JPH04111975A - Multiple electrode one-side submerged arc welding method - Google Patents

Multiple electrode one-side submerged arc welding method

Info

Publication number
JPH04111975A
JPH04111975A JP22988690A JP22988690A JPH04111975A JP H04111975 A JPH04111975 A JP H04111975A JP 22988690 A JP22988690 A JP 22988690A JP 22988690 A JP22988690 A JP 22988690A JP H04111975 A JPH04111975 A JP H04111975A
Authority
JP
Japan
Prior art keywords
welding
electrode
conditions
sided
welding conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22988690A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Kitamura
北村 征義
Koichi Shinada
功一 品田
Shigeo Fujimori
藤森 成夫
Nobuyuki Ohama
大浜 展之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22988690A priority Critical patent/JPH04111975A/en
Publication of JPH04111975A publication Critical patent/JPH04111975A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To save labor of condition selection in multiple electrode one-side submerged arch' welding, by giving welding conditions and performing welding after confirming characteristics of beads expected by a data base prepared on a microcomputer in advance. CONSTITUTION:The welding conditions such as the number of welding electrodes, a groove shape and thickness are given and the data base or an empirical formula prepared on the computer in advance is used to calculate the bead penetration width and depth and the quantity of reinforcement of weld which are expected. The welding conditions are determined corresponding to these and welding is performed. Consequently, since the propriety of back bead formation and the excess and deficiency of the quantity of reinforcement of weld can be determined before actual welding, the time, labor and cost for searching the proper welding conditions can be reduced and labor saving is made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は片面溶接、特に造船の大板継ぎなどに用いられ
る多電極片面ザブマージドアーり溶接の溶接条件を効率
よく決定して溶接する方法にかかわるものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for efficiently determining welding conditions for single-sided welding, particularly multi-electrode single-sided submerged door welding used for joining large plates in shipbuilding. It is something.

〔従来の技術〕[Conventional technology]

造船の大板継ぎなどでは、高能率溶接法とじて2〜3電
極を用いた片面ザブマーシトアーク溶接が採用されてい
る。しかしながら、この溶接速度は最大でも60〜70
0m/1Tllnであり、ここ20年、はとんど進歩し
ていない。
For jointing large plates in shipbuilding, single-sided Zabumarsito arc welding using two to three electrodes is used as a high-efficiency welding method. However, this welding speed is at most 60 to 70
0m/1Tlln, and there has been little progress in the past 20 years.

一方、最近、海洋汚染の観点からタンカーは二重構造船
化の方向にあり、これが実施された場合、二倍の大板継
ぎ作業を要し、前後工程に空き時間が生じ、作業効率が
低下してしまうことが予想される。そこで、この大板継
ぎ工程と同一速度で流すためには工場を増すか、大板継
ぎ工程で用いられている片面ザブマーシトアーク溶接の
能率を二倍以上に上げることが必要となる。しかしなが
ら、前者では工場敷地の確保のみならず、資金面でも莫
大なものになる。一方、溶接の高速化では、特公昭63
〜10570号公報にみられるように、大径鋼管の高能
率溶接法として溶接電極数をさらに多電極化することが
知られているが、片面溶接で電極数を増した場合、その
溶接条件をどのように設計するかは全く未知なる領域で
ある。
On the other hand, recently, from the perspective of marine pollution, there is a trend towards double-structured tankers, and if this is implemented, it will require twice as large plate joining work, creating idle time between the front and rear processes, and reducing work efficiency. It is expected that this will happen. Therefore, in order to flow at the same speed as this large plate joining process, it is necessary to increase the number of factories or to more than double the efficiency of single-sided Zabumarsito arc welding used in the large plate joining process. However, in the former case, it would be enormous not only in terms of securing a factory site but also in terms of funding. On the other hand, in order to increase the speed of welding,
As seen in Publication No. 10570, it is known to increase the number of welding electrodes as a highly efficient welding method for large-diameter steel pipes. However, when increasing the number of electrodes in single-sided welding, the welding conditions must be How to design it is completely unknown territory.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

