JPH04112551A - Removing method for noise of wafer inspecting device - Google Patents

Removing method for noise of wafer inspecting device

Info

Publication number
JPH04112551A
JPH04112551A JP2232651A JP23265190A JPH04112551A JP H04112551 A JPH04112551 A JP H04112551A JP 2232651 A JP2232651 A JP 2232651A JP 23265190 A JP23265190 A JP 23265190A JP H04112551 A JPH04112551 A JP H04112551A
Authority
JP
Japan
Prior art keywords
wafer
housing
noise
scattered light
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2232651A
Other languages
Japanese (ja)
Inventor
Yasuo Hachikake
保夫 八掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP2232651A priority Critical patent/JPH04112551A/en
Publication of JPH04112551A publication Critical patent/JPH04112551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To remove noise due to Rayleigh scattering light to detect ultrafine particles, 0.05mum and below in particle size, and to remove detrimental charging of a wafer by evacuating a housing under pneumatic pressure to 1/100atm or less by evacuating means. CONSTITUTION:In an inspection of a wafer, the wafer 1 to be inspected is mounted on a spindle 2a, a left side plate 9b is closed, a housing is sealed, and the housing is evacuated under pneumatic pressure to 1/100atm or less by an exhaust pump 10. After the pressure reduction is confirmed, when the spindle 2a is rotated and the wafer is radially moved by an R moving mechanism 2b, a spot is spirally scanned on the surface of the wafer to be inspected. Since the pneumatic pressure in the housing is reduced to 1/100atm or less, both noise due to Rayleigh scattering light and noise generated in a processor due to static electricity to be charged at the wafer are removed, and ultrafine particles, 0.05mum and below in particle size, are detected by excellent S/N. Thus, noise of the processor of a surface inspecting device is removed to avoid an error.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、ウェハ検査装置の雑音排除方法に関し、詳
しくは空気分子によるレイリー散乱光による雑音と、ウ
ェハの帯電に起因する雑音とをともに排除する方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for eliminating noise in a wafer inspection device, and more specifically, it eliminates both noise caused by Rayleigh scattered light by air molecules and noise caused by electrification of the wafer. It's about how to do it.

[従来の技術] 半導体ICはシリコンなどのウェハを素材として製造さ
れる。ウェハに異物や欠陥(以下、−括して単に異物と
する)が存在すると品質が劣化するので、ウェハ検査装
置により検査が行われる。
[Prior Art] Semiconductor ICs are manufactured using wafers such as silicon. If foreign matter or defects (hereinafter simply referred to as "foreign matter") are present on the wafer, the quality will deteriorate, so the wafer is inspected by a wafer inspection device.

第2図はレーザによるウェハ検査装置の光学系の基本構
成を示す。被検査のウェハ1はスピンドル2aに装着さ
れて矢印θの方向に回転する。これに対して、光源3よ
りのレーザビームはコリメータ4により平行とされ、ミ
ラー5を経て集束レンズ6により集束され、ウェハ1の
表面に直径の微小なスポットを形成する。回転するウェ
ハをR移動機構2bにより半径Rの方向に移動し、スポ
ットがウェハ表面をスパイラル杖に走査する。つエバ表
面に存在する異物による散乱光は、集光レンズ7により
集光され光電変換器8に受光され、その出力電圧により
異物が検出される。以上は基本構成であって、より微小
な異物を高感度で検出するために、レーザの投光系や散
乱光の受光系には多くの点で改良が加えられて検出性能
が向上している。
FIG. 2 shows the basic configuration of an optical system of a laser wafer inspection apparatus. A wafer 1 to be inspected is mounted on a spindle 2a and rotated in the direction of an arrow θ. On the other hand, the laser beam from the light source 3 is made parallel by a collimator 4, passes through a mirror 5, and is focused by a focusing lens 6 to form a spot with a minute diameter on the surface of the wafer 1. The rotating wafer is moved in the direction of the radius R by the R moving mechanism 2b, and the spot scans the wafer surface with a spiral cane. Scattered light due to foreign matter existing on the surface of the evaporator is collected by a condensing lens 7 and received by a photoelectric converter 8, and the foreign matter is detected by the output voltage thereof. The above is the basic configuration; in order to detect even smaller foreign objects with high sensitivity, many improvements have been made to the laser light emitting system and scattered light receiving system to improve detection performance. .

