight of unapplied paint in the circulating water. If the amount added is too small than this range, good results will not be obtained, and if it is larger than this range, the pH of the circulating water will become too high, which is also undesirable. The addition method is to inject it into a place where the chemical can be easily dispersed, such as the discharge port of a circulation pump. In this case, when a cationic polyamine-type polymer is added, the ability to remove the stickiness of the paint is further enhanced, and, for example, it is possible to more efficiently prevent paint from adhering to the walls, ceiling, and floor of the painting booth. . The aqueous alkali metal zincate solution (here, the alkali metals include Na, K, and Li) has the general formula, M
It has the structure of an aqueous MOH (M=Li, Na, K) solution of [Zn(OH) 3 ], M[Zn(OH) 4 ], and complexes mainly composed of these, but the pH is greater than 10 to 7. It may be any material that produces a floc of Zn(OH) 2 or a complex mainly composed of Zn(OH) 2 by hydrolysis within a certain range, and the above general formula is an example thereof. Strong cationic polyamines, which are recognized to have an increased treatment effect when used in combination with aqueous alkali metal zincate solutions, are linear strong cationic polyamines that have amino groups or quaternized amino groups as cationic groups and contain carbon atoms with an average molecular weight of 500 to 100,000. Examples of polyamines include polycondensates of polyethylene glycol and hexamethylene diamine, or polycondensates of ethylene diamine and ethylene dichloride, and ammonia or ethylene dichloride. If the average molecular weight is less than 500, sufficient aggregation effect cannot be obtained;
Up to 100,000 is preferable for the effectiveness of the present invention. but,
If it exceeds 100,000, it may be difficult to use in terms of effectiveness and operation, but it can be used. The ratio of strong cationic polyamine used is 1 part by weight of zinc dissolved in alkali metal hydroxide.
It is desirable to add each to the painting booth circulating water in a range of 0.2 to 5 parts by weight, and it is not preferable to deviate from this range because the effect will be poor. Regarding the strong cationic polyamines, US Pat.
It is described in detail in the specifications of No. 3372129 and No. 3468818, which are cited as reference materials. Also, if a paint booth is operated for a long time without the addition of strong cationic polyamines, for example, partial blowdown will not prevent water spoilage caused by aerobic bacteria; When used together, it is advantageous because it can also prevent bad odors caused by rotting water. The treatment agent used in the present invention can also be used in combination with a commonly used alkaline flocculant such as sodium aluminate or calcium hydroxide. The present invention will be explained in detail below using examples. Example 1 A test painting booth (PH approx. 9.8
~10 water capacity 100, pH approx. 9.8~10 circulating water volume 10
/min), preliminarily add 7.1% by weight of zinc to a sodium zincate aqueous solution (30% by weight of caustic soda aqueous solution).
) is dissolved in water at 0.05% (50g), and then a 1:1 mixture of melamine alkyd resin type solid color and acrylic melanin resin type metallic color, which are top coats for automobiles, is dissolved at 0.35% (50g) in water. g/min, and the aforementioned sodium zincate aqueous solution at 0.07 g/min were continuously injected into the circulating water using a spray gun and a metering pump, respectively. The operating time of the test painting booth is 1 hour. As a result of the test, it was observed that the paint was completely modified to a non-tacky state and floated. The paint recovery rate was 75%. The quality of the treated water after removing paint slag is PH9.8-10, electrical conductivity 460μV/cm,
The visibility was good at 30cm. Example 2 In Example 1, a strong cationic polyamine type polymer was separately added in an amount of 39% by weight corresponding to the amount of zinc in the sodium zincate aqueous solution that was added in advance to the retained water and continuously injected into the circulating water. It has also been found that this results in a paint sludge that is easier to process. As the strong cationic polyamine, a polycondensate of polyethylene glycol and hexamethylene diamine (average molecular weight of about 3000) was used. The paint recovery rate was 90%. The quality of the treated water was good, with a pH of 9.6 to 10, electrical conductivity of 560 μV/cm, and visibility of 30 cm. The combined use of cationic polyamine not only improves the recovery rate of the paint but also completely eliminates its tackiness. Next, the results of Examples 1 and 2 are summarized in Table 1. However, for things that are sensual and difficult to quantify, such as the stickiness of paint slag, the order of treatment is ◎,
It was expressed in four stages: ○, △, and ×. In addition, mild steel (SS-41) and commercially available galvanized iron plates were used for the corrosion test.
Add the test piece and 40ml of the test solution to the shear dish, and
The sample was placed in a blow dryer at a temperature of 0.degree. C., and when the liquid had dried, another test solution was added and the sample was left to stand for 4 days, after which the weight loss due to corrosion was measured.