現状の3電極溶接条件は、各種の溶接因子(溶接電流、
電圧、速度など)を組み合わせて、実験を行ない、逐一
、ビード形状を評価して得られたものである。しかしな
がら、3電極を超える新たな片面ザブマーンドアーク溶
接を実施するためには、現状の3@極溶接条件を設計し
たときよりさらに多くなった要因に対し、おびただしい
数の実験を試み、ビード形状を評価して適正溶接条件を
設計しなければならず、これには多大な労力と時間及び
費用が予想される。
The current three-electrode welding conditions are based on various welding factors (welding current,
The results were obtained by conducting experiments using various combinations (voltage, speed, etc.) and evaluating the bead shape one by one. However, in order to implement a new type of single-sided submerged arc welding that exceeds 3 electrodes, a large number of experiments were conducted to address the factors that were even more numerous than when designing the current 3@pole welding conditions, and the bead shape It is necessary to evaluate and design appropriate welding conditions, which is expected to require a great deal of effort, time, and cost.

溶接条件設計に際して、まず、欲しい情報は、(1)裏
ビードはでるか?(2)余盛は確保されるか?の二点で
ある。そして、これらに関係する溶接パラメータは、前
者が溶け込み深さ、後者は溶着金属量と考えられる。従
って溶接条件とこれらの関係を知ることができれば、膨
大な実験をしなくともビード形状の推定が可能となり、
適正条件選定のための実験を大幅に低減できる。
When designing welding conditions, the first information you need is (1) Will there be a back bead? (2) Will surplus be secured? There are two points. As for the welding parameters related to these, the former is considered to be the penetration depth, and the latter is considered to be the amount of deposited metal. Therefore, if we can know the welding conditions and their relationship, we can estimate the bead shape without extensive experiments.
The number of experiments required to select appropriate conditions can be significantly reduced.

この溶け込み深さを演算で求めて溶接条件を制御する方
法が特開昭63−260676号公報で提案されている
が、この手法は両面−層盛すブマーシドアク溶接で、片
面溶接のように裏ビード形成もなく、また、溶着効率を
高めるための金属粉を含んだフラックスも使用されてお
らず、片面溶接に適用することは困難である。
A method of calculating the penetration depth and controlling the welding conditions is proposed in Japanese Patent Application Laid-Open No. 63-260676, but this method is double-sided layered bumashido welding, and unlike single-sided welding, the back bead is welded. There is no formation, and no flux containing metal powder is used to increase welding efficiency, making it difficult to apply to single-sided welding.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、これまで3電極片面溶接で蓄積したデータを
基に、3電極を超える多電極片面溶接のビード形状を予
想したのち、溶接を行なうものであって、その要旨とす
るところは、 溶接電極数、開先形状、板厚、フラックス種類、溶接速
度、各電極のワイヤ径、突き出し長及び角度電極間隔、
溶接電流2溶接電圧の溶接条件を与えて、予めマイクロ
コンピュータに準備したデータベース、または実験式を
用いて予想されるビードの溶け込み幅、深さ及び余盛量
を確認して溶接をt〒なうことを特徴とする多電極片面
ザブマーシトアーク溶接方法にある。
The present invention performs welding after predicting the bead shape of multi-electrode single-sided welding using more than three electrodes based on the data accumulated in three-electrode single-sided welding. number of electrodes, groove shape, plate thickness, flux type, welding speed, wire diameter of each electrode, protrusion length and angular electrode spacing,
Give the welding conditions of welding current 2 welding voltage, check the expected bead penetration width, depth, and excess amount using a database prepared in advance in the microcomputer or an experimental formula, and perform welding. The feature lies in the multi-electrode single-sided Zabumarsito arc welding method.