[解決しようとする課題] 最近におけるICメモリの集積度はますます高度となり
、パターンの線幅は0,5μm以下に微細化される趨勢
である。このような微細パターンにおいては、その10
分の1すなわち0.05μm1またはそれ以下の極めて
微小な異物(超微粒子)がICメモリの品質を劣化する
ので、表面検査装置には0.05μmまたはそれ以下の
超微粒子に対する検出性能が要請されている。
[Problems to be Solved] Recently, the degree of integration of IC memories has become more and more advanced, and the trend is for pattern line widths to be miniaturized to 0.5 μm or less. In such fine patterns, the 10th
Extremely minute foreign particles (ultrafine particles) of 0.05μm or smaller degrade the quality of IC memory, so surface inspection equipment is required to have the ability to detect ultrafine particles of 0.05μm or smaller. There is.

表面検査装置による異物の検出性能は、基本的にはレー
ザの照射パワーPON異物の積分散乱断面積σS1およ
び受光立体角ωCに正比例する。
The foreign matter detection performance of the surface inspection device is basically directly proportional to the laser irradiation power PON, the integral scattering cross section σS1 of the foreign matter, and the solid angle of light reception ωC.

積分散乱断面積σSは、レーザの波長λ、異物の粒径(
異物を球形と仮定する)Dp1異物の屈折率n1散乱光
の角度θを変数とする関数である。
The integrated scattering cross section σS is determined by the wavelength λ of the laser and the particle size of the foreign material (
(assuming that the foreign object is spherical) Dp1 Refractive index of the foreign object n1 It is a function with the angle θ of the scattered light as a variable.

第3図は、光源としてヘリウム−ネオン(He−N e
 N波長λ=E333nm)とアルボ7(Ar、λ=4
88nm)のレーザビームに対して、粒径Dpが0.0
4〜0.1μmの微粒子の積分散乱断面積σS (ただ
し便宜−ヒωCを乗じたもの)の計算曲線を示す。ここ
で、n=1.6、θ=500、ωc=0.7πSrとす
る。一般にσSの変化は異物の体積の自乗にほぼ比例す
るもので、図の曲線はDpが0.1μmより2分の1の
0.05μmに小さくなると、σSが約70分の1に低
下°することを示している。
Figure 3 shows helium-neon (He-Ne) as a light source.
N wavelength λ=E333 nm) and Arbo7 (Ar, λ=4
Particle size Dp is 0.0 for a laser beam (88 nm)
A calculation curve of the integrated dispersion cross section σS (multiplied by ωC for convenience) of fine particles of 4 to 0.1 μm is shown. Here, n=1.6, θ=500, and ωc=0.7πSr. In general, the change in σS is approximately proportional to the square of the volume of the foreign object, and the curve in the figure shows that when Dp decreases to 0.05 μm, which is half of 0.1 μm, σS decreases to about 1/70°. It is shown that.

さて、空気分子に対して光が照射されるとレイリーと呼
ばれる散乱光が散乱される。各空気分子の大きさは高々
nm以下のもので、その積分散乱断面積σRは非常に小
さい。しかし、単位体積内の空気分子の個数L(ロシュ
ミット数)は非常に大きく、全体の積分散乱断面積Lσ
Rは上記の異物に匹敵する値となる。ただし、この場合
の散乱光に寄与する空気分子の個数は、レーザのスポッ
トが照射され、かつ受光される体積内の個数であり、従
って上記のロシュミット数りに受光体積を乗じたもので
ある。第3図に、スポット径を10μm1長さ1mmの
受光体積とし、0°Cの1気圧におけるレイリー散乱光
LσRの計算値を並記する。LσRはDp=0.04μ
mの異物のσSにほぼ等しい。従って、〜0.05μm
以下の異物に対してはレイリー散乱光が壁をなして、検
出が困難であるとされている。
Now, when light is irradiated onto air molecules, scattered light called Rayleigh is scattered. The size of each air molecule is at most nm or less, and its integrated scattering cross section σR is extremely small. However, the number L (Loschmidt number) of air molecules within a unit volume is very large, and the total integrated scattering cross section Lσ
R has a value comparable to that of the above foreign matter. However, the number of air molecules that contribute to the scattered light in this case is the number within the volume where the laser spot is irradiated and where the light is received, and is therefore the Roschmidt number multiplied by the light receiving volume. . In FIG. 3, the calculated values of the Rayleigh scattered light LσR at 0° C. and 1 atmosphere are also shown, with a light receiving volume of 10 μm in spot diameter and 1 mm in length. LσR is Dp=0.04μ
It is approximately equal to σS of the foreign matter of m. Therefore, ~0.05 μm
It is said that the following foreign substances are difficult to detect because Rayleigh scattered light forms a wall.

