JPH04112592A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH04112592A
JPH04112592A JP23070790A JP23070790A JPH04112592A JP H04112592 A JPH04112592 A JP H04112592A JP 23070790 A JP23070790 A JP 23070790A JP 23070790 A JP23070790 A JP 23070790A JP H04112592 A JPH04112592 A JP H04112592A
Authority
JP
Japan
Prior art keywords
quantum
layer
currents
active
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23070790A
Other languages
Japanese (ja)
Inventor
Masahiro Aoki
雅博 青木
Tomonobu Tsuchiya
朋信 土屋
Shinji Sasaki
真二 佐々木
Kazuhisa Uomi
魚見 和久
Naoki Kayane
茅根 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23070790A priority Critical patent/JPH04112592A/en
Publication of JPH04112592A publication Critical patent/JPH04112592A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce leakage currents to a clearance layer, and to improve the injection efficiency of currents to an active quantum layer by introducing a specific high-resistance semiconductor layer into the clearance of the active quantum layer. CONSTITUTION:An Fe-doped high-resistance InP layer having 10<7>OMEGAcm or more or an Fe-doped high-resistance InGaAsP clearance layer (a compositional wavelength of 1.15mum) 13 is grown through an MOCVD method, thus concentrating currents injected to an active layer to a quantum fine line having optical gains and a quantum box 2 because the currents injected to the active layer cannot be made to flow through the high-resistance clearance layer 3 in a quantum fine line laser or a quantum box laser. Accordingly, reactive currents are reduced sufficiently, and the injection efficiency of currents is improved while optical gains and differential gains as the gradients of optical gains to injection currents can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信用半導体素子、超高速半導体電子デバ
イスに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor element for optical communication and an ultra-high speed semiconductor electronic device.

〔従来の技術〕[Conventional technology]

従来、多次元量子構造レーザの作製方法としては、活性
量子構造を加工した後にその間隙を半導体層で埋め込む
方法の他、近年では活性量子構造を半導体基板に直接選
択的に成長する方法がある。
Conventional methods for manufacturing multidimensional quantum structure lasers include a method of processing an active quantum structure and then filling the gap with a semiconductor layer, and a recent method of selectively growing an active quantum structure directly on a semiconductor substrate.

前者については、「信学技報JOQE89−1115に
おいて論じられている。
The former is discussed in IEICE Technical Report JOQE89-1115.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記従来技術では、活性量子層への電流注入効率
に関する配慮が十分されておらず、活性量子構造の間隙
層の電気抵抗が小さいことに起因する電流漏れにより間
隙層が発振に至ってしまい、期待される多次元量子サイ
ズ効果は得られなかった。
However, in the above conventional technology, sufficient consideration is not given to the efficiency of current injection into the active quantum layer, and current leakage due to the small electrical resistance of the interstitial layer of the active quantum structure causes the interstitial layer to oscillate. The expected multidimensional quantum size effect was not obtained.

本発明の目的は、間隙層に流れる無効電流を低減し、活
性量子層への電流注入効率を増大することにより、多次
元量子サイズ効果を実現することである。
An object of the present invention is to realize a multidimensional quantum size effect by reducing the reactive current flowing through the interstitial layer and increasing the efficiency of current injection into the active quantum layer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては、上記目的を達成するために、活性量
子層の間隙に高抵抗半導体層を導入することにより間隙
層への漏れ電流を低減し活性量子層への電流注入効率を
増大させる。
In order to achieve the above object, the present invention introduces a high-resistance semiconductor layer into the gap between active quantum layers to reduce leakage current to the gap layer and increase current injection efficiency into the active quantum layer.

高抵抗層の抵抗率は107〜109Ω■と活性量子層の
抵抗率の102〜203倍であるため電流注入効率増大
には極めて有効である。
The resistivity of the high-resistance layer is 10 7 to 10 9 Ω■, which is 10 2 to 20 3 times the resistivity of the active quantum layer, and is therefore extremely effective in increasing current injection efficiency.