〔作用〕[Effect]

第1図は本発明の多電極片面ザブマージドアり溶接手法
を示す流れ図である。まず、設定電極数N、使用する鋼
板の開先形状、板厚t、フラックス種類、溶接速度V及
び各電極の溶接電流工、電圧E、ワイヤ径り、突出し長
さLa、角度AL電極間隔Dkなどの溶接条件を入力す
る。そして、初期値として電極No、カウンタJを1.
最大溶け込み深さPMAX、及び溶着金属移行速度YS
UMをゼロにヤッl−1,た後、既に蓄積された3電極
片面溶接データまたは実験式を、コンピュータの記憶装
置から読み出し、各電極毎の溶け込み幅W(J)、溶け
込み深さP(J)を求める。通常3電極片面溶接の場合
の裏ビード形状は、第1.第2電極で行なわれており、
第2と第3電極間隔は第1と第2電極間隔に比べ大きく
とられ、第3電極は表ビード形成を行なっている。従っ
て、4電極以上の片面溶接を行なう場合で、第1.第2
電極で裏ビード形成をさせることとすれば、現在の3電
極片面溶接データを適用し得る。
FIG. 1 is a flowchart showing the multi-electrode single-sided submerged welding method of the present invention. First, the number of electrodes set N, the groove shape of the steel plate used, the plate thickness t, the type of flux, the welding speed V and the welding current of each electrode, the voltage E, the wire radius, the protrusion length La, the angle AL, the electrode spacing Dk Enter welding conditions such as Then, the electrode number and counter J are set to 1 as initial values.
Maximum penetration depth PMAX and weld metal transfer speed YS
After setting UM to zero, the already accumulated three-electrode single-sided welding data or experimental formula is read out from the computer storage device, and the penetration width W (J) and penetration depth P (J) for each electrode are determined. ). Normally, the shape of the back bead in the case of three-electrode single-sided welding is 1. It is carried out at the second electrode,
The interval between the second and third electrodes is larger than the interval between the first and second electrodes, and the third electrode forms a surface bead. Therefore, when performing single-sided welding with four or more electrodes, the first. Second
If the back bead is formed using an electrode, the current three-electrode single-sided welding data can be applied.

次に余盛形成を支配する溶着金属量を求める。Next, find the amount of weld metal that controls the formation of extra metal.

片面溶接の場合の表フランクスに1」、溶着効率を高め
るため、フラックス中に数10%の金属粉が含有されて
おり、ワイヤが溶融する分に加え、このフラックスから
移行した金属量の和が溶着金属量となる。ワイヤ溶着速
度M v (g / s e c )に関しては、第2
図に示すように、電極No、に関係なく、溶接電流■に
大きく支配されている。そして、この他に真のワイヤ突
き出し長L(cm)、およびワイヤ径D(cm)も関与
しており、Mvは第2図中の実線で示した実験式(1)
で知ることができる。
In the case of single-sided welding, several tens of percent of metal powder is contained in the flux to increase welding efficiency, and the sum of the amount of metal transferred from this flux in addition to the amount that melts the wire is This is the amount of welded metal. Regarding the wire welding speed M v (g/sec), the second
As shown in the figure, the welding current is largely dominated by the welding current (2), regardless of the electrode number. In addition, the true wire protrusion length L (cm) and wire diameter D (cm) are also involved, and Mv is determined by the experimental formula (1) shown by the solid line in Figure 2.
You can find out.

Mv(g/see)=Mo+(1/1000)(4,6
6X 10  ’ (I −L/D”)’  22]■
 溶接電流(A)。
Mv (g/see) = Mo + (1/1000) (4,6
6X 10' (I -L/D")' 22] ■
Welding current (A).

Mo:Ky・■。Mo:Ky・■.