次に、第2図で示した表面検査装置は走査方式が回転型
で、回転数が例えば2500/分のように高速であるた
め、エアの摩擦によりウェハが高圧の静電気を帯電する
。このような帯電はときに放電して表面検査装置の各回
路に雑音を発生し、信号またはデータ処理にエラーを惹
起する欠点がある。
Next, since the surface inspection apparatus shown in FIG. 2 uses a rotational scanning method and the rotational speed is high, for example, 2500/min, the wafer is charged with high-voltage static electricity due to air friction. Such charges sometimes discharge and generate noise in various circuits of the surface inspection apparatus, which has the drawback of causing errors in signal or data processing.

この発明は以上に鑑みてなされたもので、ウェハ表面検
査装置において、〜0.05μm以下の超微粒子を検出
するために、上記のレイリー散乱光による雑音を排除し
、併せて有害なウェハの帯電を排除する方法を提供する
ことを目的とするものである。
This invention was made in view of the above, and in order to detect ultrafine particles of ~0.05 μm or less in a wafer surface inspection device, it eliminates the noise caused by the Rayleigh scattered light, and also eliminates the harmful charging of the wafer. The purpose is to provide a method to eliminate

[課題を解決するための手段] この発明は、被検査のウェハの表面に対してレーザスポ
ットを走査し、その散乱光を受光して表面を検査するウ
ェハ表面検査装置における雑音排除方法である。気密を
保持できる筐体と、筐体内部のエアの排気する手段、お
よび筐体の外部に上記のレーザビームの光源および投光
レンズ系と、上記の散乱光に対する受光器とをそれぞれ
具備し、筐体の内部にスポットの走査に対してウェハを
回転/移動する回転移動機構を、また筐体の蓋にレーザ
ビームを透過するガラス窓と、散乱光を集光する集光レ
ンズとをそれぞれ設ける。ウェハの表面検査においては
、排気手段により筐体内部エアを少なくとも100分の
1気圧に減圧し、レイリー散乱光による雑音と、ウェハ
の帯電に起因する雑音とをともに排除するものである。
[Means for Solving the Problems] The present invention is a noise elimination method in a wafer surface inspection apparatus that scans the surface of a wafer to be inspected with a laser spot, receives the scattered light, and inspects the surface. A casing capable of maintaining airtightness, a means for exhausting air inside the casing, and a light source and projection lens system for the laser beam described above and a light receiver for the scattered light described above are provided outside the casing, respectively, A rotational movement mechanism for rotating/moving the wafer in response to spot scanning is provided inside the housing, and a glass window for transmitting the laser beam and a condensing lens for condensing the scattered light are provided on the lid of the housing. . In inspecting the surface of a wafer, the air inside the housing is reduced to at least 1/100 atmosphere by an exhaust means to eliminate both noise caused by Rayleigh scattered light and noise caused by electrification of the wafer.