〔作用〕[Effect]

以下、高抵抗半導体層の電流阻止機能を説明する。 The current blocking function of the high-resistance semiconductor layer will be explained below.

第1図に示した量子細線レーザあるいは量子箱レーザに
おいて、活性層に注入した電流を高抵抗間隙層には流れ
得ないため、光学利得を有する量子細線、量子箱に集中
する。このため従来、低抵抗間隙層に漏洩した無効電流
が十分低減され、電流注入効率の大幅改善と共にレーザ
発振に不可欠である光学利得、及び注入電流に対する光
学利得の傾きである微分利得が増大する。量子細線レー
ザ、量子箱レーザの実現にはこの光学利得、微分利得の
増大が必要不可欠であり上記高抵抗層半導体層を間隙層
に導入することにより達成可能である。
In the quantum wire laser or quantum box laser shown in FIG. 1, the current injected into the active layer cannot flow through the high-resistance gap layer, so it is concentrated in the quantum wire or quantum box that has an optical gain. Therefore, conventionally, the reactive current leaked to the low resistance gap layer is sufficiently reduced, and the current injection efficiency is greatly improved, and the optical gain, which is essential for laser oscillation, and the differential gain, which is the slope of the optical gain with respect to the injection current, are increased. In order to realize quantum wire lasers and quantum box lasers, it is essential to increase the optical gain and differential gain, and this can be achieved by introducing the high-resistance semiconductor layer into the gap layer.

〔実施例〕〔Example〕

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第2図において、n−InP基板上にn−工nGaAs
P (組成波長1.15μm)ガイド層1100n、1
−1nGaAs活性層10nm、保護層(組成波長1.
15 μm)5nmをMOCVD法により順次成長する
。リソグラフィー及びエツチングにより周期数1− O
n m以下の細線構造7を形成した後、再びMOCVD
法によりFeドープ高抵抗InP層又はFeドドー高抵
抗InGaAsPrjl隙層(組成波長1,15μm)
3を成長する。
Example 1 In FIG. 2, n-type nGaAs is deposited on an n-InP substrate.
P (composition wavelength 1.15 μm) guide layer 1100n, 1
-1nGaAs active layer 10nm, protective layer (composition wavelength 1.
15 μm) 5 nm thick by MOCVD method. Periodicity 1-O by lithography and etching
After forming the thin wire structure 7 of nm or less, MOCVD is performed again.
Fe-doped high-resistance InP layer or Fe-doped high-resistance InGaAsPrjl gap layer (composition wavelength 1, 15 μm)
Grow 3.

ここで、数1100n以下の周期の凸凹のある基板上へ
のMOCVD成長では凹部から先に埋め込まれるため、
細線埋め込み成長時には成長時間を制御することにより
細線間隙部のみに埋め込み成長させることができる。続
いてP −InGaA s P4(組成波長1.15μ
m)100nm、p−InPクラッド層51μmを成長
する。BH構造、電極を形成し素子化をする。
Here, in MOCVD growth on a substrate with unevenness with a period of several 1100 nanometers or less, the depressions are filled in first, so
By controlling the growth time during thin wire embedding growth, it is possible to perform embedding growth only in the thin wire gaps. Next, P-InGaAs P4 (composition wavelength 1.15μ
m) Grow a p-InP cladding layer of 100 nm and 51 μm. Form the BH structure and electrodes to create a device.

本実施例によれば、量子細線間隙層への漏れ電流が防止
できるため、光学利得・微分利得が共に増大しこの効果
により1mA以下の低しきい値電流と共に、従来の4倍
程度以上もの高速直接変調が可能となる。
According to this embodiment, since leakage current to the quantum wire gap layer can be prevented, both optical gain and differential gain increase, and this effect allows for a low threshold current of less than 1 mA and a high speed of about 4 times or more than that of the conventional method. Direct modulation becomes possible.