【表】 上記表1からも明らかなように、実施例1〜2
は所期の目的を充分に達成しており、産業上大い
に貢献するものである。 前述した公知の凝集剤;ZnCl2、FeCl3、AlCl3
およびNaAlO2について、実施例1に準じ、但し
亜鉛として7.1重量%に相当する当量重量の金属
を夫々用いた比較例の結果をまとめて表2に示
す。
[Table] As is clear from Table 1 above, Examples 1 to 2
has fully achieved its intended purpose and will make a great contribution to industry. The above-mentioned known flocculants; ZnCl 2 , FeCl 3 , AlCl 3
Table 2 summarizes the results of comparative examples in which the same methods as in Example 1 were used for NaAlO 2 and NaAlO 2 , except that metals with an equivalent weight corresponding to 7.1% by weight of zinc were used.

【表】【table】

【表】 評価方法は表1と同じである。 上記表2より明らかなように、公知の凝集剤で
は本発明の目的を達成できないことが認められ
る。
[Table] The evaluation method is the same as in Table 1. As is clear from Table 2 above, it is recognized that the objective of the present invention cannot be achieved with known flocculants.

【図面の簡単な説明】[Brief explanation of drawings]

添付図は本発明の方法による試験塗装ブース循
環水の処理フローシートを示す。 1……コンプレツサー、2……バルブ、3……
スプレーガン、4……塗料タンク、5……循環水
タンク、6……ストレーナー又は滓取機、7……
バルブ、8……セントリフユーガルポンプ、9…
…バルブ、10……コンデンサ・ウオーターバ
ス、11……サンプル採取口、12……塗装ブー
ス。
The attached figure shows a treatment flow sheet for circulating water in a test painting booth according to the method of the present invention. 1...Compressor, 2...Valve, 3...
Spray gun, 4... Paint tank, 5... Circulating water tank, 6... Strainer or slag remover, 7...
Valve, 8... Centrifugal pump, 9...
...Valve, 10...Condenser water bath, 11...Sample collection port, 12...Painting booth.

Claims (1)

【特許請求の範囲】 1 湿式塗装ブース中の空気を水で洗浄し、未塗
着塗料ダストを除去して水を循環再利用する湿式
塗装ブース中の汚染を抑制する処理方法におい
て、 実質的に塩化物イオンや硫酸塩イオンを含まな
い、亜鉛酸アルカリ金属(アルカリ金属としては
Na、KまたはLiを含む)水溶液を未塗着塗料ダ
スト100重量部に対して0.1〜50重量部(亜鉛酸ア
ルカリ金属として)の割合で循環水に添加し、空
気中から炭酸ガスを吸収させることによりおよ
び/または未塗着塗料中の有機物質の分解により
循環水のPHを徐々に弱アルカリ性に低下させて、
未塗着塗料ダスト洗浄水を塗料滓と処理水に固液
分離することを特徴とする湿式塗装ブース循環水
の処理方法。 2 湿式塗装ブース中の空気を水で洗浄し、未塗
着塗料ダストを除去して水を循環再利用する湿式
塗装ブース中の汚染を抑制する処理方法におい
て、 実質的に塩化物イオンや硫酸塩イオンを含まな
い、亜鉛酸アルカリ金属(アルカリ金属としては
Na、KまたはLiを含む)水溶液とアミノ基また
は四級化アミノ基をカオチン基とし、平均分子量
が500〜100000の炭素原子を含む直鎖型強カチオ
ン性ポリアミンとを、未塗着塗料ダスト100重量
部に対して亜鉛酸アルカリ金属を0.1〜50重量部
の割合でかつ亜鉛1重量部に対し、前記強カチオ
ン性ポリアミンを0.2〜5重量部の範囲で循環水
に添加し、空気中から炭酸ガスを吸収させること
によりおよび/または未塗着塗料中の有機物質の
分解により循環水のPHを徐々に弱アルカリ性に低
下させて、未塗着塗料ダスト洗浄水を塗料滓と処
理水に固液分離することを特徴とする湿式塗装ブ
ース循環水の処理方法。
[Scope of Claims] 1. A treatment method for suppressing contamination in a wet painting booth, which cleans the air in the wet painting booth with water, removes unapplied paint dust, and circulates and reuses the water, which substantially comprises: Alkali metal zincate (as an alkali metal) that does not contain chloride or sulfate ions.
Add an aqueous solution (containing Na, K or Li) to the circulating water at a ratio of 0.1 to 50 parts by weight (as alkali metal zincate) per 100 parts by weight of unpainted paint dust to absorb carbon dioxide gas from the air. By this and/or by decomposition of organic substances in unapplied paint, the pH of the circulating water is gradually lowered to weak alkalinity.
A method for treating circulating water in a wet painting booth, characterized by solid-liquid separation of unpainted paint dust cleaning water into paint slag and treated water. 2. A treatment method for suppressing contamination in a wet painting booth in which the air in the wet painting booth is washed with water, unpainted paint dust is removed, and the water is recycled and reused. Alkali metal zincate (as an alkali metal) that does not contain ions
An aqueous solution (containing Na, K or Li) and a linear strong cationic polyamine containing an amino group or a quaternized amino group as a cationic group and having an average molecular weight of 500 to 100,000 carbon atoms are added to the unpainted paint dust 100. The above-mentioned strong cationic polyamine is added to circulating water at a ratio of 0.1 to 50 parts by weight of alkali metal zincate and 0.2 to 5 parts by weight of the strong cationic polyamine to 1 part by weight of zinc, and carbonic acid is extracted from the air. By absorbing gas and/or decomposing organic substances in unpainted paint, the pH of the circulating water is gradually lowered to weak alkalinity, and the unpainted paint dust cleaning water is converted into solid-liquid paint slag and treated water. A method for treating circulating water in a wet painting booth, characterized by separating the water.
JP62293814A 1987-11-20 1987-11-20 Treatment of recirculation water of wet painting booth Granted JPS63158163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62293814A JPS63158163A (en) 1987-11-20 1987-11-20 Treatment of recirculation water of wet painting booth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62293814A JPS63158163A (en) 1987-11-20 1987-11-20 Treatment of recirculation water of wet painting booth