[作用] 以上の雑音排除方法を適用した表面検査装置においては
、筐体外部の光源よりのレーザビームは投光レンズによ
り集束されて筐体の蓋に設けられたガラス窓より内部に
導入され、回転移動台に載置された被検査のウェハの表
面にスポットが形成され、回転移動台により回転または
移動するウェハの表面を走査する。ウェハに異物などが
存在すると、その散乱光は筐体の蓋に設けられた集光レ
ンズにより集光され、筐体外部に設けられた受光器に受
光されて異物が検出される。一方、レーザビームは筐体
内の空気分子に対しても照射されてレイリー散乱光が散
乱される。レイリー散乱光は照射された空気分子の個数
に比例し、個数は筐体内の空気圧に比例する、すなわち
レイリー散乱光は空気圧に比例する。ウェハの表面検査
においては、排気手段により筐体内の空気圧を100分
の1気圧以下に減圧するので、レイリー散乱光による雑
音もまた100分の1以下に低減され、S/Nが向上し
て〜0.05μm以下の超微粒子を良好に検出すること
ができる。また、空気圧の減圧により、ウェハの帯電す
る静電気が減少して放電が抑制される結果、表面検査装
置の処理回路の雑音が排除されてエラーの発生が回避さ
れるものである。
[Operation] In the surface inspection device to which the above noise elimination method is applied, a laser beam from a light source outside the housing is focused by a projection lens and introduced into the interior through a glass window provided in the lid of the housing. A spot is formed on the surface of a wafer to be inspected placed on a rotary movable table, and the surface of the wafer being rotated or moved by the rotary movable table is scanned. If a foreign object is present on the wafer, the scattered light is collected by a condensing lens provided on the lid of the casing, and is received by a light receiver provided outside the casing to detect the foreign object. On the other hand, the laser beam also irradiates air molecules within the housing, causing Rayleigh scattered light to be scattered. The Rayleigh scattered light is proportional to the number of irradiated air molecules, and the number is proportional to the air pressure inside the housing, that is, the Rayleigh scattered light is proportional to the air pressure. During wafer surface inspection, the air pressure inside the housing is reduced to 1/100th of an atmosphere or less using the exhaust means, so the noise caused by Rayleigh scattered light is also reduced to 1/100th or less, improving the S/N. Ultrafine particles of 0.05 μm or less can be detected well. Further, by reducing the air pressure, static electricity charged on the wafer is reduced and discharge is suppressed, thereby eliminating noise in the processing circuit of the surface inspection apparatus and avoiding the occurrence of errors.

[実施例コ 第1図(a)および(b)は、この発明によるウェハ検
査装置の雑音排除方法の実施例における、側面図と平面
図を示す。両図において、9は気密が保持できる筐体を
示し、筺体9のベース9aに、ウェハ1を載置して回転
するスピンドル2aと、ウェハを半径方向に移動するR
移動機構2bよりなる回転移動機構2を固定する。筐体
の左側板9bはヒンジにより開閉できるものとし、ここ
よりウェハ1を出し入れする。また、右側板には排気口
9cを設け、これより配管10aにより排気ポンプIO
を接続する。筐体の蓋9dにガラス窓11を設け、光源
3からのレーザビームはコリメータ4により平行とされ
、ミラー5を経て集束レンズ6により集束してガラス窓
11を透過し、ウェハの表面にスポットが照射される。
Embodiment FIGS. 1(a) and 1(b) show a side view and a plan view of an embodiment of the noise elimination method for a wafer inspection apparatus according to the present invention. In both figures, reference numeral 9 indicates a housing that can maintain airtightness, and a spindle 2a that places the wafer 1 and rotates on the base 9a of the housing 9, and an R that moves the wafer in the radial direction.
The rotational movement mechanism 2 consisting of the movement mechanism 2b is fixed. The left side plate 9b of the housing can be opened and closed by a hinge, and the wafer 1 is taken in and taken out from here. In addition, an exhaust port 9c is provided on the right side plate, from which the exhaust pump IO is connected to the piping 10a.
Connect. A glass window 11 is provided on the lid 9d of the housing, and the laser beam from the light source 3 is made parallel by a collimator 4, passes through a mirror 5, is focused by a focusing lens 6, and is transmitted through the glass window 11, forming a spot on the surface of the wafer. irradiated.

また、集光レンズ7と光電変換器8が適当なパイプ7a
を使用して蓋9dに取り付けられ、ウェハからの散乱光
は集光レンズ7により集光されて光電変換器8に受光さ
れる。
Further, the condenser lens 7 and the photoelectric converter 8 are connected to a suitable pipe 7a.
Scattered light from the wafer is collected by a condensing lens 7 and received by a photoelectric converter 8.

ウェハの検査においては、被検査のウェハ1をスピンド
ル2aに装着し、左側板9bを閉じて筐体を気密として
、排気ポンプ10により筐体内の空気圧を、100分の
1気圧以下に減圧する。減圧が確認された後、スピンド
ル2aを回転し、R移動機構2bによりウェハを半径方
向に移動すると、スポットがウェハの表面をスパイラル
状に走査して検査が行われる。筐体内の空気圧は100
分の1気圧以Fに減圧されているので、レイリー散乱光
による雑音と、ウェハに帯電する静電気に起因して処理
回路に発生する雑音がともに排除されて、〜0.05μ
m以下の超微粒子が良好なS/Nにより検出される。
In wafer inspection, the wafer 1 to be inspected is mounted on the spindle 2a, the left side plate 9b is closed to make the housing airtight, and the air pressure inside the housing is reduced to 1/100th of an atmosphere or less using the exhaust pump 10. After confirming that the pressure has been reduced, the spindle 2a is rotated and the wafer is moved in the radial direction by the R moving mechanism 2b, so that the spot scans the surface of the wafer in a spiral manner and the inspection is performed. The air pressure inside the housing is 100
Since the pressure is reduced to less than 1/2 atm F, noise caused by Rayleigh scattered light and noise generated in the processing circuit due to static electricity charged on the wafer are both eliminated to ~0.05 μm.
Ultrafine particles of m or less can be detected with good S/N.