KY  フラックスによる定数、 一方、フラックスからの金属移行速度Ml(g/5ec
)は、フラックスの溶融速度Fs(g/5ec)によっ
て支配される。いま、スラグ生成速度をSv(g/5e
c)とすれば、F s = S v 十M Iであり、
また、溶融したフラックス中の金属粉が溶接金属に移行
する比率(以後、移行率と略称)をR,フラックス中の
金属粉配合比をCとすれば、MlはMI=Fs−R−C
となる。
KY constant due to flux, on the other hand, metal transfer rate Ml from flux (g/5ec
) is governed by the flux melting rate Fs (g/5ec). Now, the slag generation rate is Sv (g/5e
c), then F s = S v +M I,
Furthermore, if the ratio at which metal powder in the molten flux transfers to the weld metal (hereinafter referred to as transfer rate) is R, and the metal powder mixing ratio in the flux is C, then Ml is MI=Fs-R-C
becomes.

これらの式を金属移行速度Mfで整理すると(2)式と
なる。
When these equations are rearranged using the metal transfer rate Mf, equation (2) is obtained.

Mf=Sv/(1/R−C−1)   −(2)それゆ
え、配合比Cが決まり、移行率R及びSvが分かれば、
Mfを知ることができる。二のSv。
Mf=Sv/(1/R-C-1) - (2) Therefore, if the blending ratio C is determined and the transfer rate R and Sv are known,
You can know Mf. Second Sv.

及びRは第3図及び第4図に示すように溶接入力(kW
)と関係することを見出した。したがって、第3図及び
第4図からSv、Rを求めれば、(2)式から移行速度
Mfを知ることができる。そして、ワイヤ溶着速度Mv
と移行速度Mfの和である溶着金属移行速度YSUMか
ら溶着面積を求め、そこから開先面積を差し引いたもの
が余盛量となる。
and R are the welding input (kW) as shown in Figures 3 and 4.
) was found to be related to Therefore, by finding Sv and R from FIGS. 3 and 4, the transition speed Mf can be found from equation (2). And wire welding speed Mv
The welding area is determined from the weld metal transfer rate YSUM, which is the sum of the transfer rate Mf and the transfer rate Mf, and the amount of excess metal is obtained by subtracting the groove area from there.

なお、第1図中、余盛面積演算式中のρは鋼密度、3に
は開先面積である。
In addition, in FIG. 1, ρ in the formula for calculating the area of reinforcement is the steel density, and 3 is the groove area.

このようにして得られたビード形状要素、すなわち、裏
溶け込み幅M、溶け込み深さP、余盛面積Sがビード形
状目標値に合致すれば、この溶接条件で溶接を行なう。
If the bead shape elements obtained in this way, that is, back penetration width M, penetration depth P, and reinforcement area S match the bead shape target values, welding is performed under these welding conditions.

また、合致しなければ最初に戻って溶接条件を変更して
再度確認する。
If they do not match, go back to the beginning, change the welding conditions, and check again.

〔実施例〕〔Example〕

本発明を用い、(1)式のKYに0.003. (2)
式のSv、Rを第3図及び第4図から読み取り、フラッ
クス中の金属配合比Cを0.38として、マイクロコン
ピュタのデイスプレィとの対話形式で第1表に示すよう
に板厚16mmの4電極片面溶接条件を入力し、各ビー
ド形状要素を求め、第2表に示すような結果を得た。な
お、ここで表溶け込み幅はこれまでの3電極片面溶接デ
ータからの情報で与えられないため、適当な値を入力し
ている。次に、この溶接条件を用い、50キロ級鋼5M
490Cを4電極片面サブマージドアーク溶接を行なっ
た。そして、溶接後のビード断面を測定し、第2表と比
較した。
Using the present invention, KY in equation (1) is set to 0.003. (2)
Read the formulas Sv and R from Figures 3 and 4, set the metal compounding ratio C in the flux as 0.38, and use the dialogue format with the display of the microcomputer as shown in Table 1. The electrode single-sided welding conditions were input and each bead shape element was determined, and the results shown in Table 2 were obtained. Note that here, since the surface penetration width is not given by information from the previous three-electrode single-sided welding data, an appropriate value is input. Next, using these welding conditions, 50 kg class steel 5M
490C was subjected to 4-electrode single-sided submerged arc welding. Then, the cross section of the bead after welding was measured and compared with Table 2.