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9783A Division JPS59127606A (en) 1983-01-04 1983-01-04 Treating agent of recirculation water of wet painting booth

Publications (2)

Publication Number Publication Date
JPS63158163A JPS63158163A (en) 1988-07-01
JPH0411277B2 true JPH0411277B2 (en) 1992-02-27

Family

ID=17799493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62293814A Granted JPS63158163A (en) 1987-11-20 1987-11-20 Treatment of recirculation water of wet painting booth

Country Status (1)

Country Link
JP (1) JPS63158163A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861887A (en) * 1973-11-01 1975-01-21 Steven W Forney Process for controlling pollution and contamination in paint or lacquer spray booths

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861887A (en) * 1973-11-01 1975-01-21 Steven W Forney Process for controlling pollution and contamination in paint or lacquer spray booths

Also Published As

Publication number Publication date
JPS63158163A (en) 1988-07-01

Similar Documents

Publication Publication Date Title
EP0514132B1 (en) Method for removing paint solids from water-based paint systems using aluminum salts
US4440647A (en) Paint spray booth detackification composition and method
US4600513A (en) Composition for the clarification and detackification of paint spray booth wastes
NZ213838A (en) Pumpable slurry for detackification of paint spray booth wastes
JP2000084568A (en) Treatment of resin-containing waste water
EP0293129B1 (en) Process for detackification of paint spray operation wastes using melamine formaldehyde
US5240509A (en) Method for removing solids from systems containing water-based paints
JPH0665396B2 (en) Method of removing stickiness of paint spraying waste
US20040000329A1 (en) Compositions and methods for paint overspray removal processes
US5236598A (en) Methods for removing solids from water-based paint systems
JPH0411277B2 (en)
JPS626875B2 (en)
AU2343392A (en) Paint detackifying and flocculating composition and process
US5302291A (en) Method for improving the dispersibility of solvent-based paints in aqueous systems
US6262012B1 (en) Wet paint spray booth treating agent
EP0516326A1 (en) Improved method for removing solids from systems containing water-based paints
JPH05146786A (en) Purification treatment of water to be treated for painting booth
CN115385489A (en) Paint wastewater treatment composition and application thereof in paint wastewater treatment
JP4092384B2 (en) Electrodeposition wastewater treatment method
CA1250514A (en) Composition for the clarification and detackification of paint spray booth wastes
RU2799645C1 (en) Method of electroflotation extraction of paints and varnishes
US5730881A (en) Method for treating oversprayed solvent-based paints
SU937342A1 (en) Method of purifying waste water from finely dispersed particles of paints and finishes
JP2006102619A (en) Treatment method of overspray coating collecting water
JPH03106474A (en) Treatment of water in spray booth