[発明の効果コ 以上の説明により明らかなように、この発明によるウェ
ハ検査装置の雑音排除方法においては、排気手段により
筐体内の空気圧を100分の1気圧以下に減圧するので
、レイリー散乱光による雑音もまた100分の1以下に
低減され、S/Nが向上して〜0.05μm以下の超微
粒子を良好に検出することができる。また、空気圧の減
圧により、ウェハが帯電する静電気が減少して放電が抑
制される結果、表面検査装置の処理回路の雑音が排除さ
れてエラーの発生が回避されるもので、ウェハの表面検
査に寄与する効果には大きいものがある。
[Effects of the Invention] As is clear from the above explanation, in the noise elimination method for a wafer inspection apparatus according to the present invention, the air pressure inside the housing is reduced to 1/100th of an atmosphere or less by the exhaust means, so that the noise reduction method due to Rayleigh scattered light is Noise is also reduced to 1/100 or less, S/N is improved, and ultrafine particles of ~0.05 μm or less can be detected satisfactorily. In addition, by reducing the air pressure, the static electricity charged on the wafer is reduced and discharge is suppressed, which eliminates noise in the processing circuit of the surface inspection equipment and avoids errors. The contributing effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は、この発明によるウェハ検
査装置の雑音排除方法の実施例における、検査装置の構
造を示す側面図および平面図、第2図はウェハ検査装置
の光学系の基本構成図、第3図は、微粒子の積分散乱断
面積およびレイリー散乱光の計算値の曲線図である。 1・・・ウェハ、     2・・・回転移動機構、2
a・・・スピンドル、  2b・・・R移動機構、3・
・・光源、       4−・・コリメータ、5・・
・ミラー 7・・・集光レンズ、 8・・・光電変換器、 9a・・・ベース、 9c・・・排気口、 10・・・排気ポンプ、 11・・・ガラス窓。 6・・・集束レンズ、 7a・・・パイプ、 8・・・筐体、 9b・・・左側板、 9d・・・蓋、 10a・・・配管、
1(a) and (b) are a side view and a plan view showing the structure of an inspection device in an embodiment of the noise elimination method for a wafer inspection device according to the present invention, and FIG. 2 is a diagram of the optical system of the wafer inspection device. The basic configuration diagram, FIG. 3, is a curve diagram of calculated values of the integral scattering cross section of fine particles and Rayleigh scattered light. DESCRIPTION OF SYMBOLS 1... Wafer, 2... Rotation movement mechanism, 2
a...Spindle, 2b...R movement mechanism, 3.
...Light source, 4-...Collimator, 5...
-Mirror 7...Condenser lens, 8...Photoelectric converter, 9a...Base, 9c...Exhaust port, 10...Exhaust pump, 11...Glass window. 6... Focusing lens, 7a... Pipe, 8... Housing, 9b... Left side plate, 9d... Lid, 10a... Piping,

Claims (1)