第3表はその結果を示したものである。ここで、各ビー
ド形状要素は第5図に示すようにPは溶け込み深さ、w
r、wbはそれぞれ表裏溶け込み幅、Sは表裏ビード余
盛量の和である。適当にセットした推定値の表溶け込み
幅を除けば、本発明による期待値と実測結果とはほぼ一
致している。
Table 3 shows the results. Here, each bead shape element is as shown in Fig. 5, where P is the penetration depth and w
r and wb are the front and back weld penetration widths, respectively, and S is the sum of the bead excess amounts on the front and back sides. The expected values according to the present invention and the actual measurement results are almost the same, except for the surface penetration width of the estimated value that was set appropriately.

第3表 〔発明の効果〕 上述したように、本発明を用いて多電極サブマジドアー
ク溶接を行なうことにより、実溶接の前に裏ビード形成
の可否、及び余盛量の過不足が判定できるので、目標値
に合致しない溶接条件は溶接するまでもなく、ふるい落
されるため、適正条件選定探索のための実験数を大幅に
省略することが可能となり、条件選定に要する時間、労
力。
Table 3 [Effects of the Invention] As described above, by performing multi-electrode submerged arc welding using the present invention, it is possible to determine whether or not a back bead is formed and whether the amount of extra welding is excessive or insufficient before actual welding. Welding conditions that do not match the target values are screened out without welding, making it possible to significantly reduce the number of experiments required to select appropriate conditions, reducing the time and effort required to select conditions.

及び費用を削減でき、産業上に及ぼす省力化効果は大き
い。
and costs can be reduced, and the labor-saving effect on industry is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の多電極片面サブマージドアク溶接手
法を示す流れ図でJはカウンタ、PMAXは最大溝は込
み深さ、YSUMは溶着金属移行速度、w(J)、p(
J)およびMv(J)はそれぞれJ電極の溶け込み幅、
溶け込み深さおよびワイヤ溶着速度、ρは鋼密度、Sk
は開先面積である。 第2図は、ワイヤ溶着速度MY(g/5ec)と溶接電
流I (A)との関係を示すグラフである。 第3図は、スラグ生成速度Sv(g/5ec)と溶接入
力(kW)との関係を示すグラフである。 第4図は、フラックス中の金属粉から溶接金属に移行す
る金属移行率Rと溶接入力(kW)との関係を示すグラ
フである。 第5図は、片面溶接のビード横断面を示す断面図であり
、Pは溶け込み深さ、Wlおよびwbはそれぞれ表情は
込み幅および衷情は込み幅、Sは表裏ビード余盛面積の
和である。
Figure 1 is a flowchart showing the multi-electrode single-sided submerged AC welding method of the present invention, where J is the counter, PMAX is the maximum groove depth, YSUM is the deposited metal transfer rate, w (J), p (
J) and Mv(J) are the penetration width of the J electrode, respectively;
Penetration depth and wire welding speed, ρ is steel density, Sk
is the groove area. FIG. 2 is a graph showing the relationship between wire welding speed MY (g/5ec) and welding current I (A). FIG. 3 is a graph showing the relationship between slag production speed Sv (g/5ec) and welding input (kW). FIG. 4 is a graph showing the relationship between the metal transfer rate R from the metal powder in the flux to the weld metal and the welding input (kW). Figure 5 is a cross-sectional view of a bead in single-sided welding, where P is the penetration depth, Wl and wb are the width of the weld, and the width of the weld is the width of the weld, respectively, and S is the sum of the top and bottom bead areas. .