実施例2 第3図において、上記実施例1の構造に量子細線活性層
の有する利得ピーク波長に相等する周期をもつ回折格子
6を導入することにより、量子細線−〇FBレーザを実
現できる。
Embodiment 2 In FIG. 3, a quantum wire-〇FB laser can be realized by introducing a diffraction grating 6 having a period equivalent to the gain peak wavelength of the quantum wire active layer into the structure of Example 1.

本実施例によれば、実施例1と同程度のレーザ特性に加
え、単一波長発振、従来の半分以下のスペクトル線幅が
得られる。
According to this example, in addition to laser characteristics comparable to those of Example 1, single wavelength oscillation and a spectral linewidth less than half of the conventional one can be obtained.

実施例3 第4図において、上記実施例1の活性層にFeトープ高
抵抗InP層もしくは、Feドープ高抵抗InGaAs
P (組成波長1.15μm)から成る間隙層を有する
量子箱8を導入する。
Example 3 In FIG. 4, an Fe-topped high-resistance InP layer or an Fe-doped high-resistance InGaAs layer is used as the active layer of Example 1.
A quantum box 8 having a gap layer made of P (composition wavelength 1.15 μm) is introduced.

本実施例によれば、量子箱間隙層への漏れ電流を防止で
きるため、光学利得、微分利得が共に増大し、この効果
により1μA以下の極低しきい値電流と共に、従来の6
倍程度以上の高速直接変調が可能となる。
According to this embodiment, since leakage current to the quantum box gap layer can be prevented, both the optical gain and the differential gain increase, and due to this effect, as well as the extremely low threshold current of 1 μA or less, the conventional 6
Direct modulation that is about twice as fast as this becomes possible.

実施例4 第5図において、上記実施例3の構造に量子箱活性層の
有する利得ピーク波長に相当する周期をもつ回折格子6
を導入することにより、量子箱−DFBレーザを実現で
きる。
Example 4 In FIG. 5, a diffraction grating 6 having a period corresponding to the gain peak wavelength of the quantum box active layer is added to the structure of Example 3.
By introducing this, a quantum box-DFB laser can be realized.

本実施例によれば、実施例3と同程度のレーザ特性に加
え、単一波長発振、従来に比べ1桁〜2桁小さいスペク
トル線幅を実現することができる。
According to this example, in addition to laser characteristics comparable to those of Example 3, it is possible to achieve single wavelength oscillation and a spectral linewidth that is one to two orders of magnitude smaller than that of the conventional laser.

〔発明の効果〕〔Effect of the invention〕

本発明は、量子細線レーザ、量子箱レーザにおける電流
注入効率の増大に対し極めて効果的である。この発明に
より、量子細線レーザ、量子箱し−ザを実現できる。
The present invention is extremely effective in increasing current injection efficiency in quantum wire lasers and quantum box lasers. According to this invention, a quantum wire laser and a quantum box laser can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図〜5図は本発明の
実施例のレーザ装置の要部断面斜視図である。 2・・・量子細線又は量子箱、3・・・高抵抗半導体間
隙層、6・・・回折格子、7・・・量子細線、8・・・
量子箱。
FIG. 1 is an explanatory diagram of the principle of the present invention, and FIGS. 2 to 5 are cross-sectional perspective views of essential parts of a laser device according to an embodiment of the present invention. 2... Quantum wire or quantum box, 3... High resistance semiconductor gap layer, 6... Diffraction grating, 7... Quantum wire, 8...
quantum box.