【特許請求の範囲】[Claims] (1)被検査のウェハの表面に対してレーザスポットを
走査し、該スポットの散乱光を受光して該表面を検査す
るウェハ表面検査装置において、気密を保持できる筐体
と、該筐体内部の空気の排気手段、および該筐体の外部
に上記レーザビームの光源および投光レンズ系と、上記
散乱光に対する受光器とをそれぞれ具備し、該筐体の内
部に上記スポットの走査に対して上記ウェハを回転/移
動する回転移動機構を、また該筐体の蓋に上記レーザビ
ームを透過するガラス窓と、上記散乱光を集光する集光
レンズとをそれぞれ設け、上記ウェハの表面検査におい
ては、上記排気手段により筐体内部の空気を少なくとも
100分の1気圧に減圧し、レイリー散乱光による雑音
と、上記ウェハの帯電に起因する雑音とをともに排除す
ることを特徴とする、ウェハ検査装置の雑音排除方法。
(1) In a wafer surface inspection device that scans a laser spot on the surface of a wafer to be inspected and receives scattered light from the spot to inspect the surface, there is provided a housing that can maintain airtightness, and an interior of the housing. a light source and a projection lens system for the laser beam, and a light receiver for the scattered light are respectively provided on the outside of the housing, and a light source for scanning the spot is provided inside the housing. A rotation movement mechanism for rotating/moving the wafer, a glass window for transmitting the laser beam, and a condensing lens for condensing the scattered light are provided on the lid of the casing, and in the surface inspection of the wafer. The wafer inspection is characterized in that the air inside the housing is depressurized to at least 1/100 atmosphere by the exhaust means to eliminate both noise caused by Rayleigh scattered light and noise caused by the charging of the wafer. How to eliminate noise from equipment.
JP2232651A 1990-09-03 1990-09-03 Removing method for noise of wafer inspecting device Pending JPH04112551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232651A JPH04112551A (en) 1990-09-03 1990-09-03 Removing method for noise of wafer inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232651A JPH04112551A (en) 1990-09-03 1990-09-03 Removing method for noise of wafer inspecting device

Publications (1)

Publication Number Publication Date
JPH04112551A true JPH04112551A (en) 1992-04-14

Family

ID=16942641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232651A Pending JPH04112551A (en) 1990-09-03 1990-09-03 Removing method for noise of wafer inspecting device

Country Status (1)

Country Link
JP (1) JPH04112551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441482B1 (en) 2000-04-11 2002-08-27 Omnivision Technologies, Inc. Biometric device with integrated CMOS image sensor
JP2009520370A (en) * 2005-12-14 2009-05-21 ケーエルエー−テンカー テクノロジィース コーポレイション System and method for inspecting wafers with improved sensitivity
WO2015006598A1 (en) * 2013-07-11 2015-01-15 Kla-Tencor Corporation Metrology tool stage configurations and operation methods
WO2017029857A1 (en) * 2015-08-17 2017-02-23 株式会社Screenホールディングス Defect inspection device and defect inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441482B1 (en) 2000-04-11 2002-08-27 Omnivision Technologies, Inc. Biometric device with integrated CMOS image sensor
JP2009520370A (en) * 2005-12-14 2009-05-21 ケーエルエー−テンカー テクノロジィース コーポレイション System and method for inspecting wafers with improved sensitivity
WO2015006598A1 (en) * 2013-07-11 2015-01-15 Kla-Tencor Corporation Metrology tool stage configurations and operation methods
US9970886B2 (en) 2013-07-11 2018-05-15 Kla-Tencor Corporation Metrology tool stage configurations and operation methods
WO2017029857A1 (en) * 2015-08-17 2017-02-23 株式会社Screenホールディングス Defect inspection device and defect inspection method

Similar Documents

Publication Publication Date Title
JP3801635B2 (en) Product surface inspection system and method
TW451364B (en) Method and apparatus for removing a plastic resin encapsulant from an encapsulated integrated circuit
US4614427A (en) Automatic contaminants detection apparatus
KR102353259B1 (en) Activation of Wafer Particle Defects for Spectral Composition Analysis
US7280200B2 (en) Detection of a wafer edge using collimated light
KR100516405B1 (en) Apparatus for inspecting an edge exposure area of wafer
KR20120037949A (en) Inspection systems and methods for detecting defects on extreme ultraviolet mask blanks
US7773212B1 (en) Contemporaneous surface and edge inspection
JP7427763B2 (en) Methods and systems for optical surface defect material characterization
TW201428280A (en) Inspection beam shaping for improved detection sensitivity
JP2008032581A (en) Surface inspection device and method
US20120154797A1 (en) Inspection apparatus and inspection method
JP2005507561A5 (en)
JPH04112551A (en) Removing method for noise of wafer inspecting device
US7069155B1 (en) Real time analytical monitor for soft defects on reticle during reticle inspection
JPH0228803B2 (en)
JPH06242012A (en) Dust particle inspection system
JP5295160B2 (en) Surface inspection apparatus and surface inspection method
JP4974267B2 (en) Wafer circumference inspection method
JPH0458622B2 (en)
JPH06160314A (en) Method and apparatus for surface analysis
JP3779746B2 (en) Multilayer substrate inspection method
KR100529647B1 (en) Apparatus and method for detecting particle on wafer
TWI840582B (en) Methods and systems for optical surface defect material characterization
CN220569637U (en) Wafer moving platform