Claims (1)

【特許請求の範囲】[Claims] 溶接電極数、開先形状、板厚、フラックス種類、溶接速
度、各電極のワイヤ径、突き出し長及び角度、電極間隔
、溶接電流、溶接電圧、の溶接条件を与えて予めコンピ
ュータに準備したデータベースまたは実験式、を用いて
予想されるビードの溶け込み幅、深さ及び余盛量を算出
し、これらに対応して溶接条件を決定して溶接を行なう
ことを特徴とする多電極片面サブマージドアーク溶接方
法。
A database prepared in advance on a computer containing welding conditions such as the number of welding electrodes, groove shape, plate thickness, flux type, welding speed, wire diameter of each electrode, protrusion length and angle, electrode spacing, welding current, and welding voltage. A multi-electrode single-sided submerged arc welding method, characterized in that the expected bead penetration width, depth, and excess welding amount are calculated using an empirical formula, and welding conditions are determined in accordance with these and welding is performed.
JP22988690A 1990-08-31 1990-08-31 Multiple electrode one-side submerged arc welding method Pending JPH04111975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22988690A JPH04111975A (en) 1990-08-31 1990-08-31 Multiple electrode one-side submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22988690A JPH04111975A (en) 1990-08-31 1990-08-31 Multiple electrode one-side submerged arc welding method

Publications (1)

Publication Number Publication Date
JPH04111975A true JPH04111975A (en) 1992-04-13

Family

ID=16899255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22988690A Pending JPH04111975A (en) 1990-08-31 1990-08-31 Multiple electrode one-side submerged arc welding method

Country Status (1)

Country Link
JP (1) JPH04111975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258311A4 (en) * 2000-01-18 2007-08-01 Yaskawa Denki Seisakusho Kk Method for calculating shape of bead of welded part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258311A4 (en) * 2000-01-18 2007-08-01 Yaskawa Denki Seisakusho Kk Method for calculating shape of bead of welded part

Similar Documents

Publication Publication Date Title
JP5314096B2 (en) Welding data processing method and program
Olabode et al. Aluminium alloys welding processes: Challenges, joint types and process selection
Singh et al. Mathematical modeling of effect of polarity on weld bead geometry in submerged arc welding
Allen et al. Statistical process design for robotic GMA welding of sheet metal
Li et al. „Shunting effect in resistance spot welding steels—part 2: theoretical analysis”
Ma et al. Effect of intermetallic compounds on the mechanical property and corrosion behaviour of aluminium alloy/steel hybrid fusion-brazed welded structure
CN104816077B (en) Method capable of quickly determining one-off forming welding linear energy of submerged-arc welding of V-shaped groove
JP2000126872A (en) Control method of resistance welding machine
JPH04111975A (en) Multiple electrode one-side submerged arc welding method
Sharma et al. A practical approach towards mathematical modeling of deposition rate during twin-wire submerged arc welding
JPH04143075A (en) Method for estimating multiple electrode one-side submerged arc welding conditions
Silva et al. A quality and cost approach for welding process selection
JP2016007620A (en) Welding method and welding structure
JPS58112687A (en) Method of execution for lining using clad piece and clad piece
JPS6219266B2 (en)
RU2704676C1 (en) Method for determination of basic metal penetration area during arc welding
Yang et al. The effects of process variables on the bead height of submerged-arc weld deposits
Cho et al. Resistance spot welding of aluminium and steel: a comparative experimental study
JP2850773B2 (en) Weld metal material prediction method
JPH10211578A (en) Two-electrode submerged arc welding method for square joint
Singh WIRE FEED RATE OPTIMIZATION FOR MIG WELDING OF ALLUMINIUM ALLOY 6063
JP6299356B2 (en) Nugget diameter estimation method for resistance spot welding
JPH0156871B2 (en)
Pandolfi et al. Evaluation of the occurrence of mechanical constriction of the Arc in A-TIG welding of austenitic stainless steels
Singh et al. Optimization of Flux for Bead Geometry and Weld Dilution in SAW Using Gray Analysis