Claims (1)

【特許請求の範囲】 1、量子細線レーザ、量子箱レーザといった多次元量子
構造レーザにおいて、量子細線、量子箱の間隙層が、抵
抗率が10^7Ωcm以上の半絶縁性半導体であること
を特徴とする半導体レーザ。 2、特許請求の範囲第1項記載の半導体レーザにおいて
量子細線、量子箱等の活性量子層への高効率な電流注入
が可能であることを特徴とする半導体レーザ。 3、特許請求の範囲第1項記載の半導体レーザにおいて
、量子活性層の利得ピーク波長に相当する周期の回折格
子を有し、単一波長発振することを特徴とする半導体レ
ーザ。 4、量子細線・量子箱構造を用いた電子・電子波素子に
おいて、量子細線・量子箱の間隙層が、抵抗率が10^
7Ωcm以上の半絶縁性半導体であることを特徴とする
電子・電子波素子。
[Claims] 1. A multidimensional quantum structure laser such as a quantum wire laser or a quantum box laser, characterized in that the interstitial layer of the quantum wire or the quantum box is a semi-insulating semiconductor with a resistivity of 10^7 Ωcm or more. semiconductor laser. 2. A semiconductor laser according to claim 1, which is capable of highly efficient current injection into active quantum layers such as quantum wires and quantum boxes. 3. A semiconductor laser according to claim 1, characterized in that it has a diffraction grating with a period corresponding to the gain peak wavelength of the quantum active layer and oscillates at a single wavelength. 4. In an electron/electronic wave device using a quantum wire/quantum box structure, the interstitial layer of the quantum wire/quantum box has a resistivity of 10^
An electronic/electronic wave device characterized by being a semi-insulating semiconductor with a resistance of 7 Ωcm or more.
JP23070790A 1990-09-03 1990-09-03 Semiconductor laser Pending JPH04112592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23070790A JPH04112592A (en) 1990-09-03 1990-09-03 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23070790A JPH04112592A (en) 1990-09-03 1990-09-03 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH04112592A true JPH04112592A (en) 1992-04-14

Family

ID=16912054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23070790A Pending JPH04112592A (en) 1990-09-03 1990-09-03 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH04112592A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158399A (en) * 2000-11-22 2002-05-31 Fujitsu Ltd Laser diode
JP2002184970A (en) * 2000-12-15 2002-06-28 Fujitsu Ltd Semiconductor device including quantum dots, its fabricating method and semiconductor laser
JP2010040872A (en) * 2008-08-06 2010-02-18 Fujitsu Ltd Semiconductor device, method of manufacturing same, and optical communication system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158399A (en) * 2000-11-22 2002-05-31 Fujitsu Ltd Laser diode
JP2002184970A (en) * 2000-12-15 2002-06-28 Fujitsu Ltd Semiconductor device including quantum dots, its fabricating method and semiconductor laser
JP2010040872A (en) * 2008-08-06 2010-02-18 Fujitsu Ltd Semiconductor device, method of manufacturing same, and optical communication system

Similar Documents

Publication Publication Date Title
JPS61179588A (en) Semiconductor element and manufacture thereof
JPH09318918A (en) Semiconductor optical modulator
JP2553731B2 (en) Semiconductor optical device
JP2536714B2 (en) Optical modulator integrated multiple quantum well semiconductor laser device
JPH04112592A (en) Semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JPH07101674B2 (en) Method for manufacturing optical semiconductor element
JPH07193327A (en) Semiconductor laser system,
JPH03198025A (en) Optical modulator and integratation type optical modulator and photodetector as well as production thereof
JP2712767B2 (en) Strained quantum well semiconductor laser
JPS61202487A (en) Distributed feedback type semiconductor laser
JPS63124484A (en) Semiconductor laser element
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH07120836B2 (en) Semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JP2932690B2 (en) Method for manufacturing optical semiconductor device
JPS62296573A (en) Semiconductor laser device
Spencer et al. Optimization of the optical guide design and cavity design of multiple quantum well lasers for efficient microwave optical links
JPH01186693A (en) Semiconductor device and manufacture thereof
JPH05114764A (en) Quantum well distributed feedback semiconductor laser
JPH05235477A (en) Manufacture of semiconductor element
JPH02281681A (en) Semiconductor laser
JPH03225983A (en) Semiconductor laser
JPH0462883A (en) Visible radiation semiconductor laser
JPH03286586A (en) Integration type light modulator and manufacture